焦化废水对植物的毒性作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着钢铁生产的快速增长,我国焦化行业取得了长足发展,但焦化废水的大量排放,尤其是非达标排放也对环境造成了严重的污染。在典型的焦炭生产中,每吨焦炭的生产要排放0.4-0.9m3废水,平均按0.65m3/t计算,山西省全年要排放焦化废水5187万m3,占全省废水排放负荷总额的30%。焦化废水中的有毒有害污染物种类繁多、成份复杂,特别是一些剧毒和致癌物质更是危害极大。其中以氰化物和酚类为主,其次有吡啶、多环芳烃、硫化物、氨及焦油等。虽然酚化物本身无致癌性,但其具有明显的促癌作用,并能使细胞蛋白质变性,对细胞产生毒害作用;氰化物和硫氰化物,通过反应可以转化为致死毒物HCN;氨及焦油中有很多是致癌物或生物活性物质;废水中一些多环芳烃和杂环化合物会使水生生物中毒甚至死亡,若灌溉农田会使作物减产或枯死,而人饮用被其污染的水或食用含这些毒物的鱼类和农作物,则会引起慢性中毒。焦化废水导致的土壤污染也成为重要的环境问题,不仅直接影响作物的生长和产量,而且这些污染物通过作物的吸收、残留及食物链最后危害人体健康。
     目前国内外对焦化废水的研究主要集中于焦化废水的处理技术。近年来,研究人员在传统的物理化学及生物处理工艺基础上,结合新的废水处理技术又发展出多种新方法如多相光催化氧化、TiO2光催化氧化、光合细菌等,并结合现代生物技术驯化处理焦化废水的优势菌种和运用质粒在微生物体内植入DNA等遗传物质培养特殊菌种。但焦化废水生物毒理学效应的研究鲜见报道。焦化废水含有多种有毒、有害、致畸、致癌的污染物,其综合毒性是加强还是拮抗,其致毒机理仍待研究。因此,本研究拟进行焦化废水理化性质CODCr的鉴定,在此基础上采用植物检测系统,以北方常见植物物种(玉米、蚕豆、大麦)为研究材料,以水培进行焦化废水进出水溶液的染毒,观察不同浓度焦化废水进出液处理组与对照组种子萌发率、萌根数、根重和芽重等的影响,并对植物幼苗根尖分生区细胞进行染色,在光镜下观察它们的有丝分裂情况和遗传信息的完整性,从整体—细胞-分子水平探讨焦化废水对植物生长(以根长,芽长和干重为指标)和细胞超微结构(染色体变异和微核)特征的影响,来研究焦化废水的环境毒理效应及其作用机制,其意义在于:
     (1)从环境毒理学的角度为焦化废水对植物的毒理效应提供实验依据,并探索其作用机制;
     (2)通过比较不同植物品系对焦化废水的毒性反应,探索焦化废水胁迫下植物中敏感种系和耐受种系;
     (3)初步建立焦化废水的植物监测系统,弥补传统的化学和物理监测方法在环境毒理学和生态学方面的空白,并为环境质量标准、污染物排放标准等的制定提供理论依据;
     (4)为从生物毒效应方面进行污染物的环境评价提供一个新的理念。
     本研究首先对焦化废水进出水溶液的pH值、悬浮物、氨氮、挥发酚、CODCr、BOD5、总氰化物、硫化物、石油类和流量等一些表征工业污水水质的主要指标进行了测定,结果发现,焦化废水原水中CODCr、BOD5、挥发酚、硫化物和氰化物等指标非常高,经生化处理站处理后,这些污染物都可以得到一定的去除,虽明显下降,但除pH值和挥发酚等个别指标外,其余指标均未达标,而且远远超过了国家相关排放标准。由于焦化废水是含有多种复合污染物,且含有大量的难降解有机物和对微生物有毒害作用的污染物,给焦化废水的生化处理带来了相当大的困难。因此,焦化废水出水溶液生化处理后焦化废水的生物毒性如何,其出水会对生物体造成何种危害成为本研究关注的重点。
     在毒理学实验中,本研究以大麦和玉米种子为材料研究了焦化废水进出水溶液对植物生长的影响,结果表明,焦化废水可浓度依赖性和时间依赖性地抑制大麦和玉米种子的萌发,但低浓度组与对照组无显著差异,随着染毒浓度的升高,处理组种子萌发率下降,与对照组间的差异也随之增大。同时发现,焦化废水进出水还可抑制大麦和玉米种子的萌根数,随着处理浓度的升高和处理时间的延长,处理组和对照组间的萌根数差异越来越大,表现出对浓度和时间的双重依赖性。实验结果提示,焦化废水中除含有大量有毒有害物质外,还含有一些能被植物利用的营养元素,因此在低浓度下几乎对植物无胁迫作用:种子新根的萌生对污染物的敏感性比种子萌发的敏感性低,更容易适应恶劣环境,并通过利用有利因素来获得生存,种子萌发可以作为一个监测指标来检测污染物毒性的大小,为环境监测提供一些生物方面的实验依据。
