新型防水抗裂外加剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以煅烧高岭土、铝粉、硫酸铝作为防水剂的组份,研究了它们对水泥水化及混凝土的抗渗性的影响。通过它们对水泥石的化学收缩和自收缩、孔结构以及对砂浆及混凝土的收缩性能的深入研究配制出了一种性能优良的混凝土抗裂防水外加剂。
     研究发现,高岭土的煅烧温度及煅烧时间对煅烧高岭土中的活性氧化铝的含量具有较大的影响:高岭土在750℃、800℃、850℃、900℃、950℃温度下煅烧,其活性氧化铝含量随温度和时间的增加而增加,但在950℃、4h时后活性氧化铝的增加速度降低。1000℃时煅烧高岭土中活性氧化铝的含量在煅烧时间2h~5h随煅烧时间的延长还有所下降。另外,高岭土煅烧后采用急冷方法比采用自然降温方法中制得的煅烧高岭土具有更高的活性氧化铝含量。结合煅烧高岭土对水泥强度的影响,考虑到节约能源,以采用980℃恒温0.5h然后快速冷却的方法作为最佳煅烧温度与时间。通过对煅烧高岭土与饱和石灰水的反应及煅烧高岭土与水泥混合后的XRD分析,确认煅烧高岭土具有较好的火山灰活性。煅烧高岭土的掺入可以使水泥石中的孔细化,通过对煅烧高岭土掺入水泥中标养后在2.5%氯化钠溶液中浸泡试验发现,煅烧后的高岭土掺入水泥砂浆使其具有极好的抗渗透性。但其与水泥混合后稍微增大水泥的用水量、缩短凝结时间。
     煅烧高岭土掺入水泥中,增加了水泥石的化学收缩,对水泥石的自收缩的影响并不明显。硫酸铝掺入水泥中,可以使水泥浆的化学收缩有少量的减少,但可以使水泥净浆的自收缩改变为膨胀效应,这是因为其与水泥水化的生成物反应生成了钙矾石。铝粉的加入可以使水泥浆产生一定量的气泡。气泡的引入可以阻断水泥石中的贯通孔的通路,从而增加其抗渗性能,通过试验研究,铝粉在水泥砂浆中的掺量以(0.004~0.005)%为宜。
     通过对煅烧高岭土、铝粉、硫酸铝在混凝土中掺量对其抗压强度、初始
    
     武汉理工大学硕士学位论文
    坍落度、3Omin坍落度保留值及透水高度的影响,确定了配制抗裂防水外加
    剂的各组成成分以其占水泥质量的百分比分别为:锻烧高岭土6%,硫酸铝
    4%,铝粉为0.005%。通过试验研究,据此而配制的防水抗裂混凝土具有较
    好的限制膨胀率和抗渗性能。
     依据JC474一1999《砂浆、混凝土防水剂规定方法》,对所配制的外加剂
    测定,其各项性能符合该标准中规定的一等品的要求。与缓凝高效减水剂共
    同使用配制出的混凝土具有很好的耐久性。
The calcined kaolin, aluminium powders and aluminum sulfate were used as components of water-repellent agent, which effects on cement hydration and concrete impermeability were discussed in this paper. Their effects on the chemical shrinkage, self-shrinkage, hole structure of cement stone and on the shrinkage of mortar and concrete were also studied thoroughly, and a concrete admixture with high performance of crack-resistant and water-repellent was prepared.
    The research results revealed that activated alumina content of calcined kaolin of kaolin had a strong correlation with the calcined temperatures and time. The activated alumina content of calcined kaolin increased with the calcined temperatures increasing from 750 C to 950 C, and increased with the calcined time prolonging at 750 C, 800 C, 850 C, 900 C and 950 C. However, the elevated speed of the activated alumina content decreased at 950 C for 4h. The activated alumina content had a reduce with time prolonging from 2h to 5h at calcined temperature of 1000 C. The research results also revealed that products obtained by sudden cooling from high temperature had a higher content of activated alumina than that by cooling naturally. Considering energy conservation and effects of calcined kaolin on the strength of cement, it was optimum method to produce calcined kaolin by calcining it at 980 C for 0.5h and then cooling it suddenly. The analysis results of reaction between calcined kaolin and saturation Ca(OH)2
    solution and XRD results of reaction products of calcined kaolin and cement indicated that calcined kaolin has a high volcanic ash active. The experiment was done that the cured cement stone with addition of calcined kaolin were dipped into NaCl solution of 2.5wt%, and the experiment results showed that addition of calcined kaolin made cement stone pore fine and cement mortar displayed high property of impermeability. However, the addition of calcined kaolin to cement caused setting time of cement to prolong and water requirement of cement to reduce.
