悬浮颗粒数的质量分布信息模型及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬浮颗粒光散射计数法因测量速度快、精度高、重复性好及适用于在线测量等优点而在洁净领域得到了广泛应用。但由于计数法颗粒质量测量的理论模型没有严格建立在测量统计学基础上,至今未能揭示不规则颗粒的分形基本特征,这也导致质量反演计算模型的不完善。针对这个问题,本文探索将信息概念和信息论方法引入悬浮颗粒计数法质量测量领域,研究颗粒不规则形貌特征决定的分形测度特性,建立用计数信号相对幅度计算同质量颗粒子集等效质量的理论模型。
     论文首先建立了颗粒质量子集概念,并且将其加以推广,应用“等效质量”代替现有测量模型中的“等效粒径”作为不规则颗粒基本参数。然后,根据测量的统计性,将信息概念和信息论方法应用于分析物理测量过程,探讨测量信息论中信息概念的内涵,提出信息是“测量统计的形式结构以及该结构精细程度的度量”的新观点。同时,应用信息概念和信息论方法研究悬浮颗粒数的质量分布结构特征、计数法测量颗粒过程中信号数的幅度分布结构特征,提出与计数信号幅度档对应信号数“等效质量”的概念,建立了计数法颗粒质量测量的基本原理。将新的测量原理与统计学理论再结合,建立了密度相同条件下不规则颗粒质量子集等效体积的分形测度模型,从理论上给出了颗粒测量领域中表现出来的颗粒群分形特征成因。
     论文以光散射计数法悬浮颗粒质量传感器为应用实例,结合传感器光敏区光强不均匀性,研究颗粒散射光信号幅度档等效颗粒质量一般计算公式(?),发现颗粒光散射等效截面分形维数α不仅包含颗粒群质量分布信息,还包含了光敏区中颗粒数空间分布信息。理论上证明了,该模型能够适用于0-5mg浓度条件下的信号计数法颗粒测量领域中。从而解决了多通道计数法颗粒质量测量的基本理论问题,指导着粒子计数器向着高性能、高水平的方向发展。
Aerosol scattering counting method has been widely used in the cleaning field due to fast, high precision, good repetition and suitable for on-line measurement. However, due to the theory model of aerosol mass measurement by using counting method hasn't been strictly founded on the measure statistics, the fractal character of irregular particles can't be opened out up to now, which leads to the inverse calculation model of mass is incomplete. Aiming at this problem, information idea and theory will be introduced to the field of aerosol mass measurement by using counting method in this paper. Then, the fractal measurement characteristic decided by the irregular shape character of aerosol will be studied. At the same time, the theory model also will be established which uses the counting signal relative amplitudes to calculate the equivalent mass of aerosol mass subset.
     The conception of mass subset is proposed for aerosol firstly in this paper. And it has been extended to the equivalent mass, which is used to substitute the equivalent diameter and as the basic parameter of irregular particles. According to statistical character of measurement, information idea and theory are used to analyze the physical measuring process. And then, the connotations of information concept in measuring information theory are discussed. Meanwhile, the new viewpoint that information is the measurement of structure and the detailed degree of structure description for statistical expressional form is proposed. Besides, information idea and theory are also used to research the structure character of aerosols' mass and amplitude distributions of signal counting in the process of aerosol measurement. In further, the conception of the equivalent mass corresponding to counting signals channel is also proposed. Based on these, the essential principle is founded for aerosol mass measurement by using counting method. As a matter of fact, combining this new measuring principle with statistics, the fractal measurement model of aerosol's equivalent volume for counting signal is established under the condition of the same density. In conclusion, this model gives the cause of formation of fractal character in the field of aerosol mass measurement.
     Afterward, the aerosol mass measurement sensor with light scattering counting method is used as an example, and combining with the nonuniformity of light intensity in sensitive volumes, the general function (?) of average mass and characteristicparameter of counting channels is obtained. In fact, the indexαis the fractal dimension of equivalent scattering section which includes the information of the aerosols' mass and space distributions in the sensitive volumes. Finally, it can be proved that the model can be used in the field of aerosol measurement by using signal counting method with the sampled concentration is limited from 0 to 5 milligram. In a word, the elemental measure theory of aerosol mass measurement is resolved by using multi-channel counting method. Especially, this work will guide the particle counter's development toward the high level and performance.
