煤基原料等离子体转化合成的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙炔是一种重要的化工产品,现有电石法生产工艺存在流程长、原料运输费用高、耗电量大,污染严重的缺点。利用等离子体热解技术直接生产乙炔的工艺具有流程短、成本低、洁净转化等特点。煤或富含甲烷的气体(焦炉煤气、煤热解气)作为可选的原料,资源相对丰富,是其高效清洁转化的路线之一。基于此,作者对国内外已有研究进行了归纳和总结,结合课题组多年的研究工作和构思,对煤及富含甲烷气等离子体热解制乙炔及副产纳米碳纤维做了进一步的深入探讨和研究,得到系列有意义的结论,主要包括以下几个方面:
     从煤的元素组成及等离子体热解煤的特点出发,采用Gibbs自由能函数最小法,对不同变质程度煤的平衡组成进行了计算并与实验研究结果比较认为,C-H-O-N-S多相热力学平衡体系的计算结果更具合理性,能更真实地为等离子体热解煤工艺过程提供指导:含氢气氛是优于氮气和氩气的等离子体热解煤制乙炔的工作气体;乙炔的浓度和产率均随煤中的H/C比和压力的增加而增大,H/C比大于2、压力为0.7MPa时,达到最大,随后变化趋缓;乙炔摩尔浓度最大值可达0.219,此时的乙炔产率为70.62%;C2H + C2H2最大值出现的温度区间为3650 ~ 4000K;煤中O含量对乙炔产率有不利的影响,但热解过程中主要消耗C源而并不影响H源。
     不同变质程度的煤的热解实验结果显示:H/C比大、O含量低、挥发份含量适中的煤种有相对高的乙炔收率;含25 ~ 40%挥发份的煤种在等离子热解过程中可以得到17 ~ 22%乙炔产率的最佳值;供煤速率太高或太低均不利于乙炔的生成,在0.5 ~ 4.0 g/s区间,乙炔的选择性高达95%以上;供粉速率增加,乙炔的比能耗降低、而煤的转化率和乙炔的收率也随之变小、甲烷等小分子烃类物质的收率和气相产物组分浓度则逐渐增大。
     煤中含氮物在温度高于1000K的等离子体热解条件下与常规加氢热解不同,主要气相含氮物是HCN,只有极少量氮转化为NH3;体系中氢含量的增加有利于HCN、CN和NH3的生成;煤中氧含量愈高,HCN和NH3的产率越低;煤进料量对HCN生成的影响与煤种有关,但进样量加大到一定值时,不同煤种的HCN产率趋于一致;等离子体煤热解生成的半焦中氮的形态变化与反应气氛有关,但不同于常规热解,Ar气氛中半焦的季氮型含氮基团的量较原煤高,含氢和CO2气氛中的吡咯型氮的含量则明显增大。煤中的硫在等离子体热解过程中主要转化成易被脱除的H2S气相产物,其产率随输煤速率的变化规律与煤种有关,最大转化率可达90%;原煤含有的无机硫可被完全脱除。反应后煤焦中的N/ C和S / C摩尔比都小于原煤,说明在等离子体热解条件下,含硫含氮化合物向气相中释放的速率高于含碳化合物。
     对富含甲烷气等离子体热解制乙炔的理论计算和系统的实验研究证实了C-H单相热力学平衡体系的合理性,H/C为4的单相体系可得到约98.6%的乙炔收率最大值;随甲烷流量的增加,产品气乙炔等碳氢化合物的浓度增大,而甲烷转化率、乙炔选择性和收率则减小,乙炔能耗出现一最低值后增大;4.0 Nm3?h-1是相对合理的甲烷流量,此时可得到最小的乙炔能耗9.68 kWh?kg-1,乙炔体积浓度和乙炔收率分别可达11.4%和86.2%。反应器结构的合理改善可以使甲烷的转化率、乙炔浓度和能耗达到最佳,改变淬冷时间最大可提高乙炔收率18%,缩短反应器长度减少停留时间可使乙炔收率最大增加55%。
     利用热等离子体进行甲烷的催化裂解可以制备出空心状和竹节状等形貌的纳米碳纤维。甲烷进料量对纳米纤维形貌的影响较大,进料流量为0.3 m3/h时的产物为空心套杯状,内壁平直、光滑,无金属填充物;流量增大制得的纳米碳纤维的纯度下降,产物掺杂有大量的竹节状纳米碳纤维和带有颗粒的空心管。和Ar工作气相比,N2气的热值高、高温持续时间长,有利于元素态金属原子参与完成碳结构的石墨化进程,所得纳米碳纤维较氩气气氛产物碳层连续、互相平行,纤维管内外表面平直、光滑、无沉积。Fe2O3为催化剂,纤维管直径分布范围小,杂质或无定形碳很少;而以Co2O3为催化剂,产物近似多壁碳纳米管结构,纯度较低;以Ni2O3为催化剂的管状产物是长度不到1μm的短截管,结晶度较差。
Acetylene is one of important chemical products, which is produced by the calcium carbide process at present. This manufacturing route has the disadvantages of long process flows, high transportation cost of raw materials, big power consumption and serious pollution and so on. The technique, which acetylene is directly produced by the pyrolysis of coal or CH4-rich gas in the arc plasm jet, posseses the advantage of short process flows, low cost,clean conversion and byproduct carbon nanofibers. Coal and CH4-rich gas ( gases from coal pyrolysis or coking ) used as raw materials in this method have abundant resources and can be efficiently and reasonably utilized. The researches about acetylene and carbon nanofibers formation from pyrolysis of coal or CH4-rich gas in arc plasma jet are put up and carried out on the basis of the summarizing of the research status in this field and the preliminary studies in our group in this paper. The main works and results are shown as follows:
     The heterogeneous thermodynamics equilibrium system about a set of rank-ordered coals was calculated by the Gibbs minimization free energy method based on the elemental composition in coal and the characteristics of coal pyrolysis in arc plasma jet. The results from C-H-O-N-S system was confirmed as more reasonable by experiments. The ambient gas containing hydrogen is more suitable than the gases containing nitrogen and argon in this system. The concentration and yield of acetylene increase with the atomic ration of H/C in coal and pressure in reactor, and it reaches the maximum value of 0.219 and 70.62% when ration of H/C is 2 and pressure is 0.7MPa. The optimum temperature range to form C2H+ C2H2 is 3650 ~ 4000K. Oxygen element in coal is unfavorable for the formation of acetylene, but it mainly consumes carbon source and does not affect hydrogen.
     A set of rank-ordered ten kinds of coals were pyrolyzed in arc plasma jet under H2/Ar gases. The effect of coal characteristics and operating parameters on the acetylene formation were researched. Higher C/H mol ratio, lower O/C mol ratio and appropriate volatile content are favorable to form acetylene. Optimum acetylene yield of 17~22% is obtained from the pyrolysis of coal with volatile content range of 25~40%. When feeding rate of coal sample is increased, the specific energy consumption and concentration of acetylene increase, but the conversion of coal and the yield of acetylene decrease.
     The formations of NOx precursors (HCN and NH3) and SOx precursors (H2S and COS) from coal-N and coal-S were investigated during the pyrolysis of coal in arc plasma jet under different ambient gases. HCN is the predominant product of coal-N pyrolysis and only a little coal-N is converted to NH3, which is different with the gaseous products from coal conventional pyrolysis. The yields of HCN and NH3 increase with nitrogen content increasing and oxygen content decreasing in coal. Affect of coal feeding rate on the HCN formation is related with coal types and this action is weaken when the feeding rate is increased to a certain value. The forms of nitrogen in char from coal pyrolysis in arc plasma jet is affected by ambient gases, but they is different from that of conventional coal pyrolysis. H2S is mainly formed during the pyrolysis of coal-S in arc plasma jet and the maximum conversion of coal-S is up to 90%. Coal feeding rate affects the conversion of sulfur in coal and the release of inorganic-sulfur is very sufficient. The energy input in in a plasma coal pyrolysis processes significantly affects the formation of H2S.
     Acetylene from the pyrolysis of rich-CH4 gas in arc plasma jet was investigated through theoretical calculation and experimental methods. C-H homogeneous equilibrium system with H/C = 4 is regarded as reasonable and the maximum acetylene yield is 98.6%. The conversions of acetylene and other hydrocarbon product gases is increased with the increase of methane gas flow rate, but the conversion of methane, selectivity and yield of acetylene are decreased. There exist a minimum point of special energy consumption in the change of methane gas flow rate. It is relatively reasonable when the gas flow rate of methane is 4.0 Nm3?h-1 and the minimum special energy consumption of 9.68 kWh?kg-1, acetylene concentration of 11.4% and yield of 86.2% can be obtained under this condition. The yield of acetylene can be increased 18% and 55% respectively when the quenching and resident time is shortened by optimizing the structure of pyrolysis reactor.