    
    
    The addition of calcined kaolin to cement increased the chemical shrinkage of cement stone, but it had no distinct impact on the self-shrinkage of cement stone. The addition of aluminum sulfate caused the chemical shrinkage of cement mortar to reduce a little, but induced net plasma self-shrinkage to grow into expansion. That reason was that ettringite was produced by reaction between aluminum sulfate and hydration products. The addition of aluminium powders induced cement mortar to produce a mount of pore, the existing of pore could block path of through pore, so increased cement mortar impermeability. The experiments results revealed that appropriate addition amount of aluminium powders in cement mortar was 0.004-0.005 wt%.
    The relation between addition content of calcined kaolin, aluminium powders and aluminum sulfate in concrete and compressive strength, slump constant, 30min slump and permeability altitude were studied, and according to the experiment results, the component percent contents of crack-resistant and water-repellent admixture in cement were determined as following: calcined kaolin 6%, aluminum sulfate 4% and aluminium powders 0.005%. The experiment, results revealed that crack-resistant and water-repellent concrete prepared on those proportion had a good restricted expansion coefficient and high impermeability.
    According to standard JC474-1999 "water-repellent admixture for mortar and concrete", properties of the admixture were measured and they all satisfied with the specified standard of first quality product.
引文
[1] 沈春林等.建筑防水材料.化学工业出版社.2000.pp338~348
    [2] 沈春林等.刚性防水及堵漏材料.化学工业出版社.2004.pp3~25
    [3] 中国土木工程学会混凝土学会外加剂专业委员会.建筑物裂渗控制新技术.中国建材工业出版社.1994
    [4] 熊大玉等.混凝土外加剂.化学工业出版社.2002
    [5] 朱馥林.建筑防水新材料及防水施工新技术.中国建筑工业出版社.1997.pp1~6
    [6] Sommer.H(索默).高性能混凝土的耐久性.冯乃谦译.科学出版社.1998
    [7] 沈春林.国内防水材料发展现状与发展概况.工业建筑.2009 pp1~4
    [8] 杨耀辉.氯化铁在以矿渣水泥为胶结料防水液混凝土中应用存在的问题.混凝土.2000(3).pp33~35
    [9] 苑晴峦.新型防水及装饰材料手册(下册).黑龙江科学技术出版社.1987.
    [10] 王训一.无机铝盐防水剂在地下室刚性防水施工中的应用.建筑技术.1998(6)pp35~36
    [11] 纪午生.常用建筑材料试验手册.中国建筑工业出版社.1986.pp254~258
    [12] 迟培云等.CW系高性能防水剂的研究.混凝土.2002.7 pp60~62
    [13] H.F.W.TAYLOR. CEMENT CHEMISTRY. ACADEMIC PRESS LIMITED. 1990. pp254~272
    [14] 崔昌燮等.韩国混凝土砂浆防水剂现状.中国建筑防水.1998.3 pp35~36
    [15] 王祥连.微晶水泥砂浆防水剂的研制与应用.新型建筑材料.1999.2.pp29~30
    [16] 李玉林等.合成纤维用于混凝土防裂和抗渗的研究.新型建筑材料.1999.12.pp16~18
    [17] 邓天宁.微纤维混凝土抗裂防水原理探讨,中国建筑防水,1998(5).pp38~39
    [18] A.M.NEVILLE(内维).混凝土的性能.李国泮等译.中国建筑工业出版社.1983
    [19] T.C. Powers,Structure and physical properties of hardened Portland cement paste, J.Amr.ceramic soc.,41 ,pp 1~6
    [20] P.KUMAR MEHTA(P·梅泰).混凝土的结构、性能与材料.祝永年等译.同济大学出版社.1991.pp72~112
