深部煤层处置CO_2多物理耦合过程的实验与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳是温室效应最主要的贡献者,利用深部不可开采煤层封存二氧化碳可同时实现CO2大规模减排和增加煤层气资源产量(CO2-ECBM),具有巨大的发展潜力。CO2注入煤层封存会引起CO2-CH4二元气体与煤体之间的多物理耦合作用,对煤储层的孔隙性和渗透性以及气体的流动产生重要影响,是深部不可采煤层封存CO2的瓶颈问题。本文基于表面化学、吸附热力学、渗流力学、有限元数值分析等理论和方法,对深部煤层封存CO2中的多物理过程耦合机制开展了较系统的实验与模拟研究,核心内容如下:
     (1)利用沁水盆地晋城一组无烟煤煤样进行了跨CO2临界温度(31.4℃)条件下煤对CO2吸附特性的实验及二元气体吸附/解吸实验。跨临界温度吸附时,CO2在煤中的吸附量与温度变化不呈单调递减关系,反映了煤物理吸附和CO2相变综合作用的结果。二元气体吸附和解吸时,解吸曲线表现出“滞留”现象,说明了CO2在吸附造成煤微孔闭合扣留残余气体的机制。分割二元气体的游离相和吸附相组分比例关系,揭示了CO2-CH4二元气体解吸时CH4优先解吸,解吸速度由快转慢;而吸附时,CO2会优先吸附,吸附速度由快转慢,上述结论是煤层中二元气体竞争吸附和CO2封存的重要依据。
     (2)分别运用Langmuir模型、BET模型、DA模型和DR模型对煤样吸附CO2和CH4的曲线进行了拟合,分析了CO2等温吸附实验中体积误差对实验结果的影响,运用体积修正项对传统的吸附量计算模型进行了修正,并应用修正的DA和Langmuir模型进行了重新拟合,结果表明修正模型的拟合精度大幅提高,同时,体积修正项也定量描述了二氧化碳吸附同时引起的煤体膨胀变形。
     (3)从煤的吸附热力学角度,利用煤表面自由能和等量吸附热评价了不同温压条件下CO2在煤层中优先吸附性以及CO2与CH4竞争吸附机制。计算了25~40℃温度下煤对CO2和CH4的吸附势,建立了煤吸附CO2和CH4的特征曲线,得到了CO2吸附量、温度、压力三者之间的关系式。
     (4)建立了一套包含气体竞争吸附、竞争扩散、气体渗流以及煤基块变形的多物理耦合过程的高度非线性数学模型,包含煤层耦合变形方程、适用于变应力边界的新的孔隙率和渗透率方程、二氧化碳和甲烷气体的对流扩散耦合方程以及上述三者的耦合方程。
     (5)应用COMSOL Multiphysics有限元数值分析系统求解了多物理耦合非线性数学模型,运用最新实验数据验证了模拟结果的正确性,基于COMSOL有限元数值模拟平台,研究了不同储层物性和注气条件下,CO2驱替煤层气与封存过程中的二元气固耦合作用。得出:将CO2注入煤层后,CO2不断驱替CH4;煤层的孔隙压力和渗透率受煤层吸附膨胀变形与孔隙压力变形耦合作用影响,在低压条件下吸附膨胀变形占主导控制地位,而在高压条件下吸附膨胀变形被气体压力变形抵消,后者控制煤层的渗透率;注气压力越大、煤层初始渗透率越大,以及煤弹性模量越小,二氧化碳的可注性越高。
     (6)基于COMSOL数值平台,对我国沁水盆地CO2驱采煤层气及地质处置中的煤层孔隙压力、二元气体组分以及煤层渗透率的演化特征进行了模拟研究,计算出在沁水盆地300×300m2场地中注气10年后CO2封存量为1.75×104t,注入CO2后可提高CH4产量达1.44倍。
CO2 contributes the most to the greenhouse effect of the earth. CO2 sequestration in deep unminable coal seam is a potential management option for greenhouse gas emissions, reducing the risk of CO2 migration to the surface and meanwhile enhancing coalbed methane recovery. The injected CO2 leads to coupled multiphysical interactions of binary CO2-CH4 gases with coal and affects porosity and permeability, and gas flow in coal seam, which are recognized as the bottleneck scientific issues of CO2 sequestration unminable coal seam. Based on the theories of Surface Chemistry, Adsorption Thermodynamics, Seepage Mechanics, and Finite Element Analysis, the thesis presents systematical experimental studies and simulations on coupled multiphysical processes of CO2 sequestration in deep unmineable coal seam. Main contents of the thesis are listed as follows:
     (1) Single gas adsorption isotherms of CO2 crossing the supercritical temperature (31.4℃), and binary gas adsorption and desorption isotherms on Jincheng anthracite sample from Qinshui Basin, Shanxi province, were experimentally observed. Adsorption of CO2 crossing the supercritical temperature is not monotonically decreasing functioned with temperature and determined by both physisorption of coal surface and phase change of CO2. Desorption hysteresis happens in the measurement of binary gas adsorption and desorption isotherms, which implies that coal matrix swelling with CO2 adsorption can reserve free gas within the sealed shaped pores. According to the separation information of binary gas composition both in free phase and adsorptive phase, CH4 tends to be desorbed preferentially, which however slows down with desorption proceeding. On the contrary, CO2 adsorbs preferentially on coal. But the velocity of CO2 adsorption slows down as well. Above findings are regarded as the fundamental theories for competitive adsorption of binary gas and CO2 sequestration.
