锂离子电池正极材料球形磷酸亚铁锂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石型LiFePO_4理论比容量高、价格低廉、环境友好、循环性能优良、安全性能突出,被认为是最具开发和应用潜力的新一代锂离子电池正极材料。由于LiFePO_4的电子导电率低和锂离子扩散速度慢,导致初始容量损失和倍率放电性能差;又因其堆积密度低,导致体积能量密度小。这两点影响了LiFePO_4材料的实用化。
     本文以制备球形LiFePO_4为研究目的,对其合成与改性做了详细研究。采用液相沉淀-高温煅烧法合成球形LiFePO_4,研究了合成条件对前躯体NH_4FePO_4·H_2O、产物LiFePO_4结构、形貌及电化学性能的影响,通过X射线衍射(X-Ray Diffraction)分析了合成前躯体及产物的结构晶型,扫描电镜(Scanning Electron Microscope)观察了材料的形貌,恒流充放电测试研究了合成材料的比容量和循环性能,用循环伏安(Cyclic Voltammogram)和电化学阻抗谱(Electrochemical Impedance Spectroscope)简单分析了材料的电化学反应机理。
     研究结果表明,采用FeSO_4·7H_2O、H3PO4和NH3·H_2O为原料合成的前躯体为NH_4FePO_4·H_2O,其晶体结构与目标产物LiFePO_4的晶体结构具有相似性,在高温固相反应之前就达到“结构预置”的效果,反应过程中晶体结构变化较小,反应易于进行。掺碳对振实密度有很大影响,随着含碳量的增加,振实密度逐渐减小,掺碳5 mass%的LiFePO_4/C振实密度为1.28 g·cm~(-3)。采用氟化锂为锂源,蔗糖为碳源,碳含量10 mass%,550℃烧结12 h制备的LiFePO_4材料放电容量保持在120 mAh·g~(-1) (0.1 C)左右。镍掺杂材料放电容量保持在110 mAh·g~(-1) (0.1 C)左右,通过镍掺杂,材料的比容量和循环性能并没有得到有效改善。对LiFePO_4进行掺碳处理后Rct变小,交换电流密度j°变大,加速了Li~+的脱嵌,电极反应速率增大,有利于电化学反应的进行,从而提高材料在实际充放电过程中的容量。
Olivine-type LiFePO_4 is considered as the most promising candidate for the next generation cathode materials of lithium ion batteries because it has high theoretical specific capacity, is cheap and environmentally friendly, also has good cycling characteristics and excellent safety. However, it’s poor electronic conductivity, which leads to initial capacity loss and poor rate capability. And it’s low pile density, which leads to low volumetric specific capacity. That prevent LiFePO_4 to be put into commercially used.
     In this work, we aim at preparing spherical LiFePO_4. Used liquid deposit-high temperature sinter method to synthesis spherical LiFePO_4. Researched the influence of synthesis condition to NH_4FePO_4·H_2O precursor and LiFePO_4 product in structure, pattern and electrochemical performance. In addition, X-Ray Diffraction (XRD) was used to analyze the crystal structure of precursor and product, Scanning Electron Microscope (SEM) was used to observe the superficial morphology, charge-discharge test was used to study the specific capacity and cyclic properties, Cyclic Voltammogram (CV) and Electrochemical Impedance Spectroscope (EIS) was used to discuss the electrochemical reactive mechanism.
     The results of the study show that use FeSO_4·7H_2O, H3PO4 and NH3·H_2O as materials to prepare NH_4FePO_4·H_2O precursor, the structure of the precursor and LiFePO_4 are similarity, it is an effect of“structure preset”before sinter. Carbon doping can influence the tap density greatly, with the increase of carbon content the tap density decrease. The tap density is 1.28 g·cm~(-3), when doped with 5 mass% carbon content. Using LiF as lithium source, sucrose as carbon source, carbon content is 10 mass%, 550℃sinter for 12 h to prepare LiFePO_4, the sample has a discharge specific capacity of 120 mAh·g~(-1) (0.1 C). The discharge specific capacity of nickel doping sample is about 110 mAh·g~(-1) (0.1 C), the discharge specific capacity and the cycle performance aren’t change efficiently by nickel doping. After carbon doping, Rct decrease, j°increase, it accelerates the extraction of Li~+, so the electrode reaction speed is accelerated, it is advantage to the electrochemical reaction, also enhance the real capacity.
