硫代硫酸钠在制备ZnO纳米材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO材料具有独特的电、光、磁、机械等性能,在微电子器件和光电器件等领域有广泛的应用前景。这些独特性能不仅取决于材料的组成、结构和尺度,还取决于其维度和形态。这就要求在材料的生长过程中对它们的结构、组分、形状、大小和位置进行控制。因此,实现形态控制生长是目前ZnO研究的一个重要方向,对其工业化生产和应用具有重大意义。表面活性剂因在化学反应体系中具有多种相行为和结构的多样性,成为研究热点。在特种表面活性剂中,有一类含硫基团的表面活性剂,通常含有N、S、O等官能团的有机分子对无机氧化物都有一定的亲和力,这些官能团能通过氢键、电荷吸引或化学吸附等多种方式与无机氧化物颗粒表面发生作用,从而具有改性作用。在化合物中,除了含硫的有机物能形成具有配位能力的硫离子外,无机化合物硫代硫酸钠(Na_2S_2O_3)分子中,一个硫原子氧化数为+6,另一个为-2,价态为-2的硫原子由于在整个阴离子的外围而具有一定的配位能力,此外,ZnO与硫能产生强的相互作用,可以作为硫的吸附剂,将硫代硫酸钠用于ZnO纳米材料的制备很少报道。
     本研究将含硫基团的硫代硫酸钠应用到ZnO的制备过程中,不仅在一定程度上实现了对ZnO的形核、生长和形貌的控制,而且获得了一些新型的复合纳米结构,同时有针对性地对有关体系的荧光发射性能进行研究,因此本文主要用硫代硫酸钠开展系列研究工作,主要研究内容如下:
     (一)、探索硫代硫酸钠在锌箔-甲酰胺反应体系中对合成ZnO的形貌调控,探讨ZnO纳米结构的生长过程中,硫代硫酸钠所起的作用,发现硫代硫酸钠不仅可以做为表面活性剂而且还起到硫掺杂的双重作用;硫代硫酸钠通过金属-硫配位,吸附在ZnO生长基元的周围,影响ZnO的生长习性而得到各种形貌的ZnO。
     (二)、探索硫代硫酸钠在室温下对ZnO纳米晶的形貌调控,并研究硫掺杂ZnO的光致发光性能,室温下制备出多层花形硫掺杂ZnO微晶,通过对其光致发光的研究,发现S掺杂之后的ZnO只存在可见光发射,紫外发射消失,对于ZnO在可见光区的应用具有重要的价值。
     (三)、探索室温下油酸对硫代硫酸钠-硝酸锌-六次甲基四胺反应体系的影响,用简单的溶液法制备出空心硫微球。油酸起作为模板和反应剂的双重作用。由于油酸的溶解度很低,整个反应持续两周,但是反应条件简单。
ZnO materials have unique electrical, optical, magnetic, mechanical properties, and have a wide range of applications in micro-electronic and optoelectronic devices These unique properties not only depend on the composition, structure and scale, but also its dimensions and shapes, which require their structure, composition, shape, size and position are controlable. Therefore, to achieve shape-control ZnO is an important area of research, and has great significance for industrial production and application. Phase behavior of surfactant in chemical reaction system and its structural diversity have become a research focus. In the specialty surfactants, there are a kind of sulfur group of surfactants, usually containing N, S, O and other functional groups of organic molecules on inorganic oxides have a certain degree of affinity, These functional groups through hydrogen bonding, charge attract or a variety of ways, such as chemical adsorption and the surface of inorganic oxide particles and thus have a modified function. In the compounds, in addition to the formation of organic sulfur coordination ability with sulfide ions, the inorganic compounds of sodium thiosulfate (Na_2S_2O_3), sulfur atom oxidation number of +6, and the other is -2, -2 valence state of sulfur atom in the anion locates one corner of the tetrahedron and has a capacity of coordination. In addition, sulfur anion can interact with ZnO as a sulfur adsorbent, so the Na_2S_2O_3 can be used for the preparation of ZnO nano-materials.