     Carbon nanofibers (CNFs) from the decomposition of methane are prepared by arc plasma jet under atmospheric pressure conditions with N2 and Ar working gas. The effect of flow rate of methane, composition of working gas and type of catalysts on the morphology, structure and yield of carbon nanofibers were studied. The products of cup-stacked like hollow CNFs with high crystallization is obtained when the gas flow rate of methane is 0.3m3/h, a mixture of bamboo-shaped carbon nanofibers and hollow tube attached with a large number of nano-particles is formed and the purity of product decrease with increasing methane flow rate to 0.5m3/h. Compared to Ar gas atmosphere, carbon layer of the fiber tube are more continuous and parallel each other, both inner and outer surface of tube are more straight and smooth under N2 working gas. The CNFs product is entirely hollow carbon nanofiber which is at least 3μm in length, continuous carbon layer parallel each other and forms uniform angle with the fiber axis when Fe2O3 is used as catalysis. But the purity and crystallinity of CNFs decrease when Co2O3 and Ni2O3 are used as catalysts.
引文
[1]高建兵.乙炔生产方法及技术进展.天然气化工, 2005, 30(1): 63-66
    [2] Bond R L, Ladnre W R. Reaction of coal in a plasma jet [J]. Fuel, 1966, 45(4): 381-395
    [3] Chakravartty S C, Dutta D. Reaction of coals under plasma conditions: X-ray studies [J]. Fuel, 1976, 55(3): 254-255
    [4] Beiers H G, Baumann H, Bittner D, et al. Pyrolysis of some gaseous and liquid hydrogen plasma [J]. Fuel, 1988, 67(7): 1012-1016
    [5] Office of coal research review and evaluation of 300 MM Ibs/a acetylene plant—AVCO Arc-coalprocess, R&D Report No.67, Finalreport (Contract No. 14-32-0001-1215, Nov. 30, 1971)
    [6] Dixit L P, Srivastava.S K, Chakravartty S C, et al. Theoretical maximal yield of acetylene from coals by plasma pyrolysis [J]. Fuel Processing Technology, 1982, 6(1): 85–91
    [7]田原宇.煤的化学族组成初步研究及其在煤等离子体热解制乙炔中的应用[D].山西太原:太原理工大学,2004.
    [8]吕永康.等离子体热解煤制乙炔及热力学和动力学分析[D].山西太原:太原理工大学,2003.
    [9]鲍卫仁,吕永康,刘生玉等.煤质对H2/Ar等离子体热解制乙炔的影响[J].燃料化学学报,2004, 32(5): 552-556
    [10]庞贤勇.等离子体炬辅助煤气化研究[D].山西太原:太原理工大学,2007.
    [11]田亚峻.煤在电弧等离子体射流中的反应过程研究[D].山西太原:太原理工大学,2000.
    [12]鲍卫仁,吕永康,叶俊岭,等.制备乙炔和炭黑的方法和装置,中国,ZL 03138792.6,2005.12.21.
    [13] Bittner D, Baumann H, Peuckert C, et al. Direktumwadlung Von Kohle Zu acetylene[J]. Erdol und Kohle, 1981, 34(6): 237-245
    [14] Galbraith I F,.Bond R L, et al. Production of acetylene from coal:using a plasma jet [J]. Nature, 1963, 12: 1313-1314
    [15] Cannon R E, Krukonis V J, Schoenberg T. Industrial and Engineering Chemical Product Research and Development, 1970, 3: 343-347.
    [16] Fauchais P, Bourdin E, Aubreton J. Amouroux J. International Chemical Engineering, 1980, 2: 289-305.
    [17]戴波.等离子体裂解煤制乙炔的研究[D].北京:清华大学,2000.
    [18] Wang F, GuoW K. Study of some Problem on Manufacturing Acetylene from Coal. The 12th National Conference on Plasma Science and Technology[C], Shanghai, 2005.
    [19]王大鸷,田亚峻,谢克昌.煤在氢氩等离子体中热解固相产物的XRD分析[J].煤炭转化,2002, 25(2): 47-50.
    [20]陈宏刚,煤和液化石油气在氢/氩热等离子体中热解过程的研究[D].山西太原:太原理工大学, 1999.