引文
1李国欣.新型化学电源导论.上海:上海复旦大学出版社. 1992: 12~15
    2 R. J. Brodd, K. R. Bullock, R. A. Leising et al. Batteries, 1977 to 2002. J. Electrochem Soc. 2004, 151(3): K1~K11
    3 S. Bruno. Recent Advances in Lithium Ion Battery Materials. Electrochim. Acta, 2000, 45(8): 2461~2466
    4 B. H. Deng, H. Nakamura, M. Yoshio. Comparison and Improvement of the High Rate Performance of Different Types of LiMn_2O_4 Spinels. J. Power Sources. 2005, 14l(1): 116~121
    5 M. Winter, J. O. Besenhard, M. E. Spahr et al. Insertion Electrode Materials for Rechargeable Lithium Batteries. Adv. Mater. 1998, 10(10): 725~763
    6 A. K. Padhi, K. S. Nanjundawamy, J. B. Goodenough. Phospho-olivine as Positive Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem Soc. 1997, 144(4): 1188~1194
    7 M. Thackeray. Lithium-ion Batteries-an Unexpected Conductor. Nat. Mater. 2002, 1(2): 81~82
    8卢俊彪,唐子龙,张中泰等.镁离子掺杂对LiFePO_4/C材料电池性能的影响.物理化学学报. 2005, 21(3): 319~323
    9 H. Huang, S. C. Yin, L. F. Nazar. Approaching Theoretical Capacity of LiFePO_4 at Room Temperature at High Rates. J. Electrochem. Solid State Lett. 2001, 4(10): A170~A172
    10 F. Croce, A. D. Epifanio, J. Hassoun et al. A Novel Concept for the Synthesis of an Improved LiFePO_4 Lithium Battery Cathode. J. Electrochem. Solid Lett. 2002, 5(3): A47~A50
    11 S. Y. Chung, J. T. Blocking, Y. M. Chiang. Electronically Conductive Phospho-olivines as Lithium Storage Electrodes. Nat. Mater. 2002, 1(2): 123~128
    12吕鸣样,黄长保,宋玉谨.化学电源.天津:天津大学出版社. 1992: 306~307
    13汪继强.锂离子蓄电池技术发展及市场前景.电源技术. 1996, 26(4): 147~151
    14陈立泉.锂离子正极材料的研究发展.电池. 2002, 32(6): 6~8
    15赖琼钰.化学研究与运用.电化学. 1998, 10(1): 22~25
    16吴宇平,方世壁,刘昌炎等.锂离子电池正极材料氧化钴锂的进展.电源技术. 1997, 21(5): 208~209
    17赵健,杨维芝,赵佳明.锂离子电池的应用开发.电池工业. 2000, 5(1): 31~36
    18安平,其鲁.锂离子二次电池的应用和发展.北京大学学报. 2006, 42(SI): 1~7
    19 M. Wakihara. Recent Developments in Lithium Ion Batteries. Mat. Sci. Eng. R. 2001, 33(4): 109~134
    20 P. G. Bruce, A. R. Armstrong, R. L. Gitzendanner et al. New Intercalation Compounds for Lithium Batteries: Layered LiMnO_2. J. Mater. Chem. 1999, 9(1): 193~198
    21庄大高.锂离子电池正极材料LiFePO_4的合成及电化学性能研究.浙江大学博士论文. 2006: 9~10
    22 K. Mizushima, P. C. Jones, P. J. Wiseman et a1. LixCoO_2(0    23吉野彰.日本锂离子蓄电池技术的开发过程和最新趋势.电源技术. 2001, 25(6): 416~422
    24 J. Akimoto, Y. Gotoh, Y. Oosawa. Synthesis and Structure Refinement of LiCoO_2 Single Crystals. J. Solid State Chem. 1998, 141(1): 298~302
    25吴宇平,万春荣,姜长印.喷雾干燥法制备LiCoO_2超细粉.无机化学学报. 1999, 14(4): 657~661