     为了更加深入、全面地探讨焦化废水对植物生长发育的影响,以及焦化废水进出水溶液对植物的生物毒效应差异,本课题又用不同浓度的焦化废水进水溶液和出水溶液对大麦和蚕豆幼苗进行了染毒处理,并观察染毒后大麦幼苗和蚕豆幼苗地根长、芽长和根重、芽重等生长指标,研究了焦化废水进出水溶液对植物生长的影响,结果表明:(1)焦化废水进出水溶液对大麦和蚕豆种子幼苗的生长整体表现为抑制作用,但在低浓度时抑制作用不明显,甚至可促进植物(尤其是大麦)的生长;(2)焦化废水进出水溶液对两种植物的抑制作用具有浓度和时间的双重依赖性,即随着浓度增高其对植物种子萌发和幼苗生长的抑制作用增强,作用时间越长,抑制效应越明显;(3)不同植物对焦化废水进出水溶液的耐受限度不同,即焦化废水进出水溶液暴露后所表现出的最高促进浓度或最低抑制浓度不同,同一作用浓度下出现明显抑制的暴露时间也不同;(4)同一植物的不同器官,对焦化废水毒性的敏感性也不同,一般而言,根部的敏感性大于地上部分;(5)CODCr值较为接近时,焦化废水进水溶液比出水溶液对植物的毒性作用小,可能是由于进水溶液中含有更多的营养物质,从而抵消了其毒性作用,而出水中基本上只存在一些对植物有害的毒性物质。
     另外,本课题通过对焦化废水染毒后植物根尖细胞的有丝分裂情况、染色体损伤情况进行镜检观察探讨了焦化废水的遗传毒性,结果发现,焦化废水进出水溶液可浓度和时间依赖性地诱导植物根尖细胞的核固缩、核碎解、染色体断裂、后期粘连、染色体桥等,破坏染色体的结构和遗传稳定性,同时大大增加根尖细胞的微核率、双核率等,以上结果表明,焦化废水不仅具有生长抑制毒效应,且是DNA分子的断裂剂,这说明焦化废水可通过影响植物细胞遗传信息的完整性而影响其生长发育。
     总之,焦化废水是一种复合型环境污染物,因此其毒理学机制与单一污染物有很大区别。本研究利用不同的植物监测系统考察了焦化废水进出水的生物生长毒效应和遗传毒效应,从而得知焦化废水污染可影响植物的生长发育和遗传,即便经过生化处理其毒效应仍然存在,因此应该进一步严格出水排放标准,并在标准设定的同时考虑其生物毒效应。还发现,不同植物对同种污染物或同种废水的敏感程度不同,同一植物的不同部位对待测污染物或污水的敏感度也不同,因此,在相同的实验条件和染毒条件下,通过比较不同植物品系对同种焦化废水的毒性反应,探索焦化废水胁迫下植物中敏感种系和耐受种系,可为焦化废水的植物灌溉或生物处理提供一定的理论依据,也可为环境监测和环境评价提供一种新方法,这将成为环境科学发展史上的一项重要的里程碑,也是在废水的环境毒理学研究方面的一个突破点和创新点。
Coke plant wastewater is generated in the coal coking, coal gas purification, and by-product recovery processes of coke factory, and referred as coking wastewater. The pollution caused by coking wastewater has been a severe problem for decades in China as coal is its main energy resource. Most of the compounds in coking wastewater are refractory, highly concentrated and toxic, such as phenolics, heterocyclic compounds and polycyclic aromatic hydrocarbons (PAHs). However, the exposure route and toxicity of the wastewater has not been well known.Therefore, it has become important to study the toxicity of the mixture of coking wastewater in the environment to organism.
     The physical and chemical characteristics of coking wastewater in and/or out of the Biochemical Station were analyzed, and the coking wastewater-induced toxicity to seed germination and plant growth was also investigated using plant-test system. The results indicated that the coking wastewater contained high concentration of organic metter, phenolics are the main organic constituents, other organics present include polynuclear aromatic hydrocarbons (PAHs) and nitrogen, oxygen and sulfur-containing heterocylic compounds. Most of the physical and chemical indicators cann't conform to the standards of National Institute, even though it has be treated using biochemical mothods.
     The genotoxicity of coking wastewater was also studied using Vicia faba L. and Hordeum vulgare L. root tip cytogenetic bioassay. Results show that the tested coking wastewater decreased the mitotic index (MI) and caused significant increases of micronuclei (MCN), sister chromatid exchange (SCE) and pycnotic cell (PNC) frequencies in concentration-dependent manners. The decrease of mitotic index and cell cycle delay were also found in coking-wastewater groups and they were positive correlative to MCN frequencies. After exposure to the same concentration wastewater, the increasing ratios of MCN, SCE and PNC frequencies were higher in V. faba than that in H. vulgare. The results confirm that coking wastewater is a genotoxic agent in plant cells and imply that exposure to the wastewater in environment may pose a potential genotoxic risk to organisms.
     Although our data are still insufficient, this is the first experimental evidence that sulfur dioxide induces MCN, binucleated cells, pycnosis and nuclear disintegration in plant cells in a dose-dependent manner. The frequencies of various abnormal cells in root tips were in relation to treated concentration and duration and duration time. The experimental results came to the same conclusion as our previous observation that coking wastewater is a clastogenic and genetoxic agent. In this research the use of the V. faba-MCN test showed good correlation with data obtained from H. vulgare-MCN test.
     In brief, coking wastewater is the toxicity factor of DNA molecule, and the genetic damage of plant system could show indirectly us damage of the animal cells under the same condition, so we could use both V. faba and H. vulgare bioassays as efficient genotoxicity tests of coking wastewater and as the monitors of its pollution in the environment, but the V. faba assay is more sensitive than H. vulgare assay during the process.
引文
[1]中华人民共和国国家发展与改革委员会.2006.焦化行业污染现状及对策建议.2006-09-07. http://www. ndrc. gov. cn/gzdt/t20060907_83519. htm.
    [2]任源,韦朝海,吴超飞等.焦化废水水质组成及其环境学与生物学特性分析.环境科学学报,2007,27(7):1094-1100.
    [3]钱易,文一波,张辉明.焦化废水中难降解有机物去除的研究.环境科学研究,1992,5(5):1-8.
    [4]Chao YM, Tseng IC, Chang JS. Mechanism for sludge acidification in aerobic treatment of coking wastewater. Journal of Hazardous Materials,2006,137(3): 1781-1787.
    [5]Wang JL, Wu LB, Han LP, et al. Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater. Process Biochem.,2002,37: 831-836.
    [6]任源,韦朝海,吴超飞等.生物流化床A/O2工艺处理焦化废水过程中有机组分的GC/MS分析.环境科学学报,2006,26(11):1785-1791.
    [7]王莉莉,杨孙楷.我国高浓度含酚废水的治理技术近况.环境污染与防治,1995,17(5):29-30.
    [8]杨义燕,李芮丽,党广悦等.络合萃取法处理工业含酚废水.环境科学,1995,16(2):35-38.
    [9]葛宜掌,金红.协同-络合萃取法回收含酚废水中的酚类.环境化学,1996,15(2):112-117.
    [10]何苗,张晓健,瞿福平等.焦化废水中芳香族有机物及杂环化合物在活性污泥法处理中的去除特性.中国给水排水,1997,13(1):14-17.
    [11]余蜀宜.用松香胺萃取处理含酚废水的研究.化工环保,1999,19(2):80-83
    [12]李荣林.焦化废水处理新工艺的探讨.煤化工,2003,(3):23-25.
    [13]Mark A. George start that process hazards analysis meeting correctly. Chemical Engineering Progress,1997,93(6):56-60.
    [14]章非娟.工业废水污染防治.第一版.同济大学出版社,2001.
    [15]张能一,唐秀华,邹平等.我国焦化废水的水质特点及其处理方法.净水技术,2005,24(2):42-47.
    [16]赵建夫.我国焦化废水处理进展.化工环保,1992,12(3):141-146.
    [17]Laube AH, Jeffery J, Edlund C. Characterization of pollutants existing coke qench towers[A].//Conference:Energy and the environ[C]. Proceeding of the National Conference, Cincinnati, OH, USA,1976,260-267.
    [18]OlthofMeint. Optimizing existing wastewater treatment facilities in preparation of meeting BAT/BCT regulations in the iron and steel industry [A].//Conference: Proceedings2Symposium on Iron and Steel Pollution Abatement Technology for 1981 [C]. Chicago, IL,1982,525-535.
    [19]Zwikl JR, Buchko NS, Junkins DR. Physical/Chemical treatment of coke plant wastewaters. Conference:Proceedings-Symposium on Iron and Steel Pollution Abatement Technology for 1982. Pittsburgh, PA, USA,1983,316-345.
    [20]Pandey RA, Kumaran P, Parhad NM. Wastewater characteristics of LTC process of coal. Journal of Environmental Science and Health, Part A:Environmental Science and Engineering,1989,24(6):633-643.
    [21]Fisher R. Progress in pollution abatement in European cokemaking industry. Ironmaking and Steelmaking,1992,19(6):449-456.
    [22]国家环境保护总局.HJ/T12622003.中华人民共和国环境保护行业标准《炼焦行业清洁生产标准》.北京:国家环境保护总局,2003.
    [23]Lungen HB. The situation of the Chinese coke making industry. Stahl und Eisen, 2005,125(11):S72-S74.
    [24]Zhang M, Tay JH, Qian Y, et al. Coke plant wastewater treatment by fixed biofilm system for COD and NH3-N removal. Wat. Res.,1998,32(2):519-527.
    [25]Lim BR, Hu HY, Huang X, et al. Effect of seawater on treatment performance and microbial population in a biofilter treating coke-oven wastewater. Process Biochemistry,2002,37:943-948.
    [26]Li YM, Gu GW, Zhao JF, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen. Chemosphere,2003,52: 997-1005.
    [27]Li B, Sun YL, Li YY. Pretreatment of coking wastewater using anaerobic sequencing batch reactor (ASBR). Journal of Zhejiang University,2005,6(11):1115-1123.
    [28]Ning P, Bart HJ, Jiang YJ, et al. Treatment of organic pollutants in coke plant wastewater by the method of ultrasonic irradiation, catalytic oxidation and activated sludge. Separation and Purification Technology,2005,41(2):133-139.
    [29]Czap licka M. Qualitative and quantitative determination of halogenated derivatives in wastewater from coking plant. Journal of Separation Science,2003.26: 1067-1071.
    [30]陈正夫,徐思华.焦化废水中多环芳烃的形态分析.同济大学学报,1995,23(4):473-476.
    [31]高连存,张春阳,崔兆杰等.炼钢厂炼焦车间土壤中PAHs的超临界流体萃取色质联用分析方法研究.环境科学研究,1998,11(1):36-39.
    [32]徐杉,宁平.GC/MS法分析焦化废水中的有机污染物.云南化工,2002,29(5):32-34.
    [33]Bridle TR, Bedrord WK, Jank BE. Biological nitrogen control of coke plant wastewater. Wat. Sci. Technol.13:667-680.
    [34]周长丽,郭东平.生物脱氮技术在我国焦化废水处理中的应用与研究.河北化工,2007,30(7):77-78.
    [35]张兴儒,吴振烈,等.油气田环境保护.石油工业出版社,1995.
    [36]黄志勇,陈国树.含酚废水的治理方法及其进展.环境与开发,1997,12(2):32-34.
    [37]盖新杰,朱丹,高山等.乳化液膜法处理化工废水的进展.化工环保,1996,16(2):85-87.
    [38]庞世平.N-503萃取焦化废水的研究.山西化工,2003,23(1):8-12.
    [39]Murielle B, Denis B, Veronique B. Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation,1999,10:429-435.
    [40]Kyoungphile N, Jerome JK. Combined ozonation and biodegradation forremediation of mixtures of polycyclic aromatic hydrocarbons in soil. Biodegradation,2000,11: 1-9.
    [41]Gonzalez G, Herrera G, Garciaetc Ma T. Biodegradation of phenolic industrial wasterwater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Bioresource Technology,2001,80:137-142.
    [42]Gonzalez G, Herrera MG, Grarciaetc MT. Biodegradation of phenol in a continuous process:comparative study of stirred tank and fluidizedbed bioreactors. Bioresource Technology,2001,76:245-251.
    [43]卢培利,张代钧,严晨敏等.活性污泥法动力学模型应用中的参数校核.环境科学与技术,2002,25(5):13-14,37.
    [44]刘红,周志辉,吴克明.Fenton试剂催化氧化-混凝法处理焦化废水的实验研究.环境科学与技术,2004,27(2):71-73.
    [45]齐荣,余兆祥,杨坤.焦化废水生物脱氮工艺的探讨.环境技术,2005,23(4):8-12.
    [46]邵林广,陈斌,黄霞等.水解(酸化)-缺氧-好氧固定床生物膜系统处理焦化废水的试验研究.环境科学,1994,15(6):51-55.
    [47]史长苗,陈启斌.水解酸化-好氧生物处理焦化废水的试验研究.科技情报开发与经济,2002,12(1):114-115.
    [48]侯红娟,周琪,杨云龙.焦化废水中难降解有机物处理试验研究.工业用水与废,2002,33(4):39-42.
    [49]Yu HQ, Gu GW, Song LP. Posttreatment of effluent from coke-plant wastewater treatment system in sequencing batch reactors. Journal of Environmental Engineering,1997,3:305-308.
    [50]Nuesslein K, Maris D, Timmis K, et al. Expression and transfer of engineered catabolic pathways harboured by Pseudomonas sp. Introduced into activated sludge microcosmos. FEMS Microbiol. Ecol.,1992,58:3380-3386.
    [51]Wang YJ, Ho YS, Jeng JH, et al. Different cell death mechanisms and gene expression in human cells induced by pentachlorophenol and its major metabolite, tetrachlorohydroquinone. Chemico-Biological Interactions,2000,128:173-188.
    [52]Han LP, Wang JL, Shi HC, et al. Bioaugmentation:a new strategy for removal of recalcitrant compounds in wastewater-a case study of quinoline. J Environ. Sci., 2000,12:22-25.
    [53]王璟,张志杰,孙先锋等.应用生物强化技术处理焦化废水难降解有机物.城市环境与城市生态,2000,13(6):42-44.
    [54]Yu ZT, Mohn WW. With resin-acid-degrading bacteria enhances resin acid removal in sequencing batch reactors treating pulp mill effluents. Wat. Res.,2001,5:883-890.
    [55]Paul M. Sutton, Jim Hurvid, Martin Hoe Ksema. Biological fluided-bed treatment of wastewaterfrom byproduct coking operations:full-scale case history. Water Environ. Res.,1999,71(1):5-9.
    [56]陈平,刘德军.焦化煤气化废水生化除酚的实践与发展.煤矿环境保护,2000,14(2):12-14.
    [57]Yong SJ. Simulation of a coke wastewater nit rification process using a feed-forward neuronal net..Environmental Modeling & Software,2007,22:1382-1387.
    [58]全向春,韩力平,王建龙等.固定化皮氏伯克霍而德氏菌降解喹啉的研究.环境科学,2000,21(3):74-76.
    [59]肖文胜,徐文国,杨桔才.生物过滤氧化反应器处理焦化废水.环境工程,2005,23(1):9-11.
    [60]尹成龙,单忠健.焦化废水处理存在的问题及其解决对策.工业给排水,2000,26(6):35-37.
    [61]Chiang LC, Chang JE. Electrochemical oxidation process for the treatment of coke-plantwastewater. J Envir. Sci. Health,1995,30(4):753-771.
    [62]梁镇海,许文林.焦化含酚废水在Ti/PbO2电极上的氧化处理.稀有金属材料与工程,1996,25(3):37-40.
    [63]张昌鸣.焦化废水净化及回用技术研究.环境工程,1999,17(1):16-19.
    [64]赵建夫,钱易.用厌氧法处理焦化废水的研究.环境科学,1990,11(3):30-33.
    [65]Tennakone K. Photodegradation of visible light absorbing organic compounds in the presence of semiconductuor for catalusts. Photochem and Photobiol,1992,88: 289-293.
    [66]Larson RA, Weber EJ. Reaction mechanism in environmental organic chemistry. Boca Raton:Lewis Publishers,1994:402-404.
    [67]Margater MT, Xu XY, Feng XS. Sequential biological removal of COD and ammonia-nitrogen from coke plant wastewater.浙江大学学报:农业生命科学版, 2000,26(3):241-246.
    [68]钱易,张辉明.焦化废水中难降解有机物去除的研究.环境科学研究,1992,5(5):1-9.
    [69]沈晓林.焦化废水处理全面达标的试验与探讨.上海金属,2002,24(1):42-45.
    [70]罗建中,徐鸣,雷育涛等.焦化废水处理新工艺研究.环境技术,2004,22(4):32-34.
    [71]Chao YM, Tseng IC, Chang JS. Mechanism for sludge acidification in aerobic treatment of cokingwastewater. Journal of Hazardous Materials,2006,137(3): 1781-1787.
    [72]Wang JL, Quan XC, Han LP, et al. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii. Water Research,2002,36:2288-2296.
    [73]Shen YH. Removal of phenol from water by adsorption flocculation using organobentonite. Water Research,2002,36(5):1107-1114.
    [74]Trujillo D, Font X, Snchez A. Use of Fenton reaction for the treatment of leachate from composting of different wastes. Journal of Hazardous Materials,2006,138(1): 201-204.
    [75]Ghose MK. Complete physicochemical treatment for coke plant effluents. Water Research,2002,36(5):1127-1134.
    [76]刘静,童志平,盛草樱.沉降-吸附法净化再生酸研究.西南交通大学学报,1999,34(2):243-248.
    [77]詹宴龙,刘杰,谭继君.精苯废酸净化处理研究.四川冶金,1999(4):39-43.
    [78]丹尼雷冬.废硫酸再生工艺.硫酸工业,1995(4):32-35.
    [79]谢清喜,张清友,李志然.废酸生产硫酸亚铁和聚合硫酸铁的实践.冶金环境保护,2002(4):58-59.
    [80]Van Schie PM, Yong LY. Isolusion and characterization of phenol-degrading denitrifying bacteria. Appl. Envion. Microbiol.,1998,64(7):2432-2438.
    [81]乌锡康主编.有机化工废水治理技术.北京:化学工业出版社,1999.
    [82]徐向阳,冯孝善.五氯酚(PCR)污染土壤厌氧生物修复技术的初步研究.应用生态学报,2001,12(3):439-442.
    [83]Watanabe K, Teramoto M, Futamata H, et al. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl. Envion. Microbiol.,1998,64(11):4396-4402.
    [84]陈佳荣.水化学.中国农业出版社,1993,213.
    [85]Ren S, ASCE M, Frymier PD. Toxicity estimation of phenolic compounds by bioluminescent bacterium. Journal of Environmental Engineering,2003,129(4): 328-335.
    [86]Kahru A, Pillumaa L, Reiman R, et al. The toxicity and biodegradability of eight main phenolic compounds characteristic to the oil-shale industry wastewaters:A test battery approach. Environmental Toxicology,2000,15(5):431-442.
    [87]Ghioureliotis M, Nicell JA. Toxicity of soluble products from the peroxidase-catalysed polymerization of substituted phenolic compounds. Journal of Chemical Technology and Biotechnology,2000,75(1):98-106.
    [88]Li X, Liu ZT, Shen PP, et al. Study on the effect of halophenols on antioxidant enzymes and QSAR analysis. Acta Scientiae Circumstantiae,2004,24(5):900-904.
    [89]Zhao F, Mayura K, Hutchinson RW, et al. Developmental toxicity and struction-activity relationships of chlorophenols using human embryonic palatal masenchymal cells. Toxicology Letters,1995,78:35-42.
    [90]Daniel V, Huber W, Bauer K, et al. Impaired in vitro lymphocyte responses in patients with elevated pentachlorophenol blood levels. Arch. Environ. Health.,1995,50: 287-292.
    [91]Chhabra RS, Maronpot RM, Bucher JR, et al. Toxicology and carcinogenesis studies of pentachlorophenol. Toxicol. Sci.,1999,48:14-20.
    [92]Oconnel JE, Fox PF. Significant and applications of phenolic compounds in the production and quality of milk dairy products:a review. International Dairy Journal, 2001,11:103-120.
    [93]Boyd EM, Killham K, Meharg AA. Toxicity of mono-, di-and tri-chlorophenols to lux marked terrestrial bacteria, Burkholderia species Rasc c2 and Psendomonas fluorescens. Chemosphere,2002,43:157-166.
    [94]Akane M, Tsutomu A, Hotaka S, et al. Acute toxicity of chlirophenols to earthworm using a simple paper cantact method and comparison with toxicities to fresh water organisms. Chemosphere,2002,47:65-69.
    [95]金相灿.有机化合物污染化学-有毒有机物污染化学.清华大学出版社,]990.
    [96]王华东.水环境污染概论.北京:北京师范大学出版社,1989:112-157.
    [97]尹伊伟等.用氯苯及酚类化合物研究大鳞副泥鳅急性毒性的定量结构-活性关系.暨南大学学报,1998,19(5),112-115.
    [98]陆光华,袁星.苯酚、苯胺及其衍生物对斜生栅列藻的急性毒性及QSAR研究.环境化学,2000,19(3):225-229.
    [99]Jobling S, heahao D, Osbome JA, et al. Inbition of testicular growth in minbow trout exposed to estrogenic alkylPhenolic chemicals. Environ. Toxicol. chem.,1996,15(2): 194-202.
    [100]Harries JE, Sheahan DA, Jobling S. Estrogenic activity in five United Kingdom rivers detected by measurement of vitellogenexis incaged trout. Environ. Health. Toxicol. