合成油品加氢脱氧催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速发展,石油资源相对缺乏与急剧增涨的石油需求量之间的矛盾日渐突出,将制约我国经济持续发展和严重威胁国家能源安全。费托合成技术能将其它含碳资源特别是煤(我国煤炭资源丰富,达6872亿吨,占世界储量的11%)、生物质(来源广泛,可再生)等转化为液态油和其他化工原料,是开发新的可替代能源的重要途径之一。但与石油相比,费托合成油品中含有大量的有机含氧化合物(有的竟高达50%),含氧化合物的存在会降低油品的质量,影响油品的深加工,需加氢脱氧处理。本文根据生物质合成油品的特点(主要含氧化合物为酚类和呋喃)及实验条件,选择苯酚、对甲基苯酚作为模拟含氧化合物,正辛烷为媒介及模拟油品非含氧成分,在高压釜反应器中对自制催化剂进行活性评价并采用BET、XRD等手段表征催化剂。
     本文主要从两个方面进行研究和优化催化剂的性能。一方面,从优化载体性能入手,即高比表面积大孔容纳米活性氧化铝载体的制备。通过对影响制备纳米活性氧化铝的几个关键因素的深入研究,发现表面活性剂和干燥煅烧前处理方式对载体的比表面积与孔容积具有决定性的影响。本文在超声场中,采用聚乙二醇400作表面活性剂、发泡剂分散干燥煅烧方式制备出比表面积高达501m~2/g、孔体积2.089ml/g的活性氧化铝,并运用IR、XRD、BET和SEM进行表征。本法具有工艺条件简单、成本较低、易大规模化生产等优点。
     另一方面,在查阅大量文献及实验验证的基础上,选用氧化钼作为活性组分、氧化镍辅助组分、自制纳米活性氧化铝作为载体,等体积浸渍法制备一系列超细负载型Ni-Mo /γ-Al_2O_3催化剂。并深入考察了高比表面积大孔容纳米活性氧化铝载体上的活性物质负载量、Ni/Mo摩尔比及反应条件对超细负载型Ni-Mo /γ-Al_2O_3催化剂性能的影响。得到较优的超细催化剂制备工艺(超声分散浸渍、微波干燥)、负载配比(氧化钼的负载量以20%~25%、Ni/Mo摩尔比在0.4~0.5)和适宜的操作条件(温度320~340℃、反应压力5.0MPa、反应时间6.0~7.0h)。在较优的条件下,超细Ni-Mo /γ-Al_2O_3催化剂催化苯酚加氢脱氧反应的转化率达到56%,是普通Ni-Mo /γ-Al_2O_3催化剂活性的3~5倍以上,具有很高的研究、开发价值。
With a great increase of economy, the antinomy between the lack of petroleum resource and sharply increasing requirement for petroleum become more and more severity, which is crucially important for the persistent development of economy and energy safety in our country. Fischer-Tropsch synthetical technology, as a new alternative method to develop replaceable energy, can transform inclusive carbon resource especially for coal (abundance in China, word reserves 11%) and biomass (reproducible) into liquid oil and other chemical raw materials. But Fischer-Tropsch synthetical oil containing a great many of oxygenous compounds especially some reach 50% in quantity, which debases the quality of synthetical oil and influence deep process, needs hydrodeoxygenation treatment. This paper on the basis of characteristic oil and experimental condition, choose phenol as stimulant oxygenous compound and octane as reactive medium, and estimate catalysts which are of preparation in my laboratory in autoclave. And then the catalysts were characterized by XRD, BET.
     This paper carrys out researching and optimizing hydrodeoxygenation catalysts in two aspects mainly. One side, superhigh specific surface area nanometer alumina was prepared, which is used as catalytic carrier. Some influencing factors of the performance of nanometer alumina was furtherly studied and found that anti-agglomerative reagent and dry way were the two main factors in the preparation of nanometer alumina. Nanometer alumina was prepared by chemical precipitation technique and ultrasonic dispersive using PEG and antiagglomerative reagent dispersing to calcine, then characterized by IR, XRD, BET and SEM. The results show that the prepared nanometer particles areγ-Al2O3 with nano-fiber-like structure, and with an average diameter 12.7nm, a pore volume of 2.089ml/g, a specific surface area of 501 m~2/g.
     On the other hand, this paper choose molybdenum as main catalyst, nickelas assistant catalyst by dipping method, which is on the basis of many reference and experimental validate. A serial of superlittle Ni-Mo /γ-Al_2O_3 catalysts were prepared by dipping method with support of nanometer alumina in lab. The effects of metal load quantity and operation conditions on performance of catalysts were investigated in detail. The results show that the superlittle Ni-Mo /γ-Al_2O_3 catalysts have high activity for hydrodeoxygenation and the optimal experimental condition is that ,with Mo_2O_3 content of 20%~25%, Ni/Mo molar ratio of 0.4~0.5, reaction temperature of 320~340℃, reaction pressure of 5.0 MPa , reaction time of 6.0~7.0h. On this optimal condition, catalyst achieves inverting ratio of 56%, which is 3~5 times of the conventional Ni-Mo /γ-Al_2O_3 catalysts.
引文
[1] Furimsky E.Catalytic hydrodeoxygenation[J].Applied Catalysis A: General, 2000,199(2):147-190.
    [2] Robert J A.An overview of modeling studies in HDS,HDN and HDO catalysis[J].Polyhedron, 1997,16(18):3073-3088
    [3] Ellott D C,Neuenschwander G G. Liquid fuels by low severity hydrotreating of biocrude [J].Developments in Thermochemical Biomass Conversion,1996,1(2):611-621
    [4] Grange P,Laurent E,Maggi R,et al. Hydrotreatment of pyrolysis oils from biomass: reactivity of the various categories of oxygenated compounds and preliminary techno-economical study [J].Catal Today,1996,29(4):297-301.
    [5]杨骏,陈满英,任杰.Mo、W对Ni/Al2O3催化剂加氢脱氧性能的影响[J].化工进展,2005,24(l2):1386-1389.
    [6]王雪峰,王锋,陈满英等. Ni基双金属催化剂加氢脱氧性能的研究[J].燃料化学学报, 2005,33(5):612-616.
    [7] Ramanathan S,Oyama S T. New catalysts for hydroprocessing:Transition metal carbides and nitrides [J]. Journal of Physical Chemical,1995,99(44):16365-16372.
    [8] Sajkowski D J,Oyama S T.Catalytic hydrotreating by molybdenum carbide and nitride: unsupported Mo2N and Mo2C/Al2O3[J].Applied Catalysis A: General, 1996,134(2):339-349.
    [9] Ryoichi Kojima,Kenichi Aika.Molybdenum nitride and carbide catalysts for ammonia synthesis[J].Applied Catalysis A: General, 2001,219(1-2):141-147.
    [10] Dhandapani B,Clair T S,Oyama S T.Simultaneous hydrodesulfurization, hydrodeoxygenation , and hydrogenation with molybdenum carbide[J].Applied Catalysis A: General, 1998,168(2):219-228.
    [11] Lu Chunshan,Li Xiaonian,Zhu Yifeng,et al.Ammonia Decomposition over Bimetallic Nitrides Supported onγ-Al2O3[J].Chinese Chemical Letters, 2004,15(1):105-108.
    [12] Yu C C,Oyama S T. Synthesis of New Bimetallic Transition Metal Oxynitrides V-Me-O-N (Me = Mo and W) by Temperature-Programmed Reaction[J]. Journal of Solid State Chemistry, 1995,116(1):205-207.
    [13] Kapoor R,Oyama S T,Fruhberger B,et.al.NEXAFS Characterization and Reactivity Studies of Bimetallic Vanadium MolybdenumOxynitride Hydrotreating Catalysts[J]. Journal of Physical Chemistry B,1997,101(9):1543-1547.
    [14] Rafael Ibanez,Aurelio Beltran. Synthesis of new vanadium chromium and chromiummolybdenum oxynitrides by direct ammonolysis of freeze dried precursors [J].Journal of Materials Chemistry, 2000,10(3):2537-2541.
    [15] Maity S,KRana M S,Bej S K,et al.Studies on physico-chemical characterization and catalysis on high surface area titania supported molybdenum hydrotreating catalysts[J].Applied Catalysis A: General, 2001,205(1-2):215-225.
    [16] Maria Ferrari,Bernard Delmon,Paul Grange.Influence of the active phase loading in carbon supported molybdenum cobalt catalysts for hydrodeoxygenation reactions[J].Microporous and Mesoporous Materials, 2002,56(3):279-290.
    [17] Maria Ferrari,Bernard Delmon and Paul Grange.Influence of the impregnation order of molybdenum and cobalt in carbon supported catalysts for hydrodeoxygenation reactions[J].Carbon,2002,40(4):497-511.
    [18] Maria Ferrari,Rosanna Maggi,Bernard Delmon,et al.Influences of the Hydrogen Sulfide Partial Pressure and of a Nitrogen Compound on the Hydrodeoxygenation Activity of a CoMo/Carbon Catalyst[J].Journal of Catalysis,2001,198(1):47-55.
    [19] Martina Bejblova,Petr Zamostny,Cejka J,et al.Hydrodeoxygenation of benzophenone on Pd catalysts[J].Applied Catalysis A: General, 2005,296(2):169-175.
    [20] Centeno A,Laurent E, Delmon B. Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules [J].Journal of Catalysis, 1995,154(2):288-298.
    [21] Karl Kreuzer,Reinhard Kramer.Support Effects in the Hydrogenolysis of Tetrahydrofuran on Platinum Catalysts[J].Journal of Catalysis, 1997,167(2):391-399.
    [22] Maity S,KRana M S,Srinivas B N,et al.Characterization and evaluation of ZrO supported hydrotreating catalysts[J].Journal of Molecular Catalysis A: Chemical, 2000,153(2):121-127.
    [23] Shin Eun-Jae,Mark A K.Catalytic Hydrogen Treatment of Aromatic Alcohols[J].Journal of Catalysis,1998,173(2):450-459.
    [24] Anjie Wang,Yao Wang,Toshiaki Kabe,et al.Hydrodesulfurization of Dibenzothiophene over Siliceous MCM-41-Supported Catalysts: I.Sulfided Co–Mo Catalysts[J].Journal of Catalysis, 2001,199(1):19-29.
    [25] Uday T Turaga,Chunshan Song.MCM 41 supported Co-Mo catalysts for deep hydrodesulfurization of light cycle oil[J].Catalysis Today, 2003,86(4):129-140.
    [26] Vradman L,Landau M V,Herskowitz M,et al.High loading of short WS2 slabs inside SBA-15: promotion with nickel and performance in hydrodesulfurization and hydrogenation[J].Journal of Catalysis, 2003,213(2):163-175.
    [27] Murali Dhar,Muthu Kumaran,Manoj Kumar,et al.Physico-chemical characterization and catalysis on SBA-15 supported molybdenum hydrotreating catalysts[J].Catalysis Today, 2005, 99 (3-4):309 -314.
    [28] Chiranjeevi T,Muthu Kumaran G,Gupta J K,et al.Effect of Si/Al ratio of HMS support on catalytic functionalities of Mo, CoMo, NiMo hydrotreating catalysts[J].Catalysis Communications, 2005,6(2):101-106.
    [29] Chiranjeevi T,Muthu Kumaran,Gupta J K,et al. Synthesis and characterization of acidic properties of Al-HMS materials of varying Si/Al ratios [J].Thermochimica Acta, 2006,443(1):87-92.
    [30] Sumbogo Murtia S D,Ki-Hyouk Choia,Kinya Sakanishib,et al.Analysis and removal of heteroatom containing species in coal liquid distillate over NiMo catalysts[J]. Fuel, 2005, 84(3):135-142.
    [31] Halachev T,Nava R,Dimitrov L.Catalytic activity of (P)NiMo/Ti-HMS and (P)NiW/Ti-HMS catalysts in the hydrogenation of naphthalene[J].Applied Catalysis A: General, 1998,169(1):111-117.
    [32] Tatiana Klimova,Mario Calderón,Jorge Ram?rez.Ni and Mo interaction with Al-containing MCM-41 support and its effect on the catalytic behavior in DBT hydrodesulfurization[J].Applied Catalysis A: General, 2003,240(1-2):29-40.
    [33] Muthu Kumaran G.,Shelu Garg,Kapil Soni,et al.Effect of Al-SBA-15 support on catalyticfunctionalities of hydrotreating catalysts: I. Effect of variation of Si/Al ratio on catalytic functionalities[J].Applied Catalysis A: General, 2006,305(2):123-129.
    [34] Emmanuel Lecrenay,Kinya Sakanishi,Isao Mochida.Hydrodesulfurization activity of CoMo and NiMo catalysts supported on some acidic binary oxides[J].Applied Catalysis A: General, 1998,175(1-2):237-243.
    [35] Mohan S R,Ancheyta J,Maity S K,et al.Maya crude hydrodemetallization and hydrodesulfurization catalysts An effect of TiO2 incorporation in Al2O3[J].Catalysis Today, 2005,109(4):61-68.
    [36] Manoj Kumar,Aberuagba F,Gupta J K,et al.Temperature-programmed reduction and acidic properties of molybdenum supported on MgO Al2O3 and their correlation with catalytic activity[J].Journal of Molecular Catalysis A: Chemical, 2004,213(2):217-223.
    [37] Rana M S, Maity S K, Ancheyta J, et al.TiO2 SiO2 supported hydrotreating catalysts: physicochemical characterization and activities[J].Applied Catalysis A: General,2003,253(2):165-176
    [38] Mohan S R,Maity S K,Ancheyta J,et al.MoCo(Ni)/ZrO2-SiO2 hydrotreating catalysts: physicochemical characterization and activities studies[J].Applied Catalysis A: General, 2004,268(2):89-97.
    [39] Park J H, Lee M K, Rhe C K, et al.Control of hydrolytic reaction of aluminum particles for aluminum oxide nanofibers[J].Materials Science and Engineering A, 2004, 375 (15):1263-1268
    [40] Zhu H Y, Riches J D, Barry J C.Alumina nanofibers prepared from aluminum hydrate with poly ethylene oxide surfactant[J].Chemical Materials, 2002, 14 (5):2086-2093
    [41]冯丽娟,赵宇靖,陈诵英.超细粒子催化剂[J].石油化工,1991,20(9):633-639
    [42] Schehl M, Diaz L A, Torrecillas R . Alumina nanocomposites from powder alkoxide mixtures[J].Acta Materialia, 2002, 50 (2):1125-1139
    [43]陈志刚,陈彩凤,刘苏.超声场中湿法制备Al2O3纳米粉工艺研究[J].硅酸盐学报,2003,31 (2):213-217
    [44]王雅娟,李春喜,王子镐.超声波化学沉淀法制备纳米氧化铝粒子[J].北京化工大学学报,2004,29 (2):8-13
    [45]李友凤,周继承,廖立民等.超重力碳分反应沉淀法制备分散性纳米氢氧化铝[J].硅酸盐学报,2006,34 (10):1290-1294
    [46]冯丽,娟赵宇,陈诵英等.超细氧化铝的研究[J].石油学报,1994,10(2):69-74
    [47]陈彩凤,陈志刚.超声场中湿法制备纳米粉末的原理和方法[J].机械工程材料,2003,27(4):30-32
    [48]蔡卫权,李会泉,张懿.Al3+浓度对水热法合成低密度薄水铝石性质的影响[J].功能材料,2004,6(35):779-784
    [49]罗玉长.拟薄水铝石结构的演化[J].轻金属,2001,2(2):10-13
    [50] Music S, Dragcevic D, Popovie S.Hydrothermal crystallization of boehmite from freshly precipitated aluminium hydroxide[J].Materials Letters,1999,40(6):269-274
    [51]陈彩凤,陈志刚.超声场中湿法制备氧化铝纳米粉[J].江苏大学学报,2003,24(1):79-82
    [52]冯丽娟,陈诵英,彭少逸.超细Mo/Al2O3催化剂催化及还原性质研究[J].高等学校化学学报,1995,16(1):98-102
    [53]冯丽娟,陈诵英,彭少逸.超细Mo/Al2O3催化剂加氢脱硫表面结构性质研究[J].高等学校化学学报,1995,16(1):103-106
    [54]冯丽娟,赵宇靖,陈诵英.超细粒子催化剂[J].石油化工,1991,20(9):633-639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700