    [21]李明东.以煤层气为冷却剂的等离子体裂解煤制乙炔方案研究[D].北京:清华大学,2005.
    [22]谢克昌,田原宇,黄伟等.煤快速热解与等离子体热解制乙炔组合工艺,中国,ZL 02102263.1,2003.07.30.
    [23]谢克昌,田原宇,鲍卫仁等.煤连续焦化与等离子体热解制乙炔组合工艺,中国,ZL 02102262.3,2003.08.06.
    [24] Soloman P R, Colket M B. Evolution of fuel nitrogen in coal devolatilization [J]. Fuel, 1978, 57(12): 749-755.
    [25]常丽萍.煤热解、气化过程中氮氧化物及其前驱体的形成与释放研究[D].山西太原:太原理工大学,2002.
    [26]尤先锋,刘生玉,吴争鸣,等.煤热解过程中氮和硫化合物分配及生成机理[J].煤炭转化,2001, 24(3): 1-5.
    [27] Nelson P F, Kelly M D, Wornat M J. Conversion of fuel nitrogen in coal volatiles to NOx precursors under rapid heating condition [J]. Fuel, 1991, 70 (3): 403-407.
    [28] Tan L L, Li C Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part II. Effects of experimental conditionson the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal [J]. Fuel, 2000, 79(15): 1891-1897.
    [29] Li C Z, Tan L L. Formation of NOx and SOx precursors during the pyrolysis of coal andbiomass. Part III. Further discussion on the formation of HCN and NH3 during pyrolysis [J]. Fuel, 2000, 79(15): 1899-1906.
    [30] Lepp?lahti U, Koljonen T. Nitrogen evolution from coal,peat and wood during gasification: literarure review [J]. Fuel Processing Technology, 1995, 43(1): 1-45.
    [31] Takagi H, Isoda T, Kusakabe K, et al. Effects of coal structures on denitrogen during flash pyrolysis [J]. Energy &Fuels, 1999, 13: 934-940.
    [32] Johnsson J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion [J]. Fuel, 1994, 73 (9): 1398-1415.
    [33]陈小利.浮选对煤热解过程中氮、硫迁移的影响[D],山西太原:太原理工大学,2009.
    [34] Aho M. J, H?m?l?inen J. P, Tummavuori J. L. Conversion of peat and coal nitrogen through HCN and NH3 to nitrogen oxides at 800℃[J]. Fuel, 1993, 72(6): 837-841.
    [35] Patrick J W. Sulfur release from pyrites in relation to coal pyrolysis [J]. Fuel, 1993, 72(3): 281-285.
    [36]孙成功,李保庆,Colin E. S.煤加氢热解高效转化及过程脱硫脱氮效应[J],煤炭学报,1997, 22(2): 176-181.
    [37]朱子彬,朱宏斌,吴勇强,等.烟煤快速加氢热解的研究V.煤和半焦中有机硫化学形态剖析[J].燃料化学学报,2001, 29(1): 44-48.
    [38] H. W. Leutner, C. S. Stokes. Pyrolysis of methane in argon plasma [J]. Industrial and Engineering Chemistry, 1961, 53(4): 341-348.
    [39] Frenklach M, Wang H. Detailed mechanism and modeling of soot particle formation, In Soot Formations in Combustion[M]. H. Bockhorn, ed., Springer-Verlag, 1995.
    [40] Fincke J R, Anderson R P, Hyde T, et al. Plasma thermal conversion of methane to acetylene [J]. Plasma Chemistry and Plasma Processing, 2002, 22(1): 105-136.
    [41] Vursel F, Polak L.“Plasma Chemical Processing”in reactions under plasma conditions, [M]. Venugopalan, ed., Wiley Interscience, New York, 1971, 311.
    [42] Anderson R P, Fincke J R, Taylor C E. Conversion of nature gas to liquids via acetylene as an intermediate[J]. Fuel, 2002, 81(7): 909-925.
    [43]张祥富,曾选权.天然气等离子体法制乙炔[J].天然气化工,1998, 23(4): 39-43.
    [44]张思辉.电弧等离子体裂解天然气制乙炔研究[J].天然气化工,1983, 8(1): 36-43.
    [45]邱介山,王谦,马腾才.煤在等离子体中热解直接生产乙炔[J].煤化工,1994, (3): 8-12.
    [46]罗义文,漆继红,印永祥等.等离子体裂解天然气制纳米炭黑和乙炔[J].化学工程,2004, 32(4): 42-45.
