用户名: 密码: 验证码:
变容压力脉冲渗透系数测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渗透性是多孔介质材料的一种非常重要的性质,常用渗透系数来表示。天然岩石(多孔介质)的渗透系数分布范围超过10个数量级,此外,这些多孔介质材料(包括各种地质和工程材料)在复杂地质作用和/或人为作用(如力学、温度、化学、生物等)下,其渗透性能会发生大幅度变化,渗透系数变化达数个量级。现有的室内渗透系数测量方法并不能完全满足上述测量需求,迫切需要一种能够适应多时间尺度(即测量快速)和大量程变化且高效稳定的渗透系数测量方法,为流体矿藏的开采和废弃物的埋储等重大工程项目中关于储层及地层的渗透性及其变化规律的评价提供有效的手段和方法。本文总结前人的研究成果,基于瞬态压力脉冲法的特点及优势,针对该方法在测量量程上的局限,提出变容压力脉冲渗透系数测量新思路,并成功研发了变容测量装置。本文利用岩石水力学、渗流力学、有限元数值模拟以及室内试验对变容压力脉冲渗透系数测量方法进行了系统的研究,内容包括理论建立、系统设计、装置制作、实验验证、误差分析、应用延伸。
     室内渗透实验对多孔介质材料渗透系数测量结果的影响与被测试件本身的性质、实验系统的设计、装置的构造与性能等有关。所以同一块地质材料采用不同的渗透实验方法或测量装置所测得的渗透系数值是不一样的,同一块地质材料采用同种渗透实验方法及测量装置在不同的时期所测得的渗透系数值也是不一样的。因为没有已知渗透系数的标准试件,测量结果的精度难以明确说明,渗透实验方法及装置的精度和量程难以准确标定。如果渗透系数测量数据不准确,将会导致一些工程现象难以解释,甚至显得室内渗透实验毫无意义。迫切需要建立一套标定渗透实验的统一标准。本文利用粉末冶金学、流体力学、多孔介质力学以及室内试验对多孔介质标准试件进行了系统的研究,内容包括基于标定渗透实验的标准试件概念的建立、李氏标准件的设计、制备、保存、维护及使用、渗透实验的标定方法。
     本文研究的核心内容如下:
     第一,总结了各种室内渗透系数测量方法的原理及应用,分析了各种室内渗透实验方法的优缺点。为适应多时间尺度及大量程变化且高效稳定的渗透系数测量需求,利用瞬态压力脉冲法的非稳态流特点和测量快速的优势,提出一种快速、大量程且高精度的渗透系数测量新思路。(第二章和第四章)
     第二,分析了瞬态压力脉冲法的理论发展及参数分析,总结了该方法采用近似解法求解渗透系数的实验设计要点及注意事项,提出变容压力脉冲法的实验系统设计及装置结构设计方案。(第三章和第四章)
     第三,基于瞬态压力脉冲法的理论,针对该方法在测量量程上的局限,结合实验设计要点和测量经验,成功研发了变容脉冲渗透系数测量方法及测量装置,经理论和实践证明,该方法测量速度快(测量时间<2.5h)、测量范围广(10~(-7)~10~(-1)D,跨越6个数量级)、测量精度高(偏差<5%),满足多时间尺度和大量程变化且高效稳定的测量需求。(第四章)
     第四,基于变容压力脉冲法的理论进行思路扩展,提出了超低渗透测量方法及装置设计思路。理论表明,该超低渗透测量方法可以测量渗透性低至10~(-10)D的材料,如岩盐、泥岩等地质材料,同时还可以满足高孔隙压(20MPa以上)条件下的测量要求,适应多种荷载作用下的渗透测量,以模拟现场复杂地质作用下的岩石材料的渗透性变化,准确把握这些超低渗透性的地质工程材料的渗透性及其变化规律。(第四章)
     第五,总结了变容压力脉冲法渗透实验的13种误差源,归结为6种误差因素,采用有限元数值模拟方法,分析了变容脉冲法渗透实验过程中的6种误差因素对测量结果的误差影响程度,为优化实验操作、改进测量装置、进行误差标定提供有效参考。(第四章)
     第六,分析了岩石试件本身的性质、实验系统的设计、装置的结构和性能对被测岩石试件渗透系数测量精度的影响,说明单纯依靠渗透实验所测得的结果,其精度难以明确说明。提出了基于标定渗透实验的概念,提出了基于标定渗透实验的标准试件的概念和设计思路,弥补渗透测量技术领域关于精度和量程有效标定的空白。(第五章)
     第七,采用粉末烧结的方法,将粉末冶金学应用于多孔介质试件的制备。利用多孔介质材料各个物理性质参数之间的关系,成功设计并制备了李氏标准件,经长期渗透实验检测以及各种渗透条件下检测,表明该标准件的渗透系数稳定不变,以它们的渗透系数作为参照基准,为渗透测量领域提供有信服力的校核平台。(第五章)
     第八,利用李氏标准件,提出了渗透实验的标定方法,建立渗透测量技术的统一标准,渗透测量领域的校核平台。(第五章)
With the growing concerns for resources and environmental issues in our society, the exploitation of fluid resources including petroleum, natural gas, coal bed methane, ground water atc, also the disposal of hazardous wastes including radioactive wastes, greenhouse gases etc, have become problems which are of considerable importance recently and will become increasingly significant in future years. Fluids and dissolved materials permeate through crustal rocks by processes of seepage and diffusion. However, the permeability of the geomaterials is, in many cases, the controlling factor in the above engineered exploitation and subsurface migration of hazardous wastes. The major problem encountered in the safety evaluation and construction design of the above engineering, however, is that the permeability of engineered materials distribute in a large range, probably well over 10 orders of magnitude and vary significantly so far as to several orders of magnitude, due to the changes in various kinds of environmental conditions and man-made disturbances including hydro-mechanical, temperature, chemical, biological reactions etc. However, the