Ln_xZr_(1-x)O_(2-x/2)(Ln=Nd,Sm)纳米陶瓷粉体和块体的组织结构及热物理性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用ZrOCl_2·8H_2O和稀土氧化物Ln_2O_3(Ln=Sm, Nd)粉体作为原材料,用化学共沉淀-煅烧法制备出不同成份配比的Ln_xZr_(1-x)O_(2-x/2)(Ln=Nd, Sm) (x=0.1, 0.2, 0.3, 0.4)粉体。对800℃烧结、保温5小时热处理后的粉体,采用无压烧结工艺制备出Nd_xZr_(1-x)O_(2-x/2)和Sm_xZr_(1-x)O_(2-x/2)陶瓷块体材料。采用DSC、XRD、SEM等分析手段和激光热导仪对Ln_xZr_(1-x)O_(2-x/2) (Ln=Nd, Sm)陶瓷块体材料的微观组织结构和比热、热膨胀系数、热扩散系数及热导率等进行了系统的研究。
     采用化学共沉淀-煅烧法制备出Nd_xZr_(1-x)O_(2-x/2)和Sm_xZr_(1-x)O_(2-x/2)的粉体。当x=0.1时,Ln_xZr_(1-x)O_(2-x/2)(Ln=Nd, Sm)由m相和t相构成,而当x=0.2,0.3,0.4时,Ln_xZr_(1-x)O_(2-x/2)(Ln=Nd, Sm)由t相和c相构成。粉体颗粒比较均匀,晶粒尺寸在100nm以下。采用无压烧结方法,在1600℃下烧结15小时,制备出NdxZr1-xO2-x/2和Sm_xZr_(1-x)O_(2-x/2)的陶瓷块体材料,对Ln_xZr_(1-x)O_(2-x/2)块体的物相分析可知,在x=0.1时,主要含有t相,同时含有少量的m相,在x=0.2,0.3时,含有t相和c相,在x=0.4时,完全是烧绿石相,块体晶粒尺寸在4~5μm之间。
     通过对Sm_xZr_(1-x)O_(2-x/2)(x=0.1, 0.2, 0.3, 0.4)块体的比热分析,可以看出Sm0.1Zr0.9O1.95在786.8℃时发生相变,而其它成分的Sm_xZr_(1-x)O_(2-x/2) (x=0.2, 0.3, 0.4)块体材料没有发生t-m的相变。当x=0.2, 0.3, 0.4时,随着Sm2O3稀土氧化物添加量的增加,Sm_xZr_(1-x)O_(2-x/2)(x=0.2, 0.3, 0.4)的陶瓷块体材料的比热逐渐减小;而从Nd_xZr_(1-x)O_(2-x/2)(x=0.1, 0.2, 0.3, 0.4)块体的比热分析来看, Nd0.1Zr0.9O1.95块体在911.3℃时发生相变,而其它成分的Nd_xZr_(1-x)O_(2-x/2) (x=0.2, 0.3, 0.4)块体材料也没有发生t-m的相变。当x=0.2, 0.3, 0.4时,随着Nd2O3稀土氧化物添加量的增加,其比热值逐渐减小。
     从SmxZr1-xOx/2(x=0.1, 0.2, 0.3, 0.4)陶瓷块体材料的热导率分析结果可以看出,当x=0.1时其热导率最低,当x=0.2, 0.3, 0.4时,大小在1.51W·m-1·K-1到2.39W·m-1·K-1之间变化。随着Sm2O3稀土氧化物添加量的增加,其热导率逐渐减小;而从Nd_xZr_(1-x)O_(2-x/2)(x=0.2, 0.3, 0.4)陶瓷块体材料的热导率的分析结果可以看出,大小在1.54 W·m-1·K-1到2.45W·m-1·K-1之间变化。
     从Sm_xZr_(1-x)O_(2-x/2)(x=0.1, 0.2, 0.3, 0.4)块体的热膨胀系数分析结果可以看出, Sm0.1Zr0.9O1.95陶瓷块体材料在786.8℃时发生相变,当x=0.2, 0.3, 0.4时,随着Sm2O3稀土氧化物添加量的增加,其热膨胀系数逐渐增大;当x=0.2, 0.3, 0.4时,随着Nd2O3稀土氧化物添加量的增加,Nd_xZr_(1-x)O_(2-x/2)块体的热膨胀系数也逐渐增加。
ZrOCl_2·8H_2O and rare earth oxides of Ln_2O_3 (Ln=Nd, Sm) powders are used as starting materials to synthesize Ln_xZr_(1-x)O_(2-x/2)(Ln=Nd, Sm) (x=0.1, 0.2, 0.3, 0.4) with a chemical coprecipitation followed by calcination method. The Ln_xZr_(1-x)O_(2-x/2) powders were first heat treated at 800℃for 5 hours, and were then sintered into Nd_xZr_(1-x)O_(2-x/2) and Sm_xZr_(1-x)O_(2-x/2) bulk materials by pressureless sintering process. The microstructure, thermal capacity, thermal expansion coefficient, thermal diffusivity and thermal conductivity of different bulk materials have been investigated by DSC, X-ray diffraction (XRD), scanning electron microscopy (SEM) and various thermal analysis techniques.