引文
1. Jensen P. A. and Dcnnis O., Industrial hygiene aerosol measurement. New York: Van Nostrand Reinhold, 1993: 537-559
    2. 中华人民共和国国家标准.GB3095-1996,空气环境质量标准
    3. Nedim V. and Enneth E. N., Atmospheric PAH concentrations in fine and coarse particles. Environmental Monitoring and Assessment. 2003, 87: 81-92
    4. 王冕.粉尘及其危害.铁道劳动安全卫生与环保.2000,27(4):254-256
    5. 张书林.粉尘的危害及环境健康效应.佛山陶瓷.2003,73(4):37-38
    6. Michael B, Carmen A, Teresa I F, et al. Air pollution and retained particles in the lung. Environmental Health Perspectives. 2001, 109(10): 1039-1043
    7. Tuch TH, Brand P, Wichmann H E, et al. Variation of particle number and mass concentration in various size ranges of ambient aerosols in eastern Germany. Atmospheric Environment. 1997, 31(24): 4193-4197
    8. Therese, F. M., Gary, A. N., Jane, Q. K. & Timothy, V. L.. Associations between air pollution and mortality in Phoenix, 1995-1997. Environmental Health Perspectives. 2000,108: 347-353
    9. Vedal, S. Ambient particles and health: lines that divide. Journal of the air and waste management association. 1997, 47: 551-581
    10. 张大年.城市大气可吸入颗粒物的研究.上海环境科学.1999,18(4):154-157
    11. Chan Y C, Simpson R W, Mctainsh G H, et al. Characterisation of chemical species in PM_(2.5) and PM_(10) aerosols in Brisbane, Australia. Atmospheric Environment. 1997, 31(22): 3773-3785
    12. 王阳元.集成电路工业全书-技术,经济,管理.北京:电子工业出版社.1993,83-90
    13. 赵兴华.药品生产企业洁净技术与卫生管理.南京:南京大学出版.1993,62-73
    14. 中华人民共和国建设部.GBJ73-84.洁净厂房设计规范.北京:建筑工业出版社.1984
    15. 范利民.光散射颗粒测量理论、应用及数据处理方法的研究(硕士学位论文).上海理工大学,2000
    16. 陈卫等.超细粉体粒度测量技术现状和新方法的探索.重庆大学学报(自然科学版).1997,20(3):74-78
    17. 夏德宏,张省现,吴祥宇.煤粉碎粒度分布的分形模型.矿冶.2005,1(14):36-39
    18. William C. Hinds. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons, Inc. 1982: 76-77
    19. Schmidt-Ott A. and Wiistenberg J.. Equivalent diameters of non-spherical particles. Journal of Aerosol Science. 1995,26, Suppl 1, S923-S9246
    20. T.艾伦.颗粒大小测定.第三版,北京:中国建筑工业出版社.1984:108-112.
    21. Meloy.T.R. A hypothesis for morphological characterization of particle shape and physiochemical properties. Powder Techno1. 1977, 2(16):223-253
    22. Ehrlich etal. J. of Sedimentary petrology. 1970
    23. Beddow. J. K.. Planseeder. 1975
    24. Meloy. T. P.. Handbook of Powder Science and Technology. (Eds. M.E Fayed, 1td.) Van Nostrand Reinhold Company. 1984
    25. Clark. N. N. etal. Particulate Sci. and Technol.1995
    26. T. Shibata etal, Powder Technol. 1994
    27. Kaye, B.H.. Proc. Particle Size Analysis conference. Salford. Chem. Soc. Analyt. Div..London. 1977
    28. Medalia. A.J.ibid. 1970,4
    29. 李功伯,徐小荷.矿岩粉碎颗粒分形结构与粉碎能耗的关系.金属学报.1993,2(29):B054-B059
    30. Allen, M. etal.. Powder. Technol.. 1995
    31. 周兆英,林喜荣等译.P.H.西登汉姆主编.测量科学手册(上册).第一版,北京:机械工业出版社,1990:36-38
    32. Salkowski M.. Prototype fly ash monitor for Iincineration stacks. Final report. 1964, IIT Research Inst, Chicago, IL
    33. Dresia H. and Spohr F.. Experience with the radiometric dust measuring unit "Beta Staubmeter." Staub. 1971, 31:12-27