     (2) The adsorption isotherms of CO2 and CH4 were fitted by Langmuir equation, BET equation, DA equation and DR equation separately. Volumetric errors for the measurement and modeling of CO2 adsorption were analysed. A modified adsorption isotherm equation was derived to account for the volumetric errors with a volumetric correction and significantly better matching was obtained by the modified DA equation and Langmuir equation. The volumetric correction is able to quantitatively represent the coal swelling induced by CO2 adsorption.
     (3) Using the theory of adsorption thermodynamics, the surface free energy change and isosteric heat of adsorption for CO2 and CH4 on the coal were comprehensively investigated for the further explanation of coal having more affinity to CO2 and competing adsorption behavior of CO2 and CH4 on coal surface. Adsorption potential of coal for CO2 and CH4 was calculated with isothermal adsorption data of CO2 and CH4 on coal at different temperatures ranging from 25 to 40℃. Feature curves of CO2 and CH4 adsorption on the coal were constructed. Based on such curves, the relationship of adsorption volume of CO2, pressure and temperature was obtained.
     (4)A new highly nonlinear numerical model was developed to determine the coupled multiphysicses of gas competitive adsorption, gas counter-diffusion, gas flow, coal deformation induced by coal-gas interactions regarding CO2 geological sequestration. The new numerical model combines new coupled deformation submodels of coal, new coal porosity and permeability submodels under the condition of variable total stress, new gas diffusion and convection submodels of CO2 and CH4 in coal.
     (5) The established coupled nonlinear numerical model was solved by using COMSOL Multiphysics. Simulation model was verified by the state-of-art experimental data. Based on this FE simulator, coupled binary gas-coal interactions during CO2 sequestration and ECBM with different coal nature and gas injection conditions were quantitively investigated. Numerical results indicate that CH4 is swept by the injected CO2. Competing influences between the pore pressure and the CH4-CO2 counter-diffusion induced volume change play a controlling role on the evolutions of pore pressure and coal permeability. Initially, in lower pressure period, the coal permeability keeps decreasing due to the coal swelling. With the injection continuing, it rebounds when the pore pressure dominates the coal deformation. Increasing injective pressure, initial permeability or decreasing elastic modulus of coal results in lower CO2 injectivity.
     (6) COMSOL FE simulator was extended to simulate the CO2 injection performance in Qinshui Basin field under in-situ size and conditions, to address in-situ spatial-temporal evolutions of pore pressure, binary gas composition ratios and coal permeability. Simulation results suggest that about 1.75×104t CO2 can be sequestrated in 300×300 m2 area of Qinshui Basin within 10 years. During this period, coalbed methane recovery can be promoted by 1.44 times.
引文
[1] Jiang Z M. Reflections on energy issues in China[J].China Nuclear Power.2008, (1):98-113.
    [2]李天成,冯霞,李鑫钢.二氧化碳处理技术现状及其发展趋势[J].化学工业与工程.2004, 19(2): 191-196.
    [3]张镜澄.超临界流体萃取[M].北京:化学工业出版社, 2000: 1-77.
    [4] Bachu S, Bonijoly D, Bradshaw J, et al. CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control. 2007: 430-443.
    [5] Bruant R G, Guswa A J, Celia M A, et al. Sate storage of CO2 deep aquifer[J]. Environment Science and Technology. 2002, 36(11): 240-245.
    [6] Gentzis T. Subsurface sequestration of carbon dioxide- an overview from an Alberta (Canada) perspective[J]. International Journal of Coal Geology. 2000, 43(1-4): 287-305.
    [7] Stevens S H, Spector D, Riemer P. Enhanced coalbed methane recovery using CO2 injection: Worldwide resource and CO2 sequestration potential[C]// Society of Petroleum Engineering. Proceedings of the International Oil & Gas Conference and Exhibition of the Society of Petroleum Engineers, November 2-6, 1998. Beijing, China. SPE, 1998: 489-501.
    [8] Ho M T. Techno-economic modeling of CO2 capture systems for Australian industrial sources[D]. Sydney: The University of New South Wales, 2007.
    [9] Wong S, Law D, Deng X, et al. Enhanced coalbed methane and CO2 storage in anthracitic coals-Micro-pilot test at South Qinshui, Shanxi, China[J]. International Journal of Greenhouse Gas Control. 2007 (1): 215-222.
    [10] Holloway S. Underground sequestration of carbon dioxide-a viable greenhouse gas mitigation options[J]. Energy Conversion and Management. 2005, 30(11-12): 231-333.
    [11] Holloway S. An overview of the jouleⅡproject“The underground disposal of carbon dioxide”[J]. Energy Conversion and Management. 1996, 37(6-8): 1149-1154.
    [12] Bergman P. Overview of U S. department of energy research subprogram in CO2 capture, reuse and disposal [J]. Waste Management. 1997, 17(5-6): 289-293.
    [13] Gunter W D, Wiwchar B, Perkins E H. Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering tractions by geochemical modeling[J]. Mineral Petrology. 1997, 59: 121-140.
    [14] Hitchon B. Aquifer disposal of carbon dioxide: hydrodynamic and mineral trapping[M]. Sherwood Park, Alberta, Canada: Geoscience Publishing, 1996: 1-165.
    [15] Christensen N I. European Potentia1 for Geological Storage of CO2 from Fossil Fuel Combustion [M]. EuroGeo. Survey, 1999.