    26 Y. X. Li, C. R. Wan, Y. P. Wu et al. Synthesis and Characterization of Ultrafine LiCoO_2 Powders by a Spray-drying Method. J. Power Sources. 2000, 85(2): 294~298
    27 L. Cheng, W. C. Liu. Reaction Mechanism and Kinetics Analysis of Lithium Nickel Oxide during Solid-state Reaction. J. Mater. Chem. 2000, 10(6): 1403~1407
    28 P. Barboux, J. M. Tarascon, F. K. Shokoohi. The Use of Acetates As Precursors for the Low-temperature Synthesis of LiMn_2O_4 and LiCoO_2 Intercalation Compounds. J. Solid State Chem. 1991, 94(1): 185~196
    29 J. Schoonman, H. L. Tuller, E. M. Kelder. Defect Chemical Aspects of Lithium-ion Battery Cathode. J. Power Sources. 1999, 81-82: 44~88
    30 R. Kanno, H. Kubo, Y. Kawamoto et al. Phase Relationship and Lithium Deintercalaton in Lithium Nickel Oxides. J. Solid State Chem. 1994, 110(2): 216~225
    31 L. Hernan, J. Morales, L. Sanchez et al. Use of Li-M-Mn-O [M=Co, Cr, Ti] Spinels Prepared by a Sol-gel Method as Cathodes in High-voltage Lithium Batteries. Solid State Ionics. 1999, 118(3-4): 179~185
    32 M. Okada, Y. S. Lee, M. Yoshio. Cycle Characterization of LiM_xMn_(2-x)O_4 (M=Co, Ni) Materials for Lithium Secondary Battery at Wide Voltage Region. J. Power Sources. 2000, 90(2): 196~200
    33 K. Rissouli, K. Benkhouja, B. Ramos et al. Electrical Conductivity in Lithium Orthophosphates. Mater. Sci. Eng. B. 2003, 98(3): A185~A189
    34 P. P. Prosini, M. Lisi, D. Zane et al. Determination of the Chemical Diffusion Coefficience of Lithium in LiFePO_4. Solide State Ionics. 2002, 148(1-2): A45~A51
    35 V. A. Streltsov, E. L. Belokoneva, V. G. Tsirelson et al. Multipole Analysis of the Electron Density of Triphylite, LiFePO_4, Using X-ray Diffraction Data. Acta. Cryst. B. 1993, B49(2): 147~153
    36 P. G. Bruce. Solid-state Chemistry of Lithium Power Sources. Chem. Commun. 1997, (19): 18l7~1824
    37周恒辉,倪江锋,陈继涛等. LiFePO_4的研究及产业化进展.新材料产业. 2006, (4): 49~52
    38 N. Ravet, M. Herstedt, M. Stjerndahl et al. Surface Chemistry of Carbon-treated LiFePO_4 Particles for Li-ion Battery Cathodes Studied by PES. Electrochem. Solid State. 2003, 6(9): A202~A206
    39 N. Ravet, Y. Chouinard, J. F. Magnan et al. Electroactivity of Natural and Synthetic Triphylite. J. Power Sources. 2001, 97-98: 503~507
    40 J. K. Kim, J. W. Choi, G. Cheruvally et al. A Modified Mechanical Activation Synthesis for Carbon-coated LiFePO_4 Cathode in Lithium Batteries. Mater. Lett. 2007, 61(18): 3822~3825
    41 F. Croce, A. D. Epofanio, J. Hassoun et al. A Novel Concept for the Synthesis of an Improved LiFePO_4 Lithium Battery Cathode. Electrochem. Solid StateLett. 2002, 5(3): A47~A50