existing laboratory permeability measurement methods cannot meet the needs of measuring the coefficients of permeability of the above porous media materials completely. According to be capable of flexibility in testing situations of large-range-changing and changing quickly, a new kind of permeability measurement method, which is rapid, large range, high efficient and steady-going, will be required. It will provide an effective means to measure the permeability of reservoir or stratum or caprock materials, which are much accounted of fluid mineral storages exploitation and wastes underground storage stratum evaluation. In this dissertation, previous research results have been summarized, then, storage-variable transient pulse permeability measurement method has been proposed, which is a new kind of flexible testing technique. The new advanced testing method is based on traditional transient pulse method, but no limitations of narrow measuring range. Furthermore, the storage-variable transient pulse permeability testing device has been developed successfully. The storage-variable transient pulse permeability measurement method has been worked over systematically, involving theory deduction, system design, device manufacture, laboratory tests, error analysis and stretch of application. Meanwhile, referred to many research fields, the research work has been combined with rock hydraulics, permeation mechanics, FEM numerical simulation and laboratory tests.
     The errors of permeability testing results for porous media materials in laboratory experiment are related to qualities of specimen itself, the design of testing system, the constitution and performance of testing device and so on. Therefor, the testing results for the same specimen are different by using different permeability measurement methods or devices. Moreover, the testing results for the same sample are still different even by the same permeability measurement method and device if during different periods or under different conditions. Presently, there is no standard sample, the permeability of which is known, and can be able to be regarded as reference. So that, the accuracy of permeability testing results is difficult to describe definitely. Some engineering geological phenomena will also be difficult to explain, even the laboratory experiment seems making no sense, if the testing results are inaccuracy. It will be demanded urgently to establish a series of unified standards for calibrating permeation experiments. In this dissertation, the right demanded standard samples of porous media have been developed. Many more development researches have been made on the standard samples, including the proposal of the idea of standard sample for calibrating permeation experiments; the design of Li's samples and their preparation, preservation, maintenance, transportation and application; the calibration method for permeation experiments. In the same meantime, referred to many research fields, this part research work is involved of powder metallurgy, hydromechanics, porous media mechanics and laboratory experiments.