    [16]李小春,小出仁,大隅多加志.二氧化碳地中隔离技术及其岩石力学问题[J].岩石力学与工程学报. 2003, 22(6): 989-994.
    [17]张洪涛,文冬光,李义连,等.中国CO2地质埋存条件分析及有关建议[J].地质通报. 2005, 24(12): 1107-1110.
    [18] Holloway S. The Underground Disposal of Carbon Dioxide. Final Report of JOULEⅡ[R]. United Kingdom: British Geological Survey, 1996.
    [19] Bachu S. Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change[J]. Energy Conversion and Management. 2000, 41(9): 953-970.
    [20] U. S. Department of Energy. CO2 Capture and Storage in Geologic Formations, a White Paper Prepared for the National Climate Change Technology Initiative[R]. U. S. Department of Energy, 2001.
    [21]张力,何学秋,聂百胜.煤吸附瓦斯过程的研究[J].矿业安全与环保. 2000, 27(6): 1-4.
    [22]聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式[J].中国安全科学学报. 2000, 10(6): 24-29.
    [23]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社, 1999.
    [24]林刚,陈莉纯.温室气体CO2的收集、存储与再利用[J].低温与特气. 1999, 2: 14-19.
    [25] Hamelinck C N, Faaij A P C, Turkenburg W C, et al. CO2 enhanced coalbed methane production in the Netherlands[J]. Energy. 2002 (27): 647-674.
    [26] Yamazaki T, Aso K, Chinju J. Japanese potential of CO2 sequestration in coal seams[J]. Applied Energy. 2006, 83: 911-920.
    [27]强薇,李义连,文冬光,等.温室性气体地质处置研究进展及其问题[J].地质科技情报. 2006, 25(2): 83-88.
    [28]霍多特B B.煤与瓦斯突出[M].宋士钊,译.北京:煤炭工业出版社, 1966.
    [29]杨思敬,杨福蓉,高照祥.煤的孔隙系统和突出煤的孔隙特征[C]//第二届国际采矿科学技术讨论会论文集.徐州:中国矿业大学出版社, 1991: 770-777.
    [30]秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社, 1994.
    [31]张慧.煤孔隙的成因类型及其研究[J].煤炭学报. 2001, 26(1): 40-43.
    [32]维索茨基ив.天然气地质学[M].戴金星,译.北京:石油工业出版社, 1986.
    [33]李小彦,解光新.孔隙结构在煤层气运移过程中的作用[J].天然气地球科学. 2004, 15(4): 341-344.
    [34] Alexeev A D, Vasilenko T A, Ulyanova E V. Closed porosity in fossil coals[J]. Fuel. 1999,78(6): 635-638.
    [35] Rodrigues C F. Lemoss M J. The measurement of coal porosity with different gases[J]. International Journal of Coal Geology. 2002, 48(3-4): 245-251.
    [36]秦勇.国外煤层气成因与储层物性研究进展与分析[J].地学前缘. 2005, 12(3): 289-298.
    [37]谢克昌.煤的结构与反应性[M].北京:科技出版社, 2002.
    [38]宁平.最新煤层气地质综合利用勘探开发技术与资源量预测评价分析实务全书[M].银川:宁夏大地出版社, 2005.
    [39] Fowler P, Gayer R A. The association between tectonic deformation, inorganic composition and coal rank in the bituminous coals from the South Wales coalfield, United Kingdom[J]. International Journal of Coal Geology. 1999, 42:1-31.
    [40]张群,杨锡禄.平衡水条件下煤对甲烷的吸附特性研究[J].煤炭学报. 1999, 24(6): 56-57.
    [41]叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报. 1999, 2(2): 118-122.
    [42]秦勇,傅雪海,叶建平,等.中国煤储层岩石物理学因素控气特征及机理[J].中国矿业大学学报. 1999, 28(1): 14-19.
    [43]桑树勋,朱炎铭,张井,等.液态水影响煤吸附甲烷的实验研究:以沁水盆地南部煤储层为例[J].科学通报. 2005, 50(增刊): 70-75.
    [44] Levy J H, Day S J, Killingley J S. Methane capacities of Bowen Basin coals related to coal properties[J]. Fuel. 1997, 76(9): 813-819.
    [45]钟玲文,郑玉柱,员争荣,等.煤在温度和压力综合影响下的吸附性能及气含量预测[J].煤炭学报. 2002, 27(6): 581-585.
    [46] Krooss F, Bergen Y, Gensterblum N, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International Journal of Coal Geology. 2002, (51): 69-92.
    [47]钱凯,赵庆波,汪泽成.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社, 1997.
    [48] Jaroniec M, Madey R.非均匀固体上的物理吸附[M].加璐,译.北京:化学工业出版社, 1997.
    [49]崔永君.煤吸附多组分气体的特征及模型研究[J].煤田地质与勘探. 2004, 32(增刊): 36-41.
    [50]李小彦,王强,杜新峰,等.我国煤层气成分变化及时空分布特征[J].煤田地质与勘探. 2002, 30(6): 20-24.
    [51] Karacan C O, Okandan E. Assessment of energetic heterogeneity of coals for gas adsorptionand its effect on mixture predictions for coalbed methane studies[J]. Fuel. 2000, 79(15): 1963-1974.
    [52] Stefanska C G, Zarebska K. Sorption of carbon dioxide-methane mixtures[J]. International Journal of Coal Geology. 2005, (62): 211-222.