     In this study, it is reasonable to use of S-contained ligands for controllable growth of ZnO nanostructures: to achieve a certain degree of ZnO nucleation, growth and morphology control, and to prepare a series of new nano-composite structures. At the same time the fluorescence emission properties of S-doped flower-like ZnO was studied. Main contents include the following parts:
     (1) Studied how Na_2S_2O_3 to control ZnO morphology in the Zn foil-CH_3NO reaction system. The results show that Na_2S_2O_3 not only acts as a surfactant but also sulfur resource for S-doped; Na_2S_2O_3 adsorbs on ZnO through the metal-sulfur coordination, affects the growth habits of ZnO. Therefore, a variety morphologys of ZnO were obtained.
     (2) Studied the effect of Na_2S_2O_3 to nanocrystalline ZnO regulation of morphology at room temperature and studying the S-doped ZnO photoluminescence properties. At room temperature we got sulfur-doped flower-like ZnO. Through its photoluminescence study, we found that sulfur-doped ZnO only have visible light emission, ultraviolet emission disappeared which has an important value for ZnO application in the visible region.
     (3) Studied the impact of oleic acid for C_6H_(12)N_4-Zn(NO_3)_2-Na_2S_2O_3 reaction system. In conclusion, hollow microspheres of sulfur have been synthesized via a simple solution route at room temperature and ambient conditions for the first time. Oleic acid acts as both template and reagent. For the low solubility of oleic acid, process of the formation of sulfur hollow microspheres lasts as long as two weeks but benifits simple raction conditions.
引文
[1]J E Jaffe,A C Hess.Hartree-Fock study of phase changes in ZnO at high pressure.Phys Rev B,1993,48(11-15),7903-7909.
    [2]S L King,I W Boyd.Plused-laser deposited ZnO for device applications.Appl Surf Sci,1996,96-98,811-814.
    [3]H Maki,N Ichinose,N Ohashi,et al.Lattice relaxation of a ZnO(0001)surface accompanied by a decrease in antibonding feature.J Cryst Growth,2001,229(1-4),114-118.
    [4]C H Bates,W B White,R Roy.New high-pressure polymorph of zinc oxide.Science,1962,137,993.
    [5]邓雷磊.ZnO薄膜的制备及其特性研究.厦门大学,硕士学位论文,2007年5月,2-4
    [6]刘翊纶,基础元素化学,高等教育出版社.1992.
    [7]S J Pearton,D P Norton,K Ip,et al.Recent progress in processing and properties of ZnO Superlattices and Microstructures,2003,34,3-32.
    [8]Z L Wang.Zinc oxide nanostructures:growth,properties and applications.Phys Condens Matter,2004,16,R829-R858.
    [9]P M Verghese,D R Clarke.Piezoelectric contributions to the electrical behavior of ZnO varistors.Appl Phys,2000,87,4430-4438.
    [10]Hu J,Li L S,Yang W,et al.Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods.Science,2001,292,2060-2063.
    [11]Mohamed M B,Volkob V,Link S,et al.The lightning gold nanorods:fluorescence enhancement of over a million compared to the gold metal.Chemical Phys Lett,2000,317(6),517-523.
    [12]Huang M H,Mao S,Feick H,et al.Room-Temperature Ultraviolet Nanowire Nanolasers.Science,2001,292(5523),1897-1899.
    [13]Thurn A T,Schotter J,Kaste G A,et al.Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates.Science,2000,290(5449),2126-2129.
    [14]李丽丽.表面活性剂对无机纳米材料形貌的调控.东北师范大学,硕士学位论文, 2002年5月,4-5
    [15]王淼,李振华,鲁阳等.纳米材料应用技术的新进展.材料科学与工程,2000,18(1),103-105.
    [16]朱雪梅.表面活性剂与纳米材料的制备,安徽大学,硕士学位论文,2006年5月,8-9。
    [17]Kang P,Chen C N,Hao L Y,et al.A novel sonication route to prepare anthracene nanoparticles.Materials Research Bulletin,2004,39(4-5),545-551.
    [18]Lee C S,Lee J S,Oh S T.Dispersion control of FeO nanoparticles using a mixed type of mechanical and ultrasonic milling.Materials Letters,2003,57(18),2643-2646.
    [19]Ghosh M,Lawes G,Gayen A,et al.A Novel Route to Toluene-Soluble Magnetic Oxide Nanoparticles:Aqueous Hydrolysis Followed by Surfactant Exchange.Chem Mater,2004,16(1),118-124.
    [20]Liu Z P,Hu Z K,Qian Y T,et al.Size-Controlled Synthesis and Growth Mechanism of Monodisperse Tellurium Nanorods by a Surfactant-Assisted Method.Langmuir,2004,20(1),214-218.
    [21]Lee G J,Shin S I,Kim Y C,et al.Preparation of silver nanorods through the control of temperature and pH of reaction medium.Materials Chemistry and Physics,2004,84(2-3),197-204.
    [22]Shi H T,Qi L M,Ma J M,et al.Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles.Adv Funct Mater,2005,15(3),442-450.
    [23]李丽丽.水热体系中表面活性剂辅助制备中空结构金属氧化物及性质研究.东北师范大学,博士学位论文,2008年5月,28-30
    [24]赵国玺.表面活性剂物理化学.北京:北京大学出版社,1984,1.
    [25]李存增.溶胶-凝胶法制备纳米ZnO工艺及表面活性剂防团聚机理研究.兰州理工大学,硕士学位论文,2007年4月,57-60。
    [26]Zhou X F,Chen S Y,Zhang D Y,et al.Microsphere Organization of Nanorods Directed by PEG Linear Polymer.Langmuir,2006,22(4),1383-1387.
    [27]Xu Y Y,Chen D R,Jiao X L,et al.PEG-Assisted Fabrication of Single-Crystalline CuI Nanosheets:A General Route to Two-Dimensional Nanostructured Materials.J Phys Chem C,2007,111(1),6-9.
    [28]Zhang J,Muthukumar S,Chen Y,et al.Ga-doped Zn0 single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition.Appl Phys Lett,2003,83,3401-3403.
    [29]Heo Y W,Norton D.P,Tian L.C,et al.ZnO nanowire growth and devices.Materials Science and Engineering R,2004,47,1-47.
    [30]李新宇.半导体纳米ZnO的制备、掺杂及光学性质.湘潭大学,硕士学位论文2007年5月,7-8.
    [31]S G Hussain,D M Liu,X T Huang.Synthesis and optical properties of partially S-doped ZnO symmetric three- sided feather-like nanostructures.Smart Mater Street,2007,16(5),1736-1741.
    [32]P L Zhou,X B Yu,L Z Yang.Simple air oxidation synthesis and optical properties of S-doped ZnO microspheres,Mater Lett,2007,61(18),3870-3872.
    [33]G Z Shen,I H Cho,J K,Yoo.Synthesis and optical properties of S- doped ZnO nanostructures:Nanonails and nanowires.Phys Chem B,2005,109(12),5491-5496.
    [34]G Z Shen,J H Cho,S I.Jung.Synthesis and characterization of S - doped ZnO nanowires produced by a simple solution- conversion process.Chem Phys Lett,2005,401(4-6),529-533.
    [35]S Y Bae,H W Seo,J H Park.Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition.J Phys Chem B,2004,108(17),5206-5210.
    [36]B Y Geng,G Z Wang,Z Jiang.Synthesis and optical properties of S-doped ZnO nanowires.Appl Phys Lett,2003,82(26),4791-4793.
    [37]张玉芹,赵高凌,韩高荣.枝蔓晶硫化锌的水热合成.硅酸盐学报,2005,33(7),892-896.