     The main researches of this dissertation are as follows:
     The theory and application of various kinds of laboratory permeability measurement methods have been summarized. The advantages and disadvantages of various kinds of laboratory permeability measurement methods have been analysed. In order to meet the needs of spacial permeability measurements, which is required to be flexibility in situations of multi-time-scale, large-range-changing, high efficiency and steady-going, a new kind of permeability measurement method has been proposed, which is remarkable for its features of rapid, large-range and high accuracy. This new method is based on the advantages of unsteady flow and testing fast of the traditional transient pulse technique. (Chapter 2 and 3)
     The development history of the traditional transient pulse method theory and its related parameters have been analysed. The key points and matters needing attention for the transient pulse permeability measurement experimental design have been summarized when the permeability parameter solved by using approximate solution. The experimental system and device structure design for storage-variable transient pulse method have been outlined. (Chapter 3 and 4)
     Based on inspiring from the theory of the traditional transient pulse method, breaking through the limitation of the narrow testing range, combining with the key points for experimental design with a great deal of testing experiences, the storage-variable transient pulse permeability measurement method and its testing device have been developed successfully. The new method has been proved availably and steadily by theory and practice. (Chapter 4)
     In view of the advanced permeability measurement method, named storage-variable transient pulse method, there has been conceived another kind of measurement method for testing ultra low permeability and also its matched system and device design trends. The ultra-low permeability measurement method can measure 10~(-10)D materials, such as halite, argillite and so on, moreover, it can make tests under high pore-pressure situations even more than 20MPa, so as to simulate complex geological processes in situ, under which it can be capable to obtain the permeability parameter of rock materials and its changing ragularities.(Chapter 4)
     13 kinds of the methodological and technological error sources have been discussed for storage-variable transient pulse technique permeation experiment. All the error sources have been classified to 6 kinds of error factors which make a great impact on measurement testing results. The impactions have been analysed categorically and systematically by using FEM numerical simulation method. It will help to optimize the testing operation, improve the testing device and supply an available reference to calibrate error influences. (Chapter 4)
     The influences, effected by the properties of rock specimen, the components of experimental system, the machinery and performance of testing device on the permeability measuring accuracy, have been analysed comprehensively. Presently, the accuracy of permeation experiment testing results cannot be illuminated definitely. In order to filling the gap of calibrating the accuracy and range availably for permeation measurement techniques, the conception of calibrating permeation experiment has been proposed, the conception of the standard sample for calibrating permeation experiment has been proposed and the detail design plan has been made. (Chapter 5)
     Applying the powder sintering technique to make porous media specimen by using powder sintering method, and considering the relations among various physical characteristics parameters of porous media materials, Li's samples have been designed and manufactured successfully. The permeabilities of Li's samples are constant and changeless under long-period and many different loading conditions permeation experiment testing. According to the permeabilities of Li's samples, which are regarded as references, will help to supply a convincing check platform for permeation measurement fields. (Chapter 5)
     The calibration method for evaluating permeation experiments has been drafted up within Li's samples applications. It will help to establish the unified standards and checking platform for permeability measurement techniques. (Chapter 5)
引文
[1] 周济福.渗流力学研究的现状与发展趋势[J].力学与实践,2007,29(3):1-6.
    [2] Brace W F. Permeability of crystalline and argillaceous rocks[J]. International Journal of Rock Mechanics Mining Sciences and Geomechanics. Abstracts, 1980, 17(3): 241-251.
    [3] 张铭.低渗透岩石实验理论及装置[J].岩石力学与工程学报,2003,22(6):919-925.
    [4] 顾家裕,贾进华,方辉,塔里木盆地储层特征与高孔隙度、高渗透率储层成因[J].科学通报,2002,47(S1):9-15.
    [5] 裘亦楠,中国陆相碎屑岩储层沉积学的进展[J].沉积学报,1992,10(3):16-24.
    [6] 张建博,秦勇,王红岩,陈金刚,高渗透性煤储层分布的构造预测[J].高校地质学报,2003,3:57-62.
    [7] 赵跃华,王敏,双河油田储层孔隙结构特征分类及影响因素[J].石油学报,1994,15(4):31-39.
    [8] 池为国,沁水盆地煤层气的水文地质控制作用[J].石油勘探与开发,1998,25(3):15-18.
    [9] 易立新,王广才,李榴芬,水文地质结构与水库诱发地震[J].水文地质工程地质,2004,31(2):29-32.
    [10] 劳文科,蒋忠诚,时坚,梁彬,洛塔表层岩溶带水文地质特征及其水文地质结构类型[J].中国岩溶,2003,22(4):258-266.
    [11] 黄康乐,多孔介质水动力弥散尺寸效应研究现状与展望[J].水文地质工程地质,1991.
    [12] 朱伟林,王国纯,中国近海前新生代气勘探新领域探索[J].地学前缘,2000,7(3):215-225.
    [13] 王元君,王峻,周心怀,滕玉波,陈安清,辽东湾辽中凹陷中部古近系东营组震浊积岩特征研究[J].矿物岩石,2008(3):84-89.
    [14] 李秉富,焦湘恒,东海钓鱼岛隆起带火成岩地震反射特征探讨[J].石油地球物理勘探,1995,30(A02):150-154.
    [15] 王清云,张秋文,李峰,长江三峡工程库首区诱发地震危险性研究[J].大地测量与地球动力学,2003,23(2):101-106.
    [16] Heard H C, Rubey M W. Tectonic implications of gypsum dehydration[J]. Geol. Soc. Am. Bull., 1966, 77: 741-750.
    [17] Hubbert M K, Rubey M W. Role of fluid pressure in mechanics of overthrust faulting[J]. Geol. Soc.Am. Bull., 1959, 70: 115-120.