    [47]徐兴祥,杨永进,孙家言等.微波复合直流等离子体转化天然气制乙炔的研究[J].化学学报,2005, 63(7): 625-630.
    [48] Kiselev N A, Sloan J, Zakharov D N, et al. Carbon nanotubes from polyethylene precursors: structure and structural changes caused by thermal and chemical treatment revealed by HRTEM [J]. Carbon, 1998, 36: 1149-1157.
    [49] Terrenes H, Hayashi T, Munoz-Navia M, et al. Graphitic cones in palladium catalysed carbon nanofibres[J]. Chemical Physics Letters, 2001, 343: 241-250.
    [50] Endo M, Kim Y A, Hayashi T, et al. Structural characterization of cup-stacked-type nanofibers with an entirely hollow core [J]. Applied Physics Letters, 2002, 80: 1267-1269.
    [51] Monthioux M, Noe L, Dussault L, et al. Texturising and structurising mechanisms of carbon nanofilaments during growth [J]. J Mater Chem, 2007, 17: 4611-4618.
    [52] Martin-Gullon I, Vera J, Conesa J A, et al. Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor [J]. Carbon, 2006, 44: 1572-1580.
    [53] Zhou J-H, Sui Z-J, Li P, et al. Structural characterization of carbon nanofibers formed from different carbon-containing gases [J]. Carbon, 2006, 44: 3255-3262.
    [54] Tian Y J, Zhang Y L, Yu Q, et al. Effect of catalysis on coal to nanotube in thermal plasma [J]. Catalysis Today, 2004, 89: 233-236.
    [55] Tian Y J, Zhang Y L, Wang B J, et al. Coal-derived carbon nanotubes by thermal plasma jet [J]. Carbon, 2004, 42: 2597-2601.
    [56] Choi S I, Nam J S, Kim J I, et al. Continuous process of carbon nanotubes synthesis by decomposition of methane using an arc-jet plasma [J]. Thin Solid Films, 2006, 506-507: 244-249.
    [57] Choi S I,Nam J S, Lee C M, et al. High purity synthesis of nanotubes by methane decomposition using an arc-jet plasma [J]. Current Applied Physics, 2006, 6: 224-229.
    [58] Harbec D, Meunier J-L, Guo L, et al. Carbon nanotubes from the dissociation of C2Cl4 using a dc thermal plasma torch [J]. J Phys D: Appl Phys, 2004, 37: 2121-2126.
    [59] Harbec D, Meunier J-L, Guo L, et al. A parametric study of carbon nanotubes production from tetrachloroethylene using a supersonic thermal plasma jet [J]. Carbon, 2007, 45: 2054-2064.
    [1] Galbraith I F, Bond R L. Production of acetylene from coal:using a plasma jet [J]. Nature, 1963(12): 1313-1314
    [2] Fincke J R, Anderson R P, Hyde T. Plasma thermal conversion of methane to acetylene [J]. Plasma Chemistry and Plasma Processing, 2002, 22: 105-136.
    [3]吕永康.等离子体热解煤制乙炔及热力学和动力学分析[D].山西太原:太原理工大学,2003.
    [4] Bittner D, Baumann H, Klein J. Relation between coal properties and acetylene yield in plasma pyrolysis [J]. Fuel, 1985, 64: 1370-1374.
    [5] Dixit L P, Srivastava S K, Chakravartty S C, et al. Theoretical maximal yield of acetylene from coals by plasma pyrolysis [J]. Fuel Processing Technology, 1982(6): 85–91
    [6] Dai B, Fan Y, Yang J, et al. Effect of radicals recombination on acetylene yield in process of coal pyrolysis by hydrogen plasma [J]. Chemical Engineering Science, 1999, 54: 957-959.
    [7]蔡国峰.等离子体热解煤制乙炔的热力学分析[D].山西太原:太原理工大学,2007.
    [8] Bittner D, Baumann H, Peuckert C et al. Direktumwadlung Von Kohle Zu acetylene[J]. Erdol und Kohle, 1981, 34(6): 237-242.
    [9] Wang F, GuoW K. Study of some problem on manufacturing acetylene from coal[C]. The 12th National Conference on Plasma Science and Technology, Shanghai, 2005
    [10] Chen H G., Xie K C. Clean and direct production of acetylene-coal pyrolysis in a H2/Ar plasma jet [J]. Energy Sources, 2002, 24 (6): 575-580.