    34. Lilienfeld P. and Dulchinos J.. Portable instantaneous mass monitor for coal mines dust. Am. Ind. Hyg. Assoc. J. 1972, 33:136-143
    35. Chueinta W. and Hopke P. K.. Beta gauge for aerosol mass measurement. Aerosol Science and Technology. 2001, 35(4): 840-843
    36. Husar R. B.. Atmospheric particulate mass monitoring with a radiation detector. Atmos. Environ. 1974, 8:183-188
    37. Stevens R. K., Dzubay T. G., Shaw R.W., McClenny W. A., Lewis C.W. and Wilson W. E.. Characterization of the aerosol in the great smoky mountains. Environ. Sci. Technol.. 1980,14: 1491-1498
    38. Gotoh T.. Application of digital image-processing to a Beta Gauge for determining mass concentration of suspending particulate matter in atmosphere. Applied Radiation and Isotopes. 1992,43: 659-662
    39. Jaklevic J. M., Gatti R. C., Golding F. S. and Loo B. W.. A β-Gauge method applied to aerosol samples. Environ. Sci. Technol.. 1980, 15: 680-686
    40. Olin J. G. and Sem G. J.. Piezoelectric microbalance for monitoring the mass concentration of suspended particles. Atmospheric Environment. 1971, 5: 653-668
    41. Allen G., Sioutas C. and Koutrakis P.. Evaluation of the TEOM registered method for measurement of ambient particulate mass in urban areas. Journal of the Air and Waste Management Association. 1997,47: 682-689
    42. Soutar A., Watt M., J. W. Cherrie et al.. Comparison between a personal PM10 sampling head and the tapered element oscillating microbalance (TEOM) system. Atmospheric Environment. 1999, 33(27): 4373-4377
    43. Meyer M. B. and Rupprecht E. G.. Particulate matter sampling methods: the importance of standardization. Journal of Aerosol Science. 1996, 27: S349-S350
    44. 屈文军,张小曳,王丹,赵元茂,王亚强,曹国良,严立文.湿度变化对TEOM 1400a系列环境颗粒物监测仪PM10质量浓度观测的影响.中国粉体技术,2006,12(2):1-3
    45. 王乃宁.颗粒粒径的光学测量技术及应用.第一版,北京:原子能出版社.2000
    46. Gmiterko A., Slosarcik S. and Dovica M,. Algorithm of nonrespirable dust fraction suppression using an optical transducer of dust mass concentration. IEEE Transactions on Instrumentation and Measurement. 1998, 47(5): 1228-1233
    47. Milik D. E. and Folger H. S.. Turbidimetsy determination of particle size distribution of colloidal system. J. Colloidal Interface Science. 1982, 92(3)
    48. Edward E. U.. Particle size evaluation using multi-wavelength extinction measurements. Appl. Opt. 1982. 21(3): 454-464
    49. Kourti T., Minimum number of turbidity measurements required for the determination of particle size distribution. J. Colloid Interface Science. 1987, 120(1)
    50. 郑刚,孙浩,黄廷磊,虞先煌.颗粒浓度在线监测的双波长消光法.仪器仪表学报.2000,21(5):533-535
    51. 姚启钧.光学教程.第二版,北京:高等教育出版社.2000:408-410
    52. 叶茂.两相流颗粒粒径分布及浓度的光散射在线测量方法研究.东南大学博士学位论文.2000
    53. WS/T206-2001公共场所空气中可吸入颗粒物(PM10)测定方法——光散射法.2002
    54. Thomas A. and Gebhart J.. Correlations between gravimetry and light scattering photometry for atmospheric aerosols. Atmospheric Environment. 1994, 28(5): 935-938
    55. G(?)rner P., Bemer D. and Fabri(?)s F., Photometer measurement of polydisperse aerosols. Journal of Aerosol Science. 1995, 26: 1281-1302
    56. G(?)rner P., Bemer D. and Fabries J. F.. Theoretical and methodological approach of photometer calibration. J. Aerosol Sci.. 1990, 21: S517-S520