    [18] Raleigh C B, Paterson M S. Experimental deformation of serpentine and its tectonic implications[J]. J. Geophy. Res., 1965, 70(6): 3 965-3 972.
    [19] Witherspoon P A, Gale J E. Mechanical and hydraulic properties of rocks related to induced seismicity[J].Eng. Geol., 1977, 11(1): 23-30.
    [20] 阮敏,王连刚,低渗透油田开发与压敏效应[J].石油学报,2002,23(3):73-76.
    [21] 刘建军,刘先贵,胡雅初,张盛宗,低渗透储层流-固耦合渗流规律的研究[J].岩石力学与工程学报,2002,21(1):89-93.
    [22] 阮敏,何秋轩,低渗透油层渗流特征及油田开发的影响[J].特种油气藏,1998,5(3):24-28.
    [23] 曾大乾,李淑贞,中国低渗透砂岩储层类型及地质特征[J].石油学报,1994,15(1):38-45.
    [24] 肖鲁川,甄力,特低渗透储层非达西渗流特征研究[J].大庆石油地质与开发,2000,19(5):27-30.
    [25] 刘中春,岳湘安,王正波,低渗透油藏岩石物性对渗流的影响分析[J].油气地质与采收率,2004,11(6):39-41.
    [26] 张学文,尹家宏,低渗透砂岩油藏油水相对渗透率曲线特征[J].特种油气藏,1999,6(2):27-31.
    [27] 王文环,特低渗透油藏驱替及开采特征的影响因素[J].油气地质与采收率,2006,13(6):73-75.
    [28] 刘建军,刘先贵,低渗透岩石非线性渗流规律研究[J].岩石力学与工程学报,2003,22(4):556-561.
    [29] Lin C, Pirie G, Trimmer D A. Low permeability rocks: laboratory measurements and three-dimensional microstructural analysis[J]. J. Geophy. Res., 1986, 91 (3): 2 173-2 180.
    [30] 赵阳升,杨栋,低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报,2001,26(5):455-458.
    [31] 梁冰,孙可明,低渗透煤层气开采理论及其应用[M],科学出版社,2006.
    [32] 叶建平,史保生,中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(2):118-122.
    [33] 吴世跃,郭勇义,煤层气运移特征的研究[J].煤炭学报,1999,24(1):65-69.
    [34] 赵庆波,张公明,煤层气评价重要参数及选区原则[J].石油勘探与开发,1999,26(2):23-26
    [35] Koide H. Geologic problems of radioactive waste disposal in Japan[J]. Episodes, 1990, 14(2): 299-310.
    [36] 刘亚晨,吴玉山,核废料贮存裂隙岩体耦合分析研究综述[J].地质灾害与环境保护,1999,10(3):72-79.
    [37] 王青海,季恒玉,花岗岩介质中处理中低放核废料的热应力[J].地质灾害与环境保护,1998,9(2):45-49.
    [38] 刘新荣,钟祖良,用于核废料处理的岩盐容腔力学特性[J].重庆大学学报(自然科学版),2007,30(10):77-81.
    [39] 余辉,岩石特性对核废料贮库设计选择的影响[J].世界隧道,1995(4):43-52.
    [40] N A Chapman, I G McKinley, M D Hill, The geological disposal of nuclear waste[M]. 1987
    [41] 李小春,小出仁,大隅多加志.二氧化碳地中隔离技术及其岩石力学问题[J].岩石力学与工程学报.2003,22(6):989-994.
    [42] D G Brookins, Geochemical aspects of radioactive waste disposal[M], 1984.
    [43] K B Krauskopf, Radioactive waste disposal and geology[M], 1988.
    [44] R Pusch, Waste disposal in rock[M], 1994.
    [45] I J Winogard, Radioactive waste disposal in thick unsaturated zones[J]. Science, 1981, 212(4502): 1 457-1 464.
    [46] K Jessen, A R Kovscek, F M Orr. Increasing CO2 storage in oil recovery[J]. Energy Conversion and Management, 2005, 46: 293-311.
    [47] S Tanaka, H Koide, A Sasagawa. Possibility of underground CO2 storage in Japan[J]. Energy Convers. Mgmt, 1995, 36(6-9): 527-530.
    [48] S Bachu. CO2 storage in geological media: Role, means, status and barriers to deployment[J]. Progress in Energy and Combustion Science, 2008, 34(2): 254-273.
    [49] 何锦,赵玉军,二氧化碳的地下封存[J].水文地质工程地质技术方法动态,2008(4):90-96.
    [50] 刘建国,多孔介质水分运动与污染物迁移的分形几何研究[D].北京:清华大学,2001.