    [11] Burcat, A. Third millennium ideal sas and condensed phase thermochemical database for combustion[R]. 2001, Report TEA867: Technion Israel Institute of Technology.
    [12] Chase M W, Davies C A, Dowey J R. Thermochemical tables[J]. Journal of Physical and Chemical Reference Data, 1985, 14: 173 (supplemental).
    [1] Bond R L, Galbraith I F, Lander W R, et al. Production of acetylene from coal using a plasma jet [J]. Nature, 1963, 200(12):1313-1314.
    [2] Xie K C, Lu Y K, Tian Y J, et al. Study of coal conversion in an arc plasma jet [J]. Energy Sources, 2002, 24:1093-1098
    [3]田亚峻.煤在电弧等离子射流中的反应过程研究[D].山西太原:太原理工大学,2001.
    [4] Bittner D, Wanzl W. The significant of coal properties for acetylene formation in a hydrogen plasma [J]. Fuel Pro Technol, 1990, 24(3): 311-316.
    [5]吕永康,庞先勇,鲍卫仁,谢克昌,等离子体热解煤及模型化合物的热力学分析[J].燃料化学学报,2001, 29 (1): 65-69.
    [1]孙成功,李保庆,Colin E S.煤加氢热解高效转化及过程脱硫脱氮效应[J].煤炭学报,1997, 22(2): 176-181.
    [2]孙成功,李保庆,Colin E S.煤非催化加氢热解过程中脱硫脱氮效应及硫变迁特性[J].燃料化学学报,1997, 25(4): 353-357.
    [3] Tan L L, Li C Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part I. Effects of reactor configuration on the determined the yields of HCN and NH3 during pyrolysis [J]. Fuel, 2000, 79(15): 1883-1889.
    [4]刘海明.煤热解过程中NOx前驱物生成机理的研究[D].武汉:华中科技大学,2004.
    [5]田亚峻.煤在电弧等离子体射流中的反应过程研究[D].山西太原:太原理工大学,2001.
    [6]常丽萍,Xie Zongli,谢克昌等. Loy Yang褐煤热解过程中HCN和NH3形成的主要影响因素[J].化工学报,2003,54(6): 863-867.
    [7]李明东.以煤层气为冷却剂的等离子体裂解煤制乙炔方案研究[D].北京:清华大学,2004.
    [8] Tan L L, Li C Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass.Part II. Effects of experimental conditionson the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal [J]. Fuel.2000, 79(15): 1891-1897.
    [9] Kambara S, Takarada T. Relation between functional forms of coal nitrogen and formation of NOx precursors during rapid pyrolysis [J]. Energy & Fuels, 1993, 7(6): 1013-1020.
    [10]吕永康,田原宇,谢克昌等.粒径对煤在H2/Ar等离子体中热解的影响[J].燃料化学学报,2002,30(3): 229-233.
    [11]袁行球,李辉,赵太泽.直流电弧等离子体炬的特性研究[J].物理学报,2004,53(11): 3806-3813.
    [12]李松栋.煤在新型等离子体反应器内气化的研究[D].山西太原:太原理工大学,2005.
    [13] Mieczyslaw K. XPS study of reductively and non-reductively modified coals [J]. Fuel, 2004, 83(2): 259-265.
    [14] Aho M J,Jouni P, Jouni L. Important of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion [J]. Combustion and Flame, 1993, 95(1-2): 22-30.
    [15] Xu W C, Kumagai M. Nitrogen evolution during rapid hydropyrolysis of coal [J]. Fuel, 2002, 81(18): 2325-2334.
    [16] Tang L H, Zhu Z B, Zhu H B, et al. Study of coal flash hydropyrolysis denitrogenation [J]. Fuel processing technology, 2003, 81(2): 103-108.
    [17] Johnsson J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion [J]. Fuel, 1994, 73(9): 1398-1415.
    [18]陈皓侃,李保庆,张碧江.高硫煤加氢热解脱硫的研究[J].燃料化学学报,1997,25(4): 347-352.