    [53] Busch A, Krooss B M, Gensterblum Y, et al. High-pressure adsorption of methane, carbon dioxide and their mixtures on coals with a special focus on the preferential sorption behavior[J]. Journal of Geochemical Exploration. 2003, (78-79): 671-674.
    [54] Busch A, Gensterblum Y, Bernhard M, et al. Methane and carbon dioxide adsorption-diffusion experiments on coal: upscaling and modeling[J]. International Journal of Coal Geology. 2004, (60): 151-168.
    [55]蔺金太,郭勇义,吴世跃.煤层气注气开采中煤对不同气体的吸附作用[J].太原理工大学学报, 2001, 32(1): 18-20.
    [56]辜敏,陈昌国,鲜学福.混合气体的吸附特征[J].天然气工业. 2001, 21(4): 91-95.
    [57]唐书恒.晋城地区煤储层特征及多元气体的吸附-解吸特性[D].北京:中国矿业大学(北京), 2001.
    [58]唐书恒,汤达祯,杨起.二元气体等温吸附-解吸中气分的变化规律[J].中国矿业大学学报. 2004, 33(4): 448-452.
    [59]唐书恒,汤达祯,杨起.二元气体等温吸附实验及其对煤层甲烷开发的意义[J].地球科学-中国地质大学学报. 2004, 29(2): 219-224.
    [60] Zuber M D. Production Characteristics and Reservoir Analysis of Coalbed Methane Reservoirs[J]. International Journal of Coal Geology. 1998, 38(1-2): 27-45.
    [61] Clarkson C R, Bustin R M. Binary gas adsorption/desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane[J]. International Journal of Coal Geology. 2000, 42(4): 241-272.
    [62]吴世跃,郭勇义.注气开采煤层气增产机制的研究[J].煤炭学报. 2001, 26(2): 199-203.
    [63]马志宏,郭勇义,吴世跃.注入二氧化碳及氮气驱替煤层气机理的实验研究[J].太原理工大学学报. 2001, 32(4): 335-338.
    [64]吴建光,叶建平,唐书恒.注入CO2提高煤层气产能的可行性研究[J].高校地质学报. 2004, 10(3): 463-467.
    [65]唐书恒,马彩霞,叶建平,等.注二氧化碳提高煤层甲烷采收率的实验模拟[J].中国矿业大学学报, 2006, 35(5): 607-611.
    [66] Yu H, Yuan J, Guo W, et al. A preliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection[J]. International Journal of Coal Geology. 2008, (73): 156-166.
    [67]顾惕人.表面化学[M].北京:科学出版社, 2001.
    [68]蔡炳心.基础物理化学[M].北京:科学出版社, 2001.
    [69]陈昌国.煤的物理化学结构和吸附(解吸)机理的研究[D].重庆:重庆大学, 1995.
    [70]聂百胜,何学秋,王恩元.煤的表面自由能及应用探讨[J].太原理工大学学报. 2000, 31(4): 346-348.
    [71]吴俊.煤表面能的吸附法计算及研究意义[J].煤田地质与勘探. 1994, 22(2): 18-23.
    [72] Yang R T, Saunders J T. Adsorption of gases on coals and heated-treated coals at elevated temperature and pressure[J]. Fuel. 1985, 64: 616-620.
    [73] Nodzenski A. Sorption and desorption of gases (CH4, CO2) on hard coal and active carbon at elevated pressures[J]. Fuel. 1998, 77(11): 1243-1246.
    [74]陈昌国,鲜晓红.微孔充填理论研究无烟煤和炭对甲烷的吸附特性[J].重庆大学学报. 1998, 21(2): 75-79.
    [75]崔永君,张庆玲,杨锡禄.不同煤的吸附性能及等量吸附热的变化规律[J].天然气工业. 2003, 23(4):130-131.
    [76]琚宜文.构造煤结构演化与储层物性特征及其作用机理[D].徐州:中国矿业大学, 2003.
    [77] Harpalani S, Schraufnagel R A. Shrinkage of coal matrix with release of gas and its impact on permeability of coal[J]. Fuel. 1999, 69(5): 551-556.
    [78] Karacan C O. Heterogeneous sorption and swelling in a confined and stressed coal during CO2 injection[J]. Energy and Fuels. 2003, 17: 1595-1608.
    [79] Karacan C O, Mitchell G D. Behavior and effect of different coal microlithotypes during gas transport for carbon dioxide sequestration into coal seams[J]. International Journal of Coal Geology. 2003, 53:201-217.
    [80] Karacan C O, Okandan E. Adsorption and gas transport in coal microstructure: Investigation and evaluation by quantitative X-ray CT imaging[J]. Fuel. 2001, 80: 509-520.
    [81] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs[J]. Coalbed Methane and Coal Geology, Geologic Society Special Publication.1996, 109: 197-212.
    [82] Robertson E P, Christiansen R L. Measurement of sorption-induced strain[C]// Proceedings of International Coalbed Methane Symposium, May 17-19, 2005. Tuscaloosa, Alabama. 2005: paper 0532.
    [83] Chikatamarla L, Cui X, Bustin R M. Implications of volumetric swelling/ shrinkage of coal in sequestration of acid gases[C]// Proceedings of International Coalbed Methane Symposium, May 3-7, 2004. Tuscaloosa, Alabama. 2004: paper 0435.
    [84] Day S, Fry R, Sakurovs R. Swelling of Australian coals in supercritical CO2[J]. InternationalJournal of Coal Geology. 2008, 74: 41-52.