     The Nd_xZr_(1-x)O_(2-x/2) and Sm_xZr_(1-x)O_(2-x/2) powders are synthesized with the chemical coprecipitation followed by calcination method. Ln0.1Zr0.9O1.95(Ln=Nd, Sm) powders consist of m and t phases,however, the Ln_xZr_(1-x)O_(2-x/2)(Ln=Nd, Sm) (x=0.2, 0.3, 0.4) are composed of t and c phases. The Ln_xZr_(1-x)O_(2-x/2) powders exhibit a particle size of below 100nm. With the pressureless sintering process at a temperature of 1600℃for 15 hours, The Ln_xZr_(1-x)O_(2-x/2) ceramics consist mainly of m and t phase, while Ln_xZr_(1-x)O_(2-x/2) (x=0.2, 0.3, 0.4) ceramic are composed of t and c phase. However Ln0.4Zr0.6O1.8 ceramics are composed of pyrochlore phase. The LnxZr1-xO2-x/2 bulk materials with a grain size range of 4~5μm are fabricated.
     From the results on the thermal capacity of sintered Sm_xZr_(1-x)O_(2-x/2)(x=0.1, 0.2, 0.3, 0.4), the phase transformation from monoclinic to tetragonal phase was identified for Sm0.1Zr0.9O1.95 ceramics at 768.8℃, however, no phase transformation is found in other Sm_xZr_(1-x)O_(2-x/2) (x=0.2, 0.3, 0.4) ceramics. With the increase of the Sm2O3 addition, the thermal capacity of Sm_xZr_(1-x)O_(2-x/2) (x=0.2, 0.3, 0.4) decreases. While, the phase transformation from monoclinic to tetragonal phase was identified for Nd0.1Zr0.9O1.95 ceramics at 911.3℃, and no phase transformation is found in other Nd_xZr_(1-x)O_(2-x/2) (x=0.2, 0.3, 0.4) ceramics. With the increase of the Nd2O3 addition, the thermal capacity of Nd_xZr_(1-x)O_(2-x/2) (x=0.2, 0.3, 0.4) also decreases.
     The results on thermal conductivity indicate that, the thermal conductivity of Sm0.1Zr0.9O1.95 is smallest. The thermal conductivity of Sm_xZr_(1-x)O_(2-x/2)(x=0.2, 0.3, 0.4), which is located in the range of 1.51 to 2.39W·m-1·K-1, decreases with the increase of the Sm2O3 addition. For the Nd_xZr_(1-x)O_(2-x/2)(x=0.2, 0.3, 0.4) ceramics, the thermal conductivity is in the range of 1.54 to 2.45W·m-1·K-1.
     The results on thermal expansion coefficients indicate that, the identical phase transformation process takes place for Sm0.1Zr0.9O1.95 ceramics at 768.8℃. The thermal expansion coefficients of Sm_xZr_(1-x)O_(2-x/2)(x=0.2, 0.3, 0.4) increase with the increase of the Sm2O3 addition. The same situation is found for the Nd_xZr_(1-x)O_(2-x/2) at x= 0.2, 0.3, 0.4.
引文
1.胡小铭,吴小鉴.阿司匹林.化学教学. 2001, (10): 25~27
    2. I. Kvenes, E. Lugscheider. Thick Thermal Barrier Coatings for Diesel Engines. Surf. Eng. 1995, 11(4): 296~300
    3. S. Uwe, L. Christoph, F. Klaus. Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings. Aerospace Science and Technology. 2003, 7: 73~80
    4.王学兵,张幸红,杜善义.梯度热障涂层的研究现状.中国表面工程. 2004, 3: 5~12
    5. J. D. Lindan Philip, M. D. Segall, M. J. Probert, et al. First-principles Simulation: Ideas, Ilustrations and The CASTEP Code. Journal of Physics Condensed Matter. 2002, 14(11): 2717~2743
    6. A. Fa. Benedettt, F. G. Gherazzi, S. Pinna. Polizzi Structural Properties of Ultrafine Zirconia Powders Obtained by Precipitation Methods. J. Mater Sci. 1990, 25(2B): 1473~1478
    7. Haasel, Yiem, H. Nicht, et al. Prearation and Characterization of Ultrafine Zirconia Powder. Cera. Int. 1992, 18: 343~351
    8.王焕英,宋秀芹,陈汝芬.以尿素为沉淀剂制备纳米氧化锆的研究.河北师范大学学报(自然科学版). 2004, 28(2): 162~165
    9.曾燮榕,杨峥.溶胶法合成ZrO2(Y2O3)纳米晶超微粉研究.西北工业大学学报. 1995, 13 (3): 355~358
    10.唐超群,吴新明. YSZ超细粉末的溶胶-凝胶法制备.材料科学与工程. 1997, 5(2): 49~52
    11. Y. Jorand, M. J. Taha, M. Missiaen,et al. Compaction and Sintering. Behaviour of Sol-Gel Powders. Journal of the European Ceramic Society. 1995, 15(5): 469~477
    12. E. N. S. Muccillo, E. C. C. Souz, R. Muccilla. Synthesis of Reactive Neodymia Doped Zirconia Powders by the Sol-Gel Technique. Journal of Alloys and Compounds. 2002, 344: 175~178
    13. Huang Yong. MA. Tian. Yang Jin long, et al. Preparation of Spherical Ultrafine Zirconia Powder in Microemulsion System and Its Dispersibility.Ceramics International. 2004, 30: 675~681
    14. Huang Yong, Yang Jin long, MA Tian, et al. Preparation of Spherical Zirconia Powder in Microemulsion System and Its Densication Behavior. Materials and Design. 2004, 25: 515~519
    15. Y. Tai. Clifford,LEE Mei Hua , Wu Yu Chun. Control of Zirconia Particle Size by Using Two-Emulsion Precipitation Technique. Chemical Engineering Science. 2001, 56: 2390~2398
    16.陈代荣,徐如人.乙二醇甲醚-水溶液作介质水热法合成四方相ZrO2·3%Y2O3纳米晶.高等化学学报. 1998, 19(1): 1~4
    17. Shigeyuki Somiya, I. Tokuj Akiba. Hydrothermal Zirconia Powders: A Bibliography. Journal of the European Ceramic Society. 1999, 1981~87
    18.梁丽萍,高荫本,陈诵英等.制备条件对ZrO2超细粒子尺寸及分布的影响.材料科学与工程. 1997, 15 (1): 33~38
    19.李理,侯耀光.多元稳定剂复合掺杂对增韧ZrO2陶瓷性能的影响.现代技术陶瓷. 1994, (4): 17~21
    20.何永峰,刘玉强.废旧硫化胶粉的利用.弹性体. 2000, 10(4): 35
    21. J. U. Wan. The Coprecipitation to Produce Ultrafine Y2O3-CeO2-ZrO2 Ceramic Powder. Mater. Sci. 1993, (12): 575
    22. J. G. Duh, J. U. Wan. Produce Y2O3-CeO2-ZrO2 Ceramic Powder by Coprecipitation-Sintering. Mater. Sci. 1992, (27): 6197
    23. R. A. Laudise, J. H. Crocker, A. A. Ballman. The Technology of The Hydrothermal Synthesis. J. Am. Ceram. Soc. 1962, 45(2): 51~53
    24. J. D. William. The Principal of Synthesis Y2O3-CeO2-ZrO2 by Hydrothermal. Ceram. Bull. 1988, 67: 1673
    25.汤皎宁.水热法制备ZrO2纳米微晶对乙醇和丁烷气敏性研究.化学世界. 2002, 43(4): 177~180
    26.许惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究.航空学报. 2000, 21(1): 7~12
    27.李保岐,段绪海.二氧化锆热障涂层在航空发动机上的应用.新工艺新技术新设备. 1999, 3: 33~34
    28. Mineaki Matsumoto, Norio Yamaguchi, Hideaki Matsubara. Low Thermal Conductivity and High Temperature Stability of ZrO2-Y2O3-La2O3 Coatings Produced by Electron Beam PVD. Scripta Materialia. 2004, 50: 867~871
    29. R. L. Jones, R. Reidy and D. Mess Scandia. Yttria-Stabilized Zirconia for Thermal Barrier Coatings. Surface and Coatings Technology. 1996, 82(1): 70~76
    30. D. Zhu and R. A. Miller. Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings. The 26th Annual International Conference on Advanced and Composites Cocoa Beach. Florida. 2002: 13~18
    31. D. M. Zhu, J. A. Nesbitt, C. A. Barrett, et al. Furnace Cyclic Oxidation Behavior of Multicomponent Low Conductivity Thermal Barrier Coatings. Journal of Thermal Spray Technology. 2004, 13: 84~92
    32. R. Vassen, X. Cao, F. Tietz, et al. Zirconates as New Materials for Thermal Barrier Coatings. Journal of American Ceramic Society. 2000, 83(8): 2023~2028
    33. Akihiro Sato, Hiroshi Harada, Kyoko Kawagishi. Development of New Bond Coat System in Ni-Base Alloys. Materials Science Forum. 2006, 522-523: 361~367
    34. I. G. Wrightand, B. A. Pint. Bond Coating Issues in Thermal Barrier Coatings for Industrial Gas Turbines. Proceedings of The Institution of Mechanical Engineers Part A-Journal of Power and Energy. 2005, 219: 101~107
    35. Toshio Narita, Shigenari Hayashi, Lang Fengqun, et al. The Role of Bond Coat in Advanced Thermal Barrier Coating. Materials Science Forum. 2005, 502: 99~104
    36. M. F. Stroosnijder, R. Mevrel and M. J. Bennett. The Interaction of Surface Engineering and High Temperature Corrosion Protection. Mat. at High Temperatures, 1994, 12(1): 53~66
    37. E. A. JARVIS and E. A. CARTER. The Role of Reactive Elements in Thermal Barrier Coatings. Computing in Science and Engineering. 2002, 3/4: 33~41
    38. G. W. Goward. Protective Coating Systems for High-temperature Gas Turbine Components. Mat. Sci. Tech. 1986, 2: 194~200
    39. D. R. Clarke. Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings. Surface and Coatings Technology. 2003, 163~164(1): 67~74
    40. A. Khor, Z. L. Dong, Y. W. Gu. Plasma Sprayed Functionally GradedThermal Barrier Coatings. Materials Letters. 1999, 38(6): 437~444
    41.姚振中,武洪臣,卢桂林.电子束物理气相沉积技术的发展和应用.航空制造技术. 2004增刊: 209~216
    42. M. Movchen, Yu. Rudoy. Composition, Structure and Properties of Gradient Thermal Barrier Coatings Produced by EB-PVD. Materials and Design, 1998, 19: 253~258
    43. B. A. Movchen. EB-PVD Technology in the Gas Turbine industry: Present and Future. JOM. 1996, 48: 40~45
    44. P. Diaz, M. J. Edirisinghe, B. Ralph. Microstructural Changes and Phase Transformation Sin a Plasma-sprayed Zirconia-Yttria-Titania Thermal Barrier Coating. Surface and Coatings Technology. 1996, 82(3): 284~290
    45. Xu Hui bin, Gong Sheng kai, Deng Liang. Preparation of Thermal Barrier Coatings for Gas Turbine Blades by EB-PVD. Thin Solid Films. 1998, 334(1~2): 98~102
    46. S. Lakiza1, O. Fabrichnaya, Ch. Wang, M. Zinkevich, F. Aldinger. Phase Diagram of the ZrO2-Gd2O3-Al2O3 System. Journal of the European Ceramic Society. 2004: 25~26
    47. H. Ohtani, S. Matsumoto, B. Sundman, T. Sakuma and M. Hasebel. Equilibrium Between Fluorite and Pyrochlore Structures in the ZrO2–Nd2O3 System. Materials Transactions. 2005: 1167 ~1174
    48. D. Michel, Y. Rouaux, M. P. Jorba. Ceramic Eutectics in the Systems ZrO2-Ln2O3(Ln=Lanthanide): Unidirectional Solidification. Microstructural and Crystallographic Characterization. Journal of Materials Science. 1980, 61~66
    49.王焕英,宋秀芹.纳米二氧化锆制备的研究进展.河北师范大学学报. 2003, 27: 6
    50.缪长喜,华伟明,高滋. SO42-/ZrO2催化剂上正丁烷异构化反应.催化学报. 1997, 18(1): 13~15.
    51. Wayne, Worrel. Single-Component Solid Oxide Bodies. US 5518830. 1996, 5: 21
    52. K. Uchiysms, T. Ogihara, T. Ikemoto, et al. Preparation of Monodispersed T-doped ZrO2 Powders. J. Mater Sci. 1987, 22: 4343~4347
    53.丛昱,梁东白,林培滋等. ZrO2超细粒子的制备、表征与CO加氢反应性能.催化学报. 1998, 19(6): 530~531
    54.宋艳玲,周迎春,张启俭.溶胶-凝胶法制备纳米二氧化锆.辽宁化工. 2004, 33: 12
    55.漆小龙等.纳米级二氧化锆的制备和应用.应用化工. 2003, 32(1): 5~11
    56.关振铎,张中太,焦金生.无机非金属物理材料性能.清华大学出版社. 2004: 133~150
    57. Y. Murase, E. Kato. Phase Transformation of Zirconia by Ball-Milling. Journal of the American Ceramic Society. 1979, 62: 527
    58. T. Masaki. Mechanical Properties of Toughened ZrO2-Y2O3 Ceramics. Journal of the American Ceramic Society. 1986, 69: 638
    59.奚同庚.无机材料热物性学.上海:上海科学技术出版社. 1981
    60. J. Wu, X. Z. Wei, N. P. Padture, et al. Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications. J. Am. Ceram. Soc. 2002, 85(12): 3031

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700