    [1] Fincke J R, Anderson RP, Hyde T, et al. Plasma thermal conversion of methane to acetylene [J]. Plasma Chemistry and Plasma Processing, 2002, 22(1): 105-136
    [2]徐兴祥,杨永进,孙家言,等.微波复合直流等离子体转化天然气制乙炔的研究[J].化学学报,2005, 63(7): 625-630
    [3]余徽,印永祥,戴晓雁.等离子体射流裂解甲烷制乙炔的数值模拟[J].化工学报, 2006, 57(10): 2319-2326
    [4] Bao W R, Chang L P, Lv Y K. Study on main factors influencing acetylene formation during coal pyrolysis in arc plasma[J]. Process Safety and Environmental Protection, 2006, 84(3B): 222–226
    [5]鲍卫仁,吕永康,刘生玉,等.煤质对H2/Ar等离子体热解制乙炔的影响[J].燃料化学学报,2004, 32(5): 552-556.
    [6]鲍卫仁,吕永康,曹青,等.煤在H2/Ar等离子体中直接转化制乙炔的研究[J].煤炭学报,2004, 29(5): 590-593 69.
    [7]罗义文,漆继红,印永祥,等.热等离子体裂解甲烷的热力学与动力学分析[J].四川大学学报,2003, 35(4): 33-37
    [8] Dai B, Fan Y S, Yang J Y, et al. Effect of radicals recombination on acetylene yield in process of coal pyrolysis by hydrogen plasma[J]. Chemical Engineering Science, 1999, 54: 957-959
    [9]陈宏刚,谢克昌.等离子体裂解煤制乙炔碳-氢体系的热力学平衡分析[J].过程工程学报,2002, 2(2): 112 -117
    [10] Anderson R P, Fincke J R, Taylor C E. Conversion of nature gas to liquids via acetylene as an intermediate[J]. Fuel, 2002, 81: 909-925.
    [11] Xie K C, Lu Y K, Tian Y J, et al. Study of coal conversion in an arcplasma jet[J]. Energy Sources, 2002, 24(12): 1093-1098.
    [12]吕永康,庞先勇,鲍卫仁,等.等离子体热解煤及模型化合物的热力学分析[J].燃料化学学报,2001, 29(1): 65-69.
    [1] Rodriguez N M, Chambers A, Baker R T K. Catalytic engineering of carbon nanostructures [J]. Langmuir, 1995, 11: 3862-3866.
    [2] Endo M, Kim Y A, Hayashi T, et al. Structural characterization of cup-stacked-type nanofibers with an entirely hollow core [J]. Applied Physics Letters, 2002, 80: 1267-1269.
    [3] Monthioux M, Noe L, Dussault L, etc. Texturising and structurising mechanisms of carbon nanofilaments during growth[J]. J Mater Chem, 2007, 17: 4611-4618.
    [4] Park C, Anderson PE, Chambers A, et al. Further studies of the interaction of hydrogen with graphite nanofibers[J]. J Phys Chem B, 1999, 103: 10572-10581.
    [5] Merkulov V I, Lowndes D H, Baylor L R, et al. Field emission properties of different forms of carbon[J]. Solid State Electronics, 2001, 45: 949-956.
    [6] Mojet B L, Hoogenraad M S, Van Dillen A J, et al. Coordination of palladium on carbon fibrils as determined by XAFS spectroscopy[J]. J Chem Soc-Faraday Trans, 1997, 93: 4371-4375.
    [7] Andrews R, Jacques D, Ninot M, et al. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing[J]. Macromol Mater Eng, 2002, 287: 395-403.
    [8] Tibbetts G G, McHugh J J. Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices [J]. J Mater Res, 1999, 14(7): 2871-2880.
    [9] Hahn J, Han J H, Yoo J-E, et al. New continuous gas-phase synthesis of high purity carbon nanotubes by a thermal plasma jet [J]. Carbon, 2004, 42: 877-883.
    [10] Harbec D, Meunier J-L, Guo L, et al. Carbon nanotubes from the dissociation of C2Cl4 using a dc thermal plasma torch [J]. J Phys D: Appl Phys, 2004, 37: 2121-2126.
    [11] Choi S I, Nam J S, Kim J I, et al. Continuous process of carbon nanotubes synthesis by decomposition of methane using an arc-jet plasma [J]. Thin Solid Films, 2006, 506-507: 244-249.
    [12] Harbec D, Meunier J-L, Guo L, et al. A parametric study of carbon nanotubes production from tetrachloroethylene using a supersonic thermal plasma jet [J]. Carbon, 2007, 45: 2054-2064.
    [13] Kim M S, Rodriguez N M, Baker R T K. The interp lay between sulfer adsorp tion and carbon deposition on coalt catalysts [J]. J. Catalysis. 1993 (143) : 449-463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700