    [85] Pekot L J, Reeves S R. Modeling coal matrix shrinkage and differential swelling with CO2 injection for enhanced coalbed methane recovery and carbon sequestration applications[R]. Topical Report. Washington, DC: U.S.DOE, 2002: 14-17.
    [86] Gray I. Reservoir engineering in coal seams: Part I-The physical process of gas storage and movement in coal seams[J]. SPE Reservoir Engineering Journal. 1987, 2: 28-34.
    [87] Harpalani S, Chen G. Influence of gas production induced volumetric strain on permeability of coal[J]. Geotechnical and Geological Engineering. 1997, 15: 303-325.
    [88] Seidle J P, Huitt L G. Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increase[C]// Society of Petroleum Engineering. Proceedings of the International Meeting on Petroleum Engineering, November 14-17, 1995. Beijing. SPE, 1995: 575-582.
    [89] Reiss L H. The Reservoir Engineering Aspects of Fractured Formations[M]. Paris: Editions Technip, 1980.
    [90] Somerton W H, Soylemezoglu I M, Dudley R C. Effect of stress on permeability of coal[J]. International Journal of Rock Mechanics Mining Science and Geological Abstracts. 1975, 12: 129-145
    [91] Durucan S, Edwards J S. The effect of stress and fracturing on permeability of coal[J]. Mining Science and Technology. 1986, 3: 205-216.
    [92] Mckee C R, Bumb A C, Koeing R A. Stress-dependent permeability and porsity of coal[C]// Proceedings of the Coalbed Methane Symposium, August 16-19, 1987. Tuscaloosa, Alabama. 1987:183-193.
    [93] Palmer I, Mansoori, J. How permeability depends on stress and pore pressure in coalbeds: A new model[C]// Society of Petroleum Engineering. Proceedings of Annual Technical Conference & Exhibition, October 6–9, 1996. Denver. SPE, 1998: 539-544.
    [94] Shi J Q, Durucan S. A model for changes in coalbed permeability during primary and enhanced methane recovery[J]. SPE Reservoir Evaluation and Engineering. 2005, 8: 291-299.
    [95] Zhang H B, Liu J, Elsworth D, et al. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model[J]. International Journal of Rock Mechanics and Mining Science. 2008, 45: 1226-1236.
    [96] Stevens S H, Kuuskraa V A, Spector D, et al. CO2 sequestration in deep coal seams: pilot results and worldwide potential[C]// Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, August 30-September 2, 1998. Interlake, Switzerland. 1998: 175-180.
    [97] Wong S, Gunter W D, Gale J. Site ranking for CO2-enhanced coalbed methane demonstration pilots[C]// Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies, 2000. Cairns, Australia. 2000: 6-14.
    [98]刘延锋,李小春,白冰.中国CO2煤层储存容量初步评价[J].岩石力学与工程学报. 2005, 24(16): 2947-2952.
    [99] IUPAC. Recommendations for the characterization of porous solids[J]. Pure& Applied Chemistry. 1994, 66(8): 1739-1758.
    [100] Larsen J W, Hall P, Wernett P C. Pore structure of the argonne premium coals[J]. Energy Fuels. 1995, 9: 324-330.
    [101] Anderson R B, Bayer J, Hofer L J E. Determining surface areas from CO2 isotherms[J]. Fuel. 1965, 44: 443-45.
    [102] Mahajan O P. CO2 surface area of coals: the 25-year paradox[J]. Carbon. 1991, (29): 735-742.
    [103] Senel I G, Guruz G, Yucel H, et al. Characterization of pore structure of Turkish coals[J]. Energy and Fuels. 2001, 15(2):331-338.
    [104] Levine J R, Johnson P. High-pressure microbalance sorption studies[C]// Proceedings of the International Coalbed Methane Symposium, May 17-21, 1993. University of Alabama, Tuscaloosa, AL. 1993: 187-195.
    [105] Harris L A, Yust C S. Transmission electron microscope observations of porosity in coal[J]. Fuel. 1976, 55: 233-236.
    [106] Clarkson C R, Bustin R M. Variation in micropore capacity and size distribution with composition in bituminous coal of the western Canadian sedimentary basin[J]. Fuel. 1996, (75): 1483-1498.
    [107] Crosdale P J, Basil B B, Valix M. Coalbed methane sorption related to coal composition[J]. International Journal of Coal Geology. 1998, 35: 147-158.
    [108] Mavor M J, Close J C, Pratt T J. Western Cretaceous Coal Seam Project: Summary of the Completion Optimization and Assessment Laboratory (COAL) Site[R]. Report No. GRI-91/0377. Resource Enterprises, Inc., 1991.
    [109] Karacan C O. Swelling-induced volumetric strains internal to a stressed coal associated with CO2 sorption[J]. International Journal of Coal Geology. 2007, (72): 209–220.
    [110] Harpalani S, Zhao X. An investigation of the effect of gas desorption on coal permeability[C]// Proceedings of the Coalbed Methane Symposium, April 17-20, 1989. University of Alabama, Tuscaloosa, AL. 1989: 57-64.
    [111] Mazumder S, Wolf K H. Differential swelling and permeability change of coal inresponse to CO2 injection for ECBM[J]. International Journal of Coal Geology. 2008, (74): 123-138.
    [112] Nandi S P, Walker P L. The diffusion of nitrogen and carbon dioxide from coals of various rank[J]. Fuel. 1964, 43: 385-393.
    [113] Joubert J L, Grein C T, Bienstock D. Sorption of methane in moist coals[J]. Fuel. 1973, 52: 181-185.
    [114] Deevi S C, Suuberg E M. Physical changes accompanying drying of western U.S. lignites[J]. Fuel. 1987, 66: 454-460.
    [115] Ozdemir E, Morsi B I, Schroeder K. Effect of rank on the sorption of carbon dioxide on Argonne Premium coals at high pressures[C]// Proceedings of the 11th International Conference on Coal Science, September 30-October 5, 2001. San Francisco, CA. 2001: paper 268.
    [116] Jones K L. A fundamental study of the sequestration of CO2 by coal seams and the simultaneous production of methane therefrom[C]// The 11th International Conference on Coal Science, September 30-October 5, 2001. San Francisco, CA. 2001: paper 369.
    [117] Glass A S, Larsen J W. Coal surface properties. Specific and nonspecific interactions for polar molecules and surface tensions for hydrocarbons at the surface of Illinois No. 6 coal[J]. Energy Fuels. 1994, 8: 629-636.
    [118] Nishino J. Adsorption of water vapor and carbon dioxide at carboxylic functional groups on the surface of coal[J]. Fuel. 2001, 80: 757-764.
    [119] Gale J, Freund P. Coal bed methane enhancement with CO2 sequestration worldwide potential[C]// Proceedings of the 21st World Gas Conference, June 6-9, 2000. Nice, France. 2000:12-20.
    [120] Stevens S H, Kuuskraa J, Schraufnagel R. Technology spurs growth of U.S. coalbed methane[J]. Oil & Gas Journal. 1996, (1): 56-63.
    [121] Gunter W D, Chalaturnyk R J, Scott J D. Monitoring of aquifer disposal of CO2: Experience from underground gas storage and enhanced oil recovery[M]// Eliasson B, Riemer P W F, Wokaun A. Greenhouse Gas Control Technologies. Amsterdam: Permagon Press, 1999: 151-156.
    [122] Seidle J R, McAnear J F. Pressure falloff testing of enhanced coalbed methane pilot injection wells[C]// Society of Petroleum Engineering. Proceedings of the Annual Technical Conference & Exhibition of the Society of Petroleum Engineers, October 22-25, 1995. Dallas, TX. SPE, 1995: 307-312.
    [123] Pashin J C, Carrol R E, Groshong R H, et al. Geologic Screening Criteria for Sequestration of CO2 in Coal: Quantifying Potential of the Black Warrior Coalbed MethaneFairway, Alabama[R]. Technical Progress Report. U.S. Department of Energy, 2003.
    [124] Reeves S R. Geological sequestration of CO2 in deep, unmineable coalbeds: An integrated research and commercial-scale field demonstration project[C]// Society of Petroleum Engineering. Proceedings of the Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, September 30-October 3, 2001. New Orleans, LA. SPE, 2001: 1-10.
    [125]刘焕杰,秦勇,桑树勋.山西南部煤层气地质[M].徐州:中国矿业大学出版社, 1998.
    [126] Bradshaw, B E, Simon G, Bradshaw J, et al. GEODISC research: carbon dioxide sequestration potential of australia’s Coal Basins[C]// Proceedings of the Eighteenth Annual International Pittsburgh Coal Conference, December 3-7, 2001. Newcastle, NSW, Australia. 2001: 34-56.
    [127] Wong S, MacLeod, K, Wold M, et al. CO2 enhanced coalbed methane recovery demonstration pilots: a case for Australia[C]// Proceedings of the International Coalbed Methane Symposium, May 14-18, 2001. University of Alabama, Tuscaloosa, AL. 2001: 75-86.
    [128] Pagnier H J M, Bergen F, Kreft E, et al. Field experiment of ECBM-CO2 in the Upper Silessian Basin of Poland (RECOPOL)[C]// Society of Petroleum Engineering. SPE Europec/EAGE Annual Conference, June 13-18, 2005. Madrid, Spain. SPE, 2005: 1-3.
    [129] Deguchi G. Japanese current R&D effort on coal seam sequestration of CO2[C]// Proceedings of the First International Forum on Geologic Sequestration of CO2 in Deep, Unmineable Coalseams,“Coal-Seq I”, March 14-15, 2002. Houston, TX. 2002.
    [130] Klusman R W. Evaluation of leakage potential CO2 EOR/sequestration project[J]. Energy Conversion and Manage. 2003, 33: 1921-1940.
    [131] Anderson R P, Vogh J W. Various tracers to identify injected storage gas[J]. Oil Gas Journal. 1989, (87): 52–56.
    [132] Craig F F. Field use of halogen compounds to trace injected CO2[C]// Society of Petroleum Engineering. Proceedings of the 60th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, September 22-25, 1985. Las Vegas, NV. SPE, 1985: 8-16.
    [133] Ramos A C B, Davis T L. Fractured reservoirs: characterization and modeling Guidebook[M]// Hoak T E, Klawitter A L, Blomquist P K. The Rocky Mountain Association of Geologists. Denver, CO, 1997: 165-176
    [134] Myer L R. Laboratory measurement of geophysical properties for monitoring of CO2 sequestration[C]// Proceedings of the First National Conference on Carbon Sequestration, May 14, 2001. U.S.DOE: NETL Publications, 2001: 1-9.
    [135] Burrowes G., Gilboy C. Investigating sequestration potential of carbonate rocks duringTertiary recovery from a Billion Barrel oil field, Weyburn, Saskatchewan: The Geoscience Framework (IEA Weyburn CO2 Monitoring and Storage Project) [C]// Proceedings of the First National Conference on Carbon Sequestration, May 14, 2001. U.S.DOE: NETL Publications, 2001:10-30.