    57. G(?)rner P., Bemer D. and Fabries J. F., Simulation of photometer response to various polydisperse aerosols. Proc.7th ICSCS Congress, Compiegne. 1991, 2: 168
    58. Waggoner, A. P., Weiss, R.E.. Comparisons of fine particle mass concentration and light scattering extinction in ambient aerosols. Atmospheric Environment. 1980, 14: 623-626
    59. 曲建翘.公共场所卫生监测仪器使用指南.第一版,北京:中国计量出版社.1997:97-110
    60. 崔九思.室内空气污染监测方法.第一版,北京:化学工业出版社.2002:448-452
    61. Holve D. and Self S. A.. Optical particle sizing for in-situ measurement: Part 1. Appl. Optics. 1979,18: 1632-1645
    62. Holve D. and Self S. A.. Optical particle sizing for in-situ measurement: Part 2. Appl. Optics. 1979,18: 1646-1652
    63. Holve D., Tichenor D., Wang J. C. F. and Hardesty D.. Design criteria and recent developments of optical single particle counters for fossil fuel systems. Opt. Eng.. 1981,20:529-539
    64. Hirleman E. D.. Laser-based single particle counters for in-situ particulate diagnostics. Opt. Eng.. 1980,19:854-869
    65. Virgil A. M. and Kenneth L. R.. A portable optical particle counter system for measuring dust aerosols. American Industrial Hygiene Association Journal. 1978, 39:210-218
    66. Robert G. K.. The measurement of latex particle sizes using scattering ratios in the rayleigh scattering size range. J. Aerosol Sci.. 1989, 20(3): 331-345
    67. VDI 3489. Methods of Characterizing and Monitoring Test Aerosols-Optical Particle Counter. German. 1997
    68. JIS B 9921-1997. Light scattering automatic particle counter. Japan. 1997
    69. ASTM F328-98. Standard practice for calibration of an airborne particle counter using monodisperse spherical particles. United States. 2003
    70. 卞保民.空气尘埃粒子计数器及光电传感器研究.南京:南京理工大学硕士学位 论文.1996
    71. 卞保民,贺安之,阎大鹏.0.1μm尘埃粒子计数器光学传感器.仪器技术与传感器.1997.11:1-4
    72. 贺安之,卞保民,阎大鹏.便携式半导体尘埃粒子计数器的研制.量子电子学. 1996.13:187
    73. 卞保民,贺安之,吴东楼.0.1μm激光尘埃粒子计数器中光源大立体角反射成像弥散斑及其处理.光电子·激光,1997,8(4):246-250
    74. 黄廷磊,郑刚,王乃宁.室内空气中颗粒状污染物的计数技术.应用光学.2000,21(2):17-21
    75. 张敏,周鑫玲,王向军,高玉成.基于光散射原理的尘埃粒子检测仪.仪器仪表学报.2005,26(12):1298-1301
    76. 阎逢旗,胡欢陵,虞统.用光学粒子计数器测颗粒物质量浓度和能见度.量子电子学报.2004,21(1):98-102
    77. Osamu A., Kenji K., Takeshi S., Shigeto M., Junrong X., Mingzhe L., Satoru Y. and Wenshou W.. Aeolian dust transportation on fine days over the slopes in mountainous areas around the taklimakan desert. China. Journal of the Meteorological Society of Japan. 2005, 83A, 19-30
    78. 朱震,王式民,叶茂.用光学计数方法检测排烟粉尘尺寸分布及浓度.能源研究与利用.1998,4:24-26
    79. Thomas M. P., Darrin O., Vijay G. and Patrick O.. Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles. Annals of Occupational Hygiene. 2006, 50: 843-850
    80. Brett D. G., Norman L. E., Delbert J. E., Judith C. C., John G. W., Jeffrey L. A., Michael B. M., Philip K. H., Rida A., Douglas W. L. and William E. W.. Measurement of Both Nonvolatile and Semi-Volatile Fractions of Fine Particulate Matter in Fresno. CA. Aerosol Science and Technology. 2006,40: 811-826
    81. Portable Aerosol Spectrometer Model 1.109. hrtp://www,dustmonitor.com/Research/1109.htm