    [51] 薛强,梁冰,有机污染物在土壤中迁移转化的研究进展[J].土壤与环境,2002,11(1):90-93.
    [52] 王超,非饱和分层土壤中污染物迁移转化规律研究[J].河海大学学报(自然科学版),1998,26(1):61-67.
    [53] 王东海,贾道昌,石油类污染物在砂砾石层中的迁移与分布[J].环境科学,1998,19(5):18-21.
    [54] KOIDE H. Geologic problems of radioactive waste disposal in Japan[J]. Episodes, 1991,14(2): 299-310.
    [55] 小出仁.CO2地中隔离技术[J].Eco.Industry,2000,(5):21-30.
    [56] HANOR J S. Effective hydraulic conductivity of fractured clay beds at a hazardous waste landfill, Louisiana Gulf Coast[J]. Water Resources Research, 1993, 29(1): 3 691-3 698.
    [57] I. Song, J. Renner. Experimental investigation into the scale dependence of fluid transport in heterogeneous rocks[J]. Pure and Applied Geophysics, 2006, 163: 2 103-2 123.
    [58] 李守巨,刘迎曦,李政国等.丰满混凝土重力坝渗流特性分析[J].岩石力学与工程学报,2001,20(4):477-480.
    [59] 周志芳,滕建仁.三峡工程大坝坝基渗控分析[J].岩石力学与工程学报,2001,20(5):700-704.
    [60] 郝哲,王介强,刘斌.岩体渗透注浆的理论研究[J].岩石力学与工程学报,2001,20(4):492-496.
    [61] 张家发,徐春敏,王满兴等.三峡坝址区花岗岩全风化带渗流参数研究[J].岩石力学与工程学报,2001,20(5):705-709.
    [62] 刘耀儒,杜广林,周维垣等.降雨入渗条件下三峡船闸边颇渗流场的变化[J].岩石力学与工程学报,2002,21(2):238-241.
    [63] 张世殊.溪洛渡过水电站坝基层内错动带现场渗透变形实验结果及分析[J].岩石力学与工程学报,2002,21(4):537-539.
    [64] Hanor J S. Effective hydraulic conductivity of fractured clay beds at a hazardous waste landfill, Louisiana Gulf Coast[J]. Water Resources Research, 1993, 2(9): 3 691-3 700.
    [65] 孙培德.变形过程中煤样渗透率变化规律的实验研究[J].岩石力学与工程学报,2001,20(增):1 801-1 804.
    [66] Casse Francis J, Ramey Henry J Jr. Effect of temperature and confining pressure on single-phase flow in consolidated rocks[J]. J of Pet Tech, 1979, 31 (8): 1 051-1 059.
    [67] Summers R, Winkler K, Byerlee J. Permeability changes during the flow of water through westerly granite at temperature: of 100-400℃[J]. J Geophysical Research, 1978, 83(B1): 339-344.
    [68] Morrow C A, Moore D E, Byerlee J D. Permeability changes in crystalline rocks due to temperature: Effects of mineral assemblage[J]. Materials Research Soci Symp Proc, 1985, 44: 467-473.
    [69] 彭苏萍,屈洪亮,罗立平等.沉积岩石全应力应变过程的渗透性试验研究[J].煤炭学报,2000,25(2):113-116.
    [70] Q. Chen, C. Ye, Y. Yue. Variations of permeability and pore size distribution of porous media with pressure[J]. J. Environ. Qual., 2002, 31: 500-505.
    [71] LI X. Permeability change in sandstones under compressive stress conditions[D]. Graduate School of Ibaraki University, 2001, 3.
    [72] 龚钢延,谢原定,岩石渗透率变化的实验研究[J].岩石力学与工程学报,1989,8(3):219-227.
    [73] 刘为群,缪协兴,破碎岩石渗透性的试验测定方法[J].实验力学,2003,18(1):57-61.
    [74] 薛永超,程林松,微裂缝低渗透岩石渗透率随围压变化实验研究[J].石油实验地质,2007,29(1):108-110.
    [75] 刘均荣,吴晓东,温度对岩石渗透率影响的实验研究[J].石油大学学报(自然科学版),2001,25(4):51-53.
    [76] 吴晓东,刘均荣,秦积舜,高德利,岩石渗透率受热变化的实验研究[M].北京:中国科学技术出版社,1999.
    [77] 叶荣,地层测试技术[M].石油工业出版社,1989.
    [78] 张厚东,黎洪,鹿天柱,地层测试曲线特征及应用研究[M].东营:石油大学出版社,2000.
    [79] 刘海宁,姜形,刘汉东,非饱和土渗透函数方程的间接确定[J].岩土力学,2004,25(11):1 795- 1 799.