    [136] Key M. Occupational Diseases, A Guide to Their Recognition[M]. Washington, DC: U. S. Department of Health, Education, and Welfare, 1977.
    [137] Holloway M. The Killing Lakes[J]. Scientific American. 2000, 283: 92-99.
    [138] Viete D R, Ranjith P G. The mechanical behaviour of coal with respect to CO2 sequestration in deep coal seams[J]. Fuel. 2007, 86: 2667-2671.
    [139]曾荣树,孙枢,陈代钊,等.减少二氧化碳向大气层的排放——二氧化碳地下储存研究[J].中国科学基金. 2004, 4: 196-200.
    [140] Stevens S H, Schoeling L, Pekot L. CO2 Injection for enhanced coalbed methane recovery: project screening and design[C]// Proceedings of the International Coalbed Methane Symposium, May 3-7, 1999. University of Alabama, Tuscaloosa, AL. 1999: 309-317.
    [141] Wong S, Gunter W D, Mavor M J. Economics of CO2 sequestration in coalbed methane reservoirs[C]// Society of Petroleum Engineering. Proceedings of the Gas Technology Symposium, April 3-5, 2000. Calgary, Alberta, Canada. SPE, 2000: 631-638.
    [142] Iijima M. A feasible new flue gas CO2 recovery technology for enhanced oil recovery[C]// Society of Petroleum Engineering. Proceedings of the SPE/DOE Improved Oil Recovery Symposium, April 19-22, 1998. Tulsa, OK. SPE, 1998:333-342.
    [143] Dahowski R T, Dooley J J, Brown D R, et al. Economic screening of geologic sequestration options in the United States with a carbon mangement geographic information system[C]// Proceedings of the 18th Annual International Pittsburgh Coal Conference, December 3, 2001. Newcastle, NSW, Australia. 2001: 1-11.
    [144]陈新志,蔡振云.化工热力学[M].北京:化学工业出版社, 2002.
    [145]桑树勋,秦勇,傅雪海.陆相盆地煤层气地质——以准格尔吐哈盆地为例[M].徐州:中国矿业大学出版社, 2001.
    [146]何余生,李忠,奚红霞,等.气固吸附等温线的研究进展[J].离子交换与吸附. 2004, 20(4): 376-384.
    [147]叶振华.化学工程手册(第二版) [M].北京:化学工业出版社, 1996: 14-53.
    [148] Chattoraj D K, Birdi K S. Adsorption and the Gibbs Surface Excess[M]. New York: Plenum Publishing Company, 1984.
    [149]降文萍,崔永君,张群,等.煤表面与CH4, CO2相互作用的量子化学研究[J].煤炭学报. 2006, 31(2): 237-240.
    [150]周世宁,梁冰,刘建军,等.非等温情况下煤和瓦斯固流耦合作用的研究[J].辽宁工程技术大学(自然科学版). 1999, 18(5): 483-486.
    [151]秦勇,宋全友,傅雪海.煤层气与常规油气共采可行性探讨[J].天然气地球科学. 2005, 16(4): 492-498.
    [152] Cahn J W. Wetting and non-wetting near critical points in solids[J]. Physica A. 2000, 279: 195-202.
    [153] Duan Z, Sun R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical Geology. 2003, 193: 257-271.
    [154]傅雪海,秦勇,杨永国,等.甲烷在煤层水中溶解度的实验研究[J].天然气地球科学. 2004, 15(4): 345-348.
    [155]傅雪海,焦宗福,秦勇,等.低煤级煤平衡水条件下的吸附实验[J].辽宁工程技术大学学报. 2005, 24(2): 161-164.
    [156] Larsen J W. The effects of dissolved CO2 on coal structure and properties[J]. International Journal of Coal Geology. 2004, 57: 63-70.
    [157] Romanov V N, Soong Y, Schroeder K. Volumetric effects in coal sorption capacity measurements[J]. Chemical Engineering & Technology. 2006, 29: 368-374.
    [158] Sudibandriyo M, Pan Z, Fitzgerald J E, et al. Adsorption of methane, nitrogen, carbon dioxide, and their binary mixtures on dry activated carbon at 318.2 K and pressures up to 13.6 MPa[J]. Langmuir. 2003, 19: 5323-5331.
    [159]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社, 1995.
    [160]傅雪海.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社, 2003.
    [161] Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society. 1938, 60 (2): 309–319.
    [162] Dubinin M M. Adsorption in micropores[J]. Journal of Colloid Interface Science. 1967, 23: 487-499.
    [163] Kamiuto K, Ihara E K. CO2 adsorption equilibria of the honeycomb zeolite beds[J]. Applied Energy. 2001, 69: 285-292.
    [164] Amankwah K A G, Schwarz J A. A modified approach for estimating pseudovapour pressure in the application of the Dubinin-Astskhove equation[J]. Carbon. 1995, 33(9): 1313-1319.
    [165]崔永君.煤对CH4、N2、CO2及多组分气体吸附的研究[D].西安:煤炭科学研究总院西安分院, 2003.
    [166] Arri L E, Yee D, Morgan W D, et al. Modeling coal methane production with binary gas sorption[C]// Society of Petroleum Engineering. SPE Rocky Mountain Regional Meeting and Exhibition, May 18-21, 1991. Casper, Wyomin. SPE, 1991: 459-472.