    [38]郑梅琴,颜桂炀,郑柳萍,叶金花.水热法制备纳米ZnS的光催化性能研究.广州化学,2007,32(2),7-11.
    [39]李小兵,田莳,孙玉静,等.ZnS纳米粒子的水热法和溶剂热法制备.压电与声光,2002,24(4),306-309.
    [40]刘新征.硫化物纳米和微晶材料的溶剂热合成及其机理研究.中国科学技术大学,博士学位论文,2006年3月.57-58
    [41]Yang Liu,Jiang Tang,Xiaoqiang Cui,et al.Morphology-controlled synthesis of monodisperse ZnO troughs at the air-water inierface under mild conditions.Phys Chem B,2005,109(47),22244-22249.
    [42]G Z Shen,J H Cho,C J Lee.Morphology-controlled synthesis,growth mechanism and optical Properties of ZnO nanonails.Chem Phys Lett,2005,401(4-6),414-419.
    [43]X H Zhong,Y Y Feng,Y L Zhang.Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals.Small,2007,3(7),1194-1199.
    [44]W Q Peng,S C Qu,G W Cong,Synthesis and structures of morphology-controlled ZnO nano-and microcrystals.Cryst Growth Des,2006,6(6),1518-1522.
    [45]B Halevi J,M Vohs.Reactions of CH_3SH and(CH_3)_2S_2 on the(0001)and(000(?)) surfaces of ZnO.Phys Chem B,2005,109(50),23976-23982.
    [46]N Fathy,M Ichimura.Electrochemical deposition of ZnO thin films from acidic solutions.Cryst Growth,2006,294(2),191-196.
    [47]E E Abd,E I Aal,Factors affecting the anodic behaviour of zinc electrode in borate solutions.Corros Sci,2006,48(2),343-360.
    [48]杨峰.ZnO纳米结构形态调控与表面光电性能研究.浙江大学博士论文,2008年1月81-86
    [49]王百齐,王鹏伟,张学进.ZnO纳米棒阵列的同步法制备及其PL性能研究.无机化学学报,2007,23(8),1365-1368
    [50]李汉军,施尔畏,殷之文.极性晶体的生长习性.科学通报,1999,44(1),2388.
    [51]丁书龙.ZnO一维纳米材料的制备.湘潭大学硕士论文,2005年12月,43-44
    [52]马正先,闫平科,马志军,等.一步法制备纳米氧化锌的形成机理.人工晶体学报,2008,37(2),305-310
    [53]王佳,高峰.ZnO微晶的水热合成及形貌控制研究.化学研究,2007,18(1),23-27.
    [54]王步国,施尔畏,仲维卓,殷之文.水热法制备的氧化锌微晶的形态特征.科学通报,1997.42(10),1113-1117.
    [55]Wang Bu guo,Zhong Wei zhou,et al.Analysis of growth habits of polar organic crystal 4-nitrophenyl-L-prolinol(NPP)based on the incorporation of growth units.Cryst Growth,1996,160,375-381.
    [56]Smith D K,Newkirk H W,Kahn J S.The crystal structure and polarity of beryllium oxide.Electrochem Soc,1964,111,78-87.
    [57]Qian H S,Yu S H,Gong J Y,et al.Growth of ZnO crystals with branched spindles and prismatic whiskers from Zn_3(OH)_2V_2O_7·H_2O nanosheets by a hydrothermal route.Cryst Growth Design,2005,5(3),935-939.
    [58]许磊,蔡洪涛,张天杰.氧化锌纳米棒的低温水溶液化学制备研究.华北水利水电学院学报,2007,28(4),97-99.
    [59]张克从.近代晶体学基础(下册)[M].北京:科学出版社,1987.84-88.
    [60]向群,刘荣利,施利毅,等.水热合成一维氧化锌及其影响因素.上海大学学报(自然科学版),2006,12(3),283-287.
    [61]陈智巧,贺卫卫,李玉平,等.低温一步液相法合成znO纳米棒.无机化学学报,2007,23(1).177-180.