    [80] 展梅英,俞宁,粉砂土的渗透系数的测定[J].大坝观测与土工测试,1996,20(4):47-48.
    [81] 李隆瑞,阿尔及利亚布库尔丹大坝现场渗透试验[J].西北水资源与水工程,1992,3(3):33-38.
    [82] 高翔,简万成,某地下工程孔内水文地质试验[J].工程勘察,2004(1).
    [83] 周中,傅鹤林,刘宝琛,谭捍华等,土石混合体渗透性能的正交试验研究[J].岩土工程学报,2006,28(9):1 134-1 138.
    [84] 郑木莲,多孔混凝土的渗透系数及测试方法[J].交通运输工程学报,2006,6(4):41-46
    [85] Brace W F, Walsh J B, Frangos W T. Permeability of granite under high pressure[J]. J. Geophy. Res., 1968, 73(6): 2 225-2 236.
    [86] Hsieh P A. A transient laboratory method for determining the hydraulic properties of "tight" rocks-1: theory[J]. Int. J. Rock Mechanics Min. Sci. and Geomech. Abstr., 1981, 18(3): 245-256.
    [87] Neuzil C E. A transient laboratory method for determining the hydraulic properties of "tight" rocks-2: application[J]. Int. J. Rock Mechanics Min. Sci. and Geomech. Abstr., 1981, 18(3): 253-268.
    [88] Lin W. Parametric analyses of the transient method of measuring permeability[J]. J. Geophy. Res., 1982, 87(B2): 1 055-1 066.
    [89] Trimmer D A. Design criteria for laboratory measurements of low permeability rocks[J]. Geophy. Res. Let., 1981, 8(9): 973-988.
    [90] Wang H F, Hart D J. Experimental error for permeability and specific storage from pulse decay measurements[J]. Int. J. Rock Mechanics Min. Sci. and Geomechanics Abstr., 1993, 30(7): 1 173-1 190.
    [91] Zhang M, Takahashi M, Morin R H, et al. Evaluation and application of the transient-pulse technique for determining hydraulic properties of low permeability rocks-part 1: theoretical evaluation[J]. Geotech. Testing J., 2000, 23(1): 83-100.
    [92] Zhang M, Takahashi M, Morin R H, et al. Evaluation and application of the transient-pulse technique for determining hydraulic properties of low permeability rocks-part 2: experimental applications[J]. Geotech. Testing J., 2000, 23(1): 91-106.
    [93] 陈群策,祁英男,毛吉震等.利用压力脉冲试验测定某地花岗岩体的渗透系数[J].岩土力学,2005,26(9):1 469-1 472.
    [94] 阮小平,李方全.三峡坝区水库诱发地震研究[M].北京:地震出版社,1993:50-61.
    [95] 李小春,高桥学,吴智深,小出仁.瞬态压力脉冲法及其在岩石三轴试验中的应用[J].岩石力学与工程学报,2001,20(增):1 725-1 733.
    [96] 王旭升,陈占清.岩石渗透试验瞬态法的水动力学分析[J].2006,25(增1):3 098-3103.
    [97] MALLON A J, SWARBRICK R E. Diagenetic characteristics of low permeability, non-reservoir chalks from the Central North Sea[J]. Marine and Petroleum Geology, 2008, 25(10): 1 097-1 108.
    [98] BILLIOTTE J, YANG Diansen, SU Kun. Experimental study on gas permeability of mudstones[J]. Physics and Chemistry of the Earth, 2008, 33(1): S231-S236.
    [99] MALLON A J, SWARBRICK R E. How should permeability be measured in fine-grained lithologies? Evidence from the chalk[J]. Geofluids, 2007, 8(1): 35-45.
    [100] S. Bourlange, L. Jouniaux, P. Henry. Data report: permeability, compressibility, and friction coefficient measurements under confining pressure and strain, Leg 190, Nankai Trough. Proceedings of the Ocean Drilling Program, Scientific Results, 190/196, 1-16.
    [101] A. P. S. Selvadurai, P. Camaffan. A transient pressure pulse method for the measurement of permeability of a cement grout[J]. Can. J. Civ. Eng., 1997, 24: 489-502.
    [102] Olsen H W. Darcy's law in saturated kaolinite[J]. Water Resources Research, 1966, 2(6): 287-295.
    [103] Esaki T, Zhang M, Takeshita A, et al. Rigorous theoretical analysis of a flow pump permeability test[J]. Geotechnical Testing Journal, 1996, 19(3): 241-246.