    [167] Gregg S J, Sing K S W. Adsorption Surface Area and Porosity(2nd Edtion)[M]. New York: Academic Press, 1984.
    [168] Cui X, Bustin R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. The American Association of Petroleum Geologists. 2005, 89: 1181-1202.
    [169] Sakurov R, Day S, Weir S. Causes and consequences of errors in determining sorption capacity of coals for carbon dioxide at high pressure[J]. International Journal of Coal Geology. 2009, 77: 16-22.
    [170] Busch A, Gensterblum Y, Krooss B M, et al. Investigation of high-pressure selective adsorption/desorption behaviour of CO2 and CH4 on coals: An experimental study[J]. International Journal of Coal Geology. 2006, (66): 53-68.
    [171] Markham E C, Benton A F. The adsorption of gas mixtures by silica[J]. Journal of the American Chemical Socoiety. 1931, 53: 497-506.
    [172]章燕豪.吸附作用[M].上海:上海科学技术文献出版社, 1989.
    [173]叶振华.化工吸附分离过程[M].北京:中国石化出版社, 1992.
    [174]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社, 1996.
    [175]陈昌国,鲜学福.用从头计算研究煤表面与甲烷分子相互作用[J].重庆大学学报. 2000, 23(3: 77-83.
    [176] Ruthven D M. Principle of adsorption and adsorption process[M]. New York: John Wiley & Sons Inc., 1984.
    [177] Tolmachev A M, Dubinin M M, Belousova M E, et al. Construction of characteristic adsorption curves for individual substances on microporous adsorbents and application of the TMVF at supercritical temperatures[J]. Russian Chemical Bulletin. 1987, 36(1): 11-14.
    [178] Myers A L. Thermodynamics of adsorption in porous materials[J]. AIChE. 2002, 48(1): 145-159.
    [179]苏现波,陈润,林晓英,等.煤解吸二氧化碳和甲烷的特性曲线及其应用[J].天然气工业. 2008, 28(7): 17-19.
    [180]苏现波,陈润,林晓英,等.煤吸附13CH4与12CH4的特性曲线及其应用[J].煤炭学报. 2007, 32(5): 539-543.
    [181]崔永君,李育辉,张群,等.煤吸附甲烷的特征及其在煤层气储集研究中的作用[J].科学通报. 2005, 50(增): 76~81.
    [182] Close J C. Nature fracture in coal[J]. AAPG Studies in Geology. 1993, 38: 119-132.
    [183] Mavor M J, Gunter W J. Second porosity and permeability of coal vs. gas composition and pressure[C]// Society of Petroleum Engineering. Proceedings of SPE Annual Technical Conference and Exhibition, September 26-29, 2004. Houston. SPE, 2004: 114-125.
    [184]章梦涛,潘一山,梁冰,等.煤岩流体力学[M].北京:科学出版社, 1995.
    [185]顿志林,高家美.弹性力学及其在岩土工程中的应用[M].北京:煤炭工业出版社, 2003.
    [186] Detournay E, Cheng A H D. Fundamentals of poroelasticity[M]// Fairhurst C. Comprehensive Rock Engineering. Oxford: Pergamon, 1993: 113–171.
    [187] Robertson E P, Christiansen R L. Modeling permeability in coal using sorption-induced strain data[C]// Society of Petroleum Engineering. Proceedings of the Annual Technical Conference and Exhibition, October 9-12, 2005. Dallas. SPE, 2005: 260-269.
    [188] Hudson J A, Fairhurst C. Comprehensive rock engineering: principles, practice, and projects, Vol. II, Analysis and Design Method[M]. Oxford: Pergamon Press, 1993, 113-171.
    [189]尹柏生.有限元分析系统的发展现状与展望[EB/OL]. (2004-05-23). http://www.simwe.com/art/tec/2004-05-23/tec0-9-265.shtml.
    [190]中仿科技公司.有限元法多物理场建模与分析[M].北京:人民交通出版社, 2006.
    [191] Reznik A A, Singh P K, Foley W L. An analysis of the effect of CO2 injection on the recovery of in-situ methane from bituminous coal: an experimental simulation[J]. Society of Petroleum Engineering Journal. 1984, (24): 521-528.
    [192] Wolf K H, Hijman R, Barzandij O H, Bruining J. Laboratory experiments and simulations on the environmentally friendly improvement of coalbed methane production by carbon-dioxide injection[C]// Proceedings of the Coalbed Methane Symposium, May 3–7, 1999. Tuscaloosa, Alabama. 1999: 279-290.
    [193] Mazumder S, Wolf K H, Wolf P H. Laboratory experiments on environmental friendly means to improve coalbed methane production by carbon dioxide/ flue gas injection[J]. Transport in Porous Media. 2008, 75(1): 63-92.
    [194] Robertson E P, Christiansen R L. A permeability model for coal and other fractured, sorption-elastic media[C]// Society of Petroleum Engineering. Proceedings of the SPE Eastern Regional Meeting, October 11-13, 2006. Canton, Ohio. SPE, 2006: 1-12.
    [195] Wei X R, Wang G X, Massarotto P, et al. Numerical simulation of multicomponent gas diffusion and flow in coals for CO2 enhanced coalbed methane recovery[J]. Chemical Engineering Science. 2007, 62: 4193-4203.
    [196] Viete D R, Ranjith P G. The effect of CO2 on the geomechanical and permeabilitybehaviour of brown coal: implications for coal seam CO2 sequestration[J]. International Journal of Coal Geology. 2006, 66(3): 204-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700