    [62]Zheng R,Liu H,Zhang X,et al.Exchange bias and the origin of magnetism in Mn-doped ZnO tetrapods.Appl Phys Lett,2004,85(13),2589-2591.
    [63]Vivek Dhas,Subas Muduli,Wonjoo Lee,et al.Enhanced conversion efficiency in dye-sensitized solar cells based on ZnO bifunctional nanoflowers loaded with gold nanoparticles.Applied physics letters 2008,93(24),243108-243111.
    [64]Wang Z L.Nanobelts,Nanowires,and Nanodiskettes of Semiconducting Oxides-From Materials to Nanodevices.AdV Mater,2003,15,432-436.
    [65]Y D Yin,X L Xu,X W Ge,et al.Synthesis and characterization of ZnS colloidal Particles via gamma-radiation.Radiat Phys Chem,1999,55(3),353-356.
    [66]G Z Wang,B Y Geng,X M Huang,et al.A convenient ultrasonic irradiation technique for in situ synthesis of zinc sulfide nanocrystallites at room temperature.Appl Phys A,2003,77(7),933-936.
    [67]Wang Y W,Zhang L D,Liang C H,et al.Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires.Chem Phys Lett,2002,357,314-318.
    [68]Zhu Y C,Bando Y,Xue D F.Spontaneous growth and luminescence of zinc sulfide nanobelts.Appl Phys Lett,2003,82(11),1769-1771.
    [69]Xu H Y,Wang H,Zhang Y C,et al.Hydrothermal synthesis of zinc oxide powders with controllable morphology.Ceramics l.nternational,2004,30,93-97.
    [70]余爱萍,陈忠伟,陈雪花,等.无机纳米抗紫外粉体及其在化妆品中的改性应用.材料导报,2001,15(12),38-40.
    [71]吴尝.固相反应法合成纳米氧化锌及其光学性能研究.阜阳师范学院学报(自然科学版),2007,24(2),16-18.
    [72]丁圣,李梦轲,王雪红,等.取向ZnO纳米线阵列的生长机理及发光特性.辽宁师范 大学学报(自然科学版),2006,29(3),305-308.
    [73]Bagnall D M,Chen Y F,Shen M Y.Room temperature excitonic stimulated emission from zinc oxide cpilaycrs grown by plasma-assisted MBE.J Crys Growth,1998,184-185,605-609.
    [74]李颖毅,宋智彬,罗军明,吴燕利,等.ZnS与NaCl共混煅烧法制备高效绿色ZnO 荧光粉.过程工程学报,2007,7(1)172-175.
    [75]Caruso F,Caruso R A,Molhwald H.Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating.Science,1998,282,1111-1114.
    [76]Hu Yongxing,Ge Jianping,Sun Yugang,et al.A self-templated approach to TiO_2miorocapsules.Nano Lett,2007,6(7),1832-1836.
    [77]Zhang Yange,Wang Shutao,Qian Yitai,et al.Complexing-reagent assisted synthesis of hollow CuO microspheres.Solid State Sciences,2006,8,462-466.
    [78]Wu Xiangyang,Jin Guoqiang,Guan Lianxiu,et al.Preparation and characterization of core-shell structured Fe_2O_3/SiC spheres.Materials Science and Engineering,2006,433,190-194.
    [79]Jiang Jinlong,Lu Haiqiang,Zhang Lixiong,et al.Preparation of Monodisperse Ni/PS spheres and hollow nickel spheresby ultrasonic electroless plating.Surface& Coatings Technology,2007,201,7174-7179.
    [80]Yan Chenglin,Xue Dongfeng.Polyhedral construction of hollow ZnO microspheres by CO_2 bubble templates.Journal of Alloys and Compounds,2007,431,241-245.
    [81]Ana P O,Francios G,et al.Controlled precipitation of zinc oxide particles at room temperature.Chcm Mater,2003,15,3202-3207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700