    [104] Zhang M, Takahashi M, Morin R H, et al. Theoretical evaluation of the transient response of constant head and constant flow rate permeability tests[J]. Geotechnical Testing Journal, 1998, 21(1): 52-57.
    [105] ZHANG M. A new coupled shear and permeability test method for evaluating engineered barriers in low-level radioactive waste disposal facilities [Ph.D. Thesis] [D]. Fukuoka, Japan: Department of Civil Engineering, Graduate School of Kyushu University, 1996.
    [106] KRANZ R L, SALTZMAN J S, BLACIC J D. Hydraulic diffusivity measurements on laboratory rock samples using oscillating pore pressure method[J]. International Journal of Rock Mechanics and Mining Sciences, 1990, 27(5): 345-352.
    [107] BERNABE Y, MOK U, EVANS B. A note on the oscillating flow method for measuring rock permeability [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43: 311-366.
    [108] Japanese Society of Soil Mechanics and Foundation Engineering (JSSMFE), 1980, Soil Testing Methods, 757p.
    [109] 吴国永,钟俊平.提高粘性土样渗透试验的准确性[J].广东水利水电,1997,3:27-30.
    [110] Core Lab Instruments/Temco Products: Pulse Decay Permeameter GPS-620. http://www.corelab.com/rd/Instruments/TEMCO/routine_prod4.aspx
    [111] MTS Systems Corporation: MTS Rock and Concrete Mechanics Testing Systems. http://www.mts.com/en/civil/Geo/Pavement/ssLINK/DEV_002698
    [112] 刘光尧.渗透系数概念发展的回顾[J].工程勘察,1997,2:34-38。
    [113] C. E. Jacob. Notes on Darcy's law and permeability[J]. Transaction of the American Geophysical union, 1946, 27(2).
    [114] Bear J. Hydraulics of groundwater[M], McGraw-Hill, New York, 1979, 569pp.
    [115] 苑莲菊,李振拴,武胜忠,等.工程渗透力学及应用[M].北京:中国建材工业出版社,2001:1-19.
    [116] Head K. H. Soil classification and compaction tests[J]. Manual of Soil Laboratory Testing, 1980, 1: 339.
    [117] Loudon A G. The computation of permeability from simple soil tests[J]. Geotechnique, 1952, 3: 165-183.
    [118] Kenney T C, Lau D, Ofoegbu G I. Permeability of compacted granular materials[J]. Canadian Geotechnical Journal, 1984, 21: 726-729.
    [119] Garcia-Bengochea I, Lovell C W. Correlative measurements of pore size distribution and permeability of soils[J]. Permeability and ground water contaminant transport[J]. American Society for Testing and Materials, Special Technical Publication 746, 1981, pp.137-150.
    [120] Juang C J, Holtz R D. Fabric, pore size distribution and permeability of sandy soils[J]. ASCE Journal of Geotechnical Engineering, 1986, 112: 855-868.
    [121] Chapuis R P. Sand-bentonite liners: predicting permeability from laboratory tests[J]. Canadian Geotechnical Journal, 1990, 27, pp.47-57.
    [122] Lapierre C, Leroueil S, Locat J. Mercury intrusion and permeability of Louiseville clay[J].Canadian Geotechnical Journal, 1990, 27, pp.761-773.
    [123] Olsen R E, Daniel D E. Measurement of the hydraulic conductivity of fine-grained soils[J]. Permeability and ground-water contaminant transport, American Society for Testing and Materials, Special Technical Publication 746, 1981, pp. 18-64.
    [124] Zimmie T F, Doynow J S, Wardell J T. Permeability testing of soils for hazardous waste disposal sites. Proceedings, 10~(th) International Conference on Soil Mechanics and Foundation Engineering, Stockholm, 1981, 2, pp.403-406.
    [125] Daniel D E, Anderson D C, Boynton S S. Fixed-wall versus flexible-wall permeameters, Hydraulic barriers in soil and rock, American Society for Testing and Materials, Special Technique Publication 874 , 1985, pp.107-126.
    [126] Olsen H W, Nichols R W, Rice T L. Low-gradient permeability measurements in a triaxialsystem[J].Geotechnique, 1985, 35(2): 145-157.
    [127] Komine H, et al. Permeability and mechanical properties of bentonite-sand mixture for sealing LLW repositories[J]. SMiRT 11 Transactions, 1991, SD1, pp.271-276.
    [128] Wong L C, Haug M D. Cyclical closed-system freeze-thaw permeability testing of soil liner and cover materials[J]. Canadian Geotechnical Journal, 1991, 28, pp.784-793.
    [129] Mitchell J K, Younger J S. Abnormalities in hydraulic flow through fine-grained soils, Permeability and capillarity of soils, American Society for Testing and Materials, 1967, Special Technical Publication 417, pp. 106-139.