    82. 阎逢旗,胡欢陵,虞统.北京市冬季大气气溶胶粒子数密度及数密度谱演变的分析.过程工程学报.2002,2(Suppl.):310-313
    83. H.Quenzel. Influence of Refractive index on the Accuracy of Size Determination of Aerosol Particles with Light-Scattering Aerosol Counters. Applied Optics. 1969, 1(8): 165-169
    84. 王亚伟,卞保民,贺安之.微粒Mie散射光谱中多峰的成因分析.激光技术.2000, 5(24):297-300
    85. 任智斌,卢振武,刘玉玲,李凤有,曹召良,孙强.Mie理论归一化散射光强的研究.光电子.激光.2003,14(1):83-85
    86. 高永锋,邹丽新,黄惠杰,梁春雷,凌卫锋,张耀明.尘埃粒子计数器中光源对传感器光通量的影响分析.应用光学.2005,26(3):45-49
    87. 李学彬,高亦桥,徐青山,胡顺星,胡欢陵.激光光源粒子计数器响应曲线对粒子折射率敏感度及多值性的分析.光学技术.2006,4(32):486-489
    88. J. R. Hodkinson, J. R. Greenfield. Response calculations for light scattering aerosol counters and photometers. Appl.Opt.. 1965,4(11): 1463-1474
    89. Yangang Lius, Peter H. Daum. The Effect of Refractive Index on Size Distributions and Light Scattering Coefficients Derived from Optical Particle Counters. J. Aerosol Sci.. 2000, 31(8): 945-957
    90. W. C. HINDS and G. KRASKE. PERFORMANCE OF PMS MODEL LAS-X OPTICAL PARTICLE COUNTER. J Aerosol Sci.. 1986,17(1): 67-72
    91. R.Jaenicke. The optical particle counter: cross-sensitivity and coincidence. Aerosol Science. 1972, 30:95-111
    92. Benjamin Y. H. Liu, Richard N. Berglund and Jugal k. Agarwal. Experimental studies of optical particle counters. Atmospheric Environment. 1974, 8: 717-732
    93. J. Makynen, J. Hakulinen, T. Kivisto and M. Lehtimaki. Optical particle counters: Response, resolution and counting efficiency. J. Aerosol Sci.. 1982, 13(6): 529-535
    94. Berglund, R. N.. Basic aerosol standards and optical measurements of aerosol particles[D]. University of Minnesota. 1972:199-202
    95. 纪运景,卞保民,贺安之.不同光源对激光尘埃粒子计数器性能的影响.红外与激光工程.2004,33(3):264-268
    96. 梁春雷,黄惠杰,任冰强,赵永凯,杜龙龙.激光尘埃粒子计数器微型光学传感器的研究.光学学报.2005,25(9):1260-1264
    97. O. Preinning. On the evaluation of aerosol size distributions. Journal De Recherche Atmospheriques. 1966:145-151
    98. D. Bemer, J. F. Fabries And A. Renoux. Calculation of the Theoretical Response of an Optical Particle Counter and Its Practical Usefulness. J Aerosol Sci.. 1990, 21(5):689-700
    99. G.Pinnick and D. J.Hofmann. Efficiency of Light-Scattering Aerosol Particle Counters. Applied optics. 1973,12(11): 2593-2597
    100.Bernd Sachweh, Helmut Buttner, Fritz Ebert. Lower Detection Limit of an Optical Particle Counter in the Measurement of Particle Size Distributions. Part. Part. Syst.. 1989: 124-128
    101.T. E. GRAEDEL. Channel Width Determination And Electronic Pulse Processing Losses In Optical Particle Counters. Aerosol Science. 1974, 5: 125-131
    102.K. Janka. T. kivisto and J. Makynen. Pulse interval and pulse width measurements in determining the flow characteristics in the viewing volume of single particle optical counters. J. Aerosol Sci.. 1982, 13(5): 451-457
    103.O.Preining. Information theory applied to the acquisition of size distributions. Aerosol Science. 1972, 3: 289-296
    104.杨玲,程晓飞,卞保民,贺安之.尘埃粒子光散射信号传输特性的研究.光电子.激光.2000,11(1):89-91
    105.卞保民,贺安之,程晓飞.尘埃粒子计数器单分散粒子信号幅度分布研究.东南大学学报.1999,29(1):145-149
    106.杨玲,何幼权,卞保民,曾世清,贺安之.尘埃粒子计数器单粒子散射光幅值概率分布.光电子。激光.2002,12(2):178-181
    107.刘俊杰,朱能田,吉孝.尘埃粒子计数器计数损失的分析研究.洁净与空调技术.2002.2:21-23
    108.Application Note. Counting Efficiency and Resolution in Optical Particle Counters. http://www. pmeasuring.com/
    109.程晓飞.尘埃粒子计数器信号传输与处理数学模型的初步研究及应用.南京:南京理工大学.1999:40-43
    110.Mandelbrot B B. The Fractal Geometry of Nature. San Francisco: W.H.Freeman. 1982
    111.Turcotte D L. Fractals and Fragmentation. J Geophys. Res.. 1986, 91(B2): 192-1926
    112.郁可,郑中山.粉体粒度分布的分形特征.材料研究学报.2004,9(6):539-542
    113.董平,单忠健.超细煤粉碎粒度分布的分形描述.黑龙江科技学院学报.2004,14(2):69-73
    114.徐小荷,宋守志,李功伯.分形几何和粉碎特征.中国矿业.2004,3(1):32-35
    115.Capinteri A.Pugno N. A multifractal comminution approach for drilling scaling laws. powder Technology.2003,131(1): 93-981
    116.邓跃红,张智铁.物料粉碎分形行为的研究.矿冶工程.1998,18(3):32-35,40
    117.郭永彩,谢利利,何振江,杨冠玲,陈卫.基于分维计算的颗粒粒度分析方法.重庆大学学报.1998,1(12):7-11
    118.韩敏芳,杨翠柏.纳米粉体粒度特性表征方法讨论.中国非金属矿工业导刊. 2003,4:30-34
    119.姜秀民,杨海平等.煤粉颗粒粒度分形分析.煤炭学报.2003,28(4):414-418
    120.谢耀社,姜学云.煤尘粒度分布的分形结构研究.阜新矿业学院学报.1996,15(3):87-290
    121.张济中.分形.第一版.北京:清华大学出版社.1995:42-46
    122.顾芳,杨娟,卞保民,贺安之.用粒子计数法测量颗粒物质量浓度.激光技术.2007,31(4):360-363
    123.徐峰,蔡小舒,苏明旭.独立模式算法求解颗粒粒径分布的研究.中国激光.2004,31(2):223-228
    124.梁国标,王燕民,李新衡,王永全.由Mie散射光强反演颗粒粒度分布的一种改进正则化法.光电工程.2006,33(12):44-49
    125.顾芳,杨娟,卞保民,贺安之.基于平均质量的悬浮颗粒物质量密度算法.光学学报.2007,27(9):1706-1710
    126.顾芳,杨娟,卞保民,贺安之.基于等效球形颗粒数的颗粒物质量浓度算法.光电子·激光.2008,19(1):87-91
    127.[苏]П.B.诺维茨基主编.《非电量的电测量》翻译组译.《非电量的电测量》.机械工业出版社.1983:1-2
    128.周兆经.测量信息论的研究.中国计量学院学报.1990,12:37-44
    129.史玉峰,靳奉祥.测量误差理论的信息论诠释.山东理工大学学报(自然科学版).2003,17(1):66-71
    130.童玲,陈光衤禹,吕文.测量数据的信息熵与测量误差熵研究.电子科技大学学报.2007,36(5):935-937
    131.肖明珠,陈光衤禹.测量的熵分析.系统工程与电子技术.2004,26(3):373.374
    132.肖明珠,陈光衤禹.测量信息的计算.电子测量与仪器学报.2005,19(2):26-28
    133.Woeger W. Probability Assignment to Systematic Deviations by the Principle of Maximum Entropy. IEEE Trans. on Instrumentation and Measurement. 1987, 36(2):655-658
    134.Jaynes E T. On the Rationale of Maximum Entropy Methods. Proc. of the IEEE. 1982, 70(9): 539-552
    135.陈光衤禹.现代测试导论.成都:电子科技大学出版社.2002
    136.万幼川.应用信息论最小误差熵研究-卡尔曼滤波递推算法.数值计算与计算机应用.1995,4:247-249
    137.周兆经.估算测量不确定度的一种最大熵原理.计算技术.1987,4:1-3
    138.Shannon C E. A Mathematical Theory of Communication. Bell Syst. Tech. J.. 1948, 27: 379-423(part Ⅰ)
    139.Shannon C E. A Mathematical Theory of Communication. Bell Syst. Tech. J.. 1948, 27: 623-656(part Ⅱ)
    140.朱雪龙.应用信息论基础.清华大学出版社.2000
    141.Thomas M.Cover, Joy A. Thomas. Elements of Information Theory. Beijing: Tsinghua University Press. 2003
    142.史玉峰,靳奉祥,王健.基于信息熵的测量数据粗差识别法.测绘通报.2002,2:9-10
    143.陶本藻.关于测量不确定度评定与表示.测绘标准化.2001,3:7-10
    144.Kerker M. The scattering of light and other electromagnetic radiation. New York: Acadmic Press. 1969
    145.Bohren C. F. and Huffman D. R.. Absorption and scattering of light by small particles. New York: John Wiley & Sons. 1983
    146.Fang Gu, Juan Yang, Baomin Bian and Anzhi He. A model for aerosol mass concentra- tion using an optical particle counter. Chinese optics letters, 2008, 6(3):214-217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700