    [21] 冶金建筑研究院主编.防水混凝土及其应用.中国建筑工业出版社.1979.pp1~57
    [22] 黄士元.21世纪初期我国混凝土技术发展中的几个重点问题.混凝土,2002(3).pp3~7
    [23] 蒋亚青等.混凝土外加剂就应用中的若干关键问题.混凝土.2002(9).pp17~19
    
    
    [24] 石晶等.混凝土的渗透性及抗渗对策.建筑技术.2000(4).Pp261-262
    [25] 杜巧云.表面活性剂基础及应用.中国石化出版社 1996.pp415~420
    [26] 王兴云等.钙矾石的形成条件与稳定性.混凝土.2000(8).Pp52-54
    [27] 谦慧珍等.对膨胀剂在使用中出现的问题的讨论.施工技术.1999(11).Pp49~52
    [28] 美国专利:US4332619 Expansive admixture.1982
    [29] 姚晓等.镁氧类水泥膨胀剂的作用机理及影响因素.油田化学.1997(4).Pp372~376
    [30] 游宝坤等.我国混凝土膨胀剂发展的近况.低温建筑技术.1997(7).pp7~8
    [31] S.Nagataki. Expansive Admixture(mainly ettringite). Cement and Concrete Composites. 1998(20). Pp163~170
    [32] GB175-1999硅酸盐水泥、普通硅酸盐水泥中国标准出版社
    [33] 建筑结构裂渗控制新技术编委会.建筑结构裂渗控制新技术:第二届全国混凝土膨胀剂学术交流会论文集.中国建材工业出版社,1998.pp36~98
    [34] 薛绍祖.地下防水工程质量验收规范培训讲座.中国建筑工业出版社.2002 pp6~53
    [35] 田文玉.硅粉的研究及应用现状.重庆交通学院学报.1998(6).Pp100~107
    [36] 朱卫华等.硅粉水泥石中的孔比表面积及其与强度的相关性.河海大学学报.2001(5)
    [37] 蔡丰礼.硅灰的活山灰活性及其对水泥性能的影响.水泥技术.2002(3).Pp90~96
    [38] D.M. Roy, P. Arjunan, M.R. Silsbee. Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete. Cement and Concrete Research 31 (2001) 1809-1813
    [39] B.B.Sabir, S.Wild. Metakaolin and calcined clays as pozzollans for conerete:a review. Cement and Concrete Composites 23(2001). pp441~454
    [40] 陶维屏著.中国工业矿物和岩石.地质出版社.1987.pp 213~215.
    [41] 陶维屏等.中国高岭土矿床研究.上海科技文献出版社.1984.pp65~67
    [42] 包生祥.崔化剂原料高岭土的XRF分析.光谱学与光谱分析.1998(12).pp739~741。
    [43] 刘新锦等.高岭土的活化研究.硅酸盐通报.1998(1).pp39~40
    [44] 陈秀琴等.高岭土煅烧工艺及其产品应用.矿产综合利用.1994(2).pp38~40
    [45] 杨少明等.粘土矿物热处理改性及其应用.孙肇济主编.全国工作矿物原料深加工及综合开发利用学术讨论会论文集.重庆大学出版社.1993.pp48~50
    [46] 张一先.焙烧高岭土的结构特征和吸附性能.硅酸盐通报.1994(3).pp7~10
    [47] 宋海兵.煅烧高岭土的生产简述与全干法煅烧工艺制度.中国非金属矿工业导刊.2004(1).pp19-23
    [48] 王民权等.煅烧高岭土的组成、结构对填充PVC流变性能的影响.塑料工业.1994(2).pp40~46
    
    
    [49] 刘琨等.煅烧高岭土活性的析因实验分析.矿产综合利用.2003(12).pp17~19
    [50] 郑水林等.煅烧时间对煅烧高岭土物化性能影响的研究.非金属矿,2002(3).pp11~12
    [51] 郑水林等.升温速度对煅烧高岭土物化性能的影响.非金属矿.2001(11).pp15-16
    [52] G. Kakali a, T. Perraki. Thermal treatment of kaolin the effect of mineralogy on the pozzolanic activity. Applied Clay Science 20(2001). pp73~80
    [53] 肖仪武等.煅烧高岭土的火山灰活性.矿冶.2001(9).pp47~51
    [54] 郑水林.温度对煤系煅烧高岭土物化性能的影响.硅酸盐学报.2003(4).pp417~420
    [55] 丁铸等.偏高岭土混合材水泥的水化研究.吉林建材.1997(4).pp16~20
    [56] 文寨军等.偏高岭土的活化及性能研究.建材技术与应用.2002(5).pp3~6
    [57] Aluminum-PRODUCTION,IMPORT, USE,ANDDISPOSAL,http://www.atsdr.cdc.gov/toxprofiles/tp22.html, the Agency for Toxic Substances and Disease Registry (ATSDR)
    [58] 黄国兴等.混凝土的收缩.中国铁道出版社.1990
    [59] 王永逵等.材料试验和质量分析的数学方法.中国铁道出版社.1990.129-161
    [60] 汪野.用正交设计法配制高性能泵送混凝土的试验研究.混凝土.2003(3).pp38-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700