    42 A. Yamada, Y. Kudo, K. Y. Liu. Reaction Mechanism of the Olivine-type Li_x(Mn_(0.6)Fe_(0.4))PO_4 (0≤x≤1). J. Electrochem. Soc. 2001, 148(7): A747~A754
    43 S. Y. Chung, J. T. Blocking, Y. M. Chiang. Electronically Conductive Phospho-olivines as Lithium Storage Electrodes. Nat. Mater. 2002, 1(2): 123~128
    44 T. H. Teng, M. R. Yang, S. H. Wu et al. Electrochemical Properties of LiFe0.9Mg0.1PO4/carbon Cathode Materials Prepared by Ultrasonic Spray Pyrolysis. Solid State Commun. 2007, 142(7): 389~392
    45 A. Nyten, J. O. Thomas. A Neutron Powder Diffraction Study of LiCo_xFe_(1-x)PO_4 for x=0, 0.25, 0.40, 0.60 and 0.75. Solid State Ionics. 2006, 177(15-16): 1327~1330
    46应皆荣,高剑,姜长印等.控制结晶法制备球形锂离子电池正极材料的研究进展.无机材料学报. 2006, 21(2): 291~297
    47雷敏,应皆荣,姜长印等.高密度球形LiFePO_4的合成及性能.电源技术. 2006, 130(1): 11~13
    48 J. R. Ying, M. Lei, C. Y. Jiang et al. Preparation and Characterization of High-density Spherical Li_(0.97)Cr_(0.01)FePO_4/C Cathode Material for Lithium Ion Batteries. J. Power Sources. 2006, 158(1): 543~549
    49 J. F. Ni, H. H. Zhou, J. T. Chen et al. Molten Salt Synthesis and Electrochemical Properties of Spherical LiFePO_4 Particles. Mater. Lett. 2007, 61(4-5): 1260~1264
    50单承湘,吴国荣,邓晓庆等.磷酸亚铁铵微肥的研制.合肥工业大学学报. 1994, 17(3): 123~127
    51 S. F. Yang, P. Y. Zavalij, M. S. Whittingham. Hydrothermal Synthesis of Lithium Iron Phosphate Cathodes. Electrochem. Commun. 2001, 3(9): 505~508
    52 K. S. Park, K. T. Kang, S. B. Leeb et al. Synthesis of LiFePO_4 with Fine Particle by Co-precipitation Method. Mater. Res. Bull. 2004, 39(12):1803~1810
    53 J. Barker, M. Y. Saidi, J. L. Swoyer. Lithium Iron(II) Phospho-olivines Prepared by a Novel Carbonthermal Reduction Method. Electrochem. Solid-State Lett. 2003, 6(3): A53~A55
    54 J. S. Yang, J. J. Xu. Nonaqueous Sol-gel Synthesis of High-performance LiFePO_4. Electrochem. Solid-State Lett. 2004, 7(2): A515~A518
    55金安定,刘淑薇,吴勇.高等无机化学简明教程.南京:南京师范大学出版社. 2003: 622~623
    56李书堂.晶体X射线衍射学基础.北京:冶金工业出版社. 1999: 223~224
    57 D.Y. Wang, H. Li, Z. X. Wang et al. New Solid-state Synthesis Routine and Mechanism for LiFePO_4 using LiF as Lithium Precursor, J. Solid State Chem. 2004, 177(12): 4582~4587
    58 A. Yamada, S. C. Chung, K. Hinokuma. Optimized LiFePO_4 for Lithium Battery Cathodes. J. Electrochem. Soc. 2001, 148(3): A224~A229
    59罗文斌.锂离子电池正极材料LiFePO_4的合成与改性研究.中南大学硕士学位论文. 2005: 45~46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700