    [130] Dune R J, Mitchell J K. Fluid conductivity testing of fine-grained soils[J]. Journal of Geotechnical Engineering, 1984, 110(11): 1 648-1 655.
    [131] Olsen H W. Deviations from Darcy's law in saturated clays[J]. Soil Science Society of American Proceedings, 1965, 29(2): 135-140.
    [132] Pane V, et al. Effects of consolidation on permeability measurements for soft clay[J]. Geotechnique, 1983, 33(1): 67-72.
    [133] Bianchi W C, Haskell E E. A strain gage pressure cell for rapid determination of hydraulic conductivity of soil cores[J]. American Society for Testing Materials Proceedings, 1963, 63, pp.1 227-1 234.
    [134] Overman A R, Reverly J H, Miller R J. Hydraulic conductivity measurements with a pressure transducer[J]. Soil Science Society of America Proceedings, 1968, 32, pp.884-886.
    [135] Olsen H W. Hydraulic flow through saturated clays[J]. Proceedings, 9~(th) Conference on Clays and Clay Minerals, Clay and Minerals, 1972, 9: 131-161.
    [136] 李小春,王颖,魏宁.变容压力脉冲渗透系数测量方法研究[J].岩石力学与工程学报,2008,27(12):2 482-2 487.
    [137] 王颖,李小春,魏宁.变容压力脉冲法渗透系数测量技术测量范围的实验验证[J].岩石力学与工程学报,2009.
    [138] 王颖,李小春,魏宁.变容压力脉冲渗透系数测量方法的误差分析[J].岩石力学与工程学报,2009.
    [139] 高旺来.常规岩心夹持器在低渗储层渗流特征曲线实验中的局限性[J].特种油气藏,2001,8(2):79-81.
    [140] LI X, WU Z, TAKAHASHI M, et al. Permeability anisotropy of Shirahama sandstone under true triaxial stresses[J]. Journal of Geotechnical Engineering, JSCE, 2002, 708: 1-11.
    [141] LIN C, PIRIE G, TRIMMER D A, et al. Low permeability rocks: laboratory measurements and three-dimensional microstructural analysis[J]. Journal of Geophysical Research, 1986, 91(3): 2 173-2 180.
    [142] Zhang M., Esaki T., Olsen H. W., et al. Integrated shear and flow parameter measurement[J].Geotechnical Testing Journal, GTJODJ, 1997, 20(3): 296-303.
    [143] 李传亮.岩石压缩系数测量新方法[J].大庆石油地质与开发P.G.O.D.D.,2008,27(3):53-54.
    [144] 李传亮.岩石压缩系数与孔隙度的关系[J].中国海上油气(地质),2003,17(5):355-358.
    [145] 李传亮.实测岩石压缩系数偏高的原因分析[J].大庆石油地质与开发,2005,24(5):53-54
    [146] 李传亮.低渗透储层不存在强应力敏感[J].石油钻采工艺,2005,27(4):61-63.
    [147] 李传亮.岩石应力敏感指数与压缩系数之间的关系式[J].岩性油气藏,2007,19(4):95-98.
    [148] 李传亮.渗透率的应力敏感性分析方法研究[J].新疆石油地质,2006,27(3):348-350.
    [149] 李传亮.储层岩石的应力敏感问题[J].石油钻采工艺,2006,28(6):86-88.
    [150] 李传亮,叶明泉.岩石应力敏感曲线机制分析[J].西南石油大学学报(自然科学版),2008,30(1):170-172.
    [151] 李传亮.储层岩石应力敏感性认识上的误区[J].特种油气藏,2008,15(3):26-28.
    [152] 刘晓旭,胡勇,朱斌等.储层应力敏感性影响因素研究[J].特种油气藏,2006,13(3):18-21.
    [153] 王恩志,张文韶,韩小妹等.低渗透岩石在围压作用下的耦合渗流实验[J].清华大学学报(自然科学版),2005,45(6):764-767.
    [154] 黄远智,王恩志.低渗透岩石渗透率对有效应力敏感系数的试验研究[J].岩石力学与工程学报,2007,26(2):410-413.
    [155] 周远田.岩石渗透率与其应力的关系及应用[J].矿物岩石,1999,19(1):33-38.
    [156] 代平,孙良田,李闽.低渗透砂岩储层孔隙度、渗透率与有效应力关系研究[J].天然气工业,2006,26(5):93-95.
    [157] 姜振泉,季梁军.岩石全应力-应变过程渗透性试验研究[J].岩土工程学报,2001,23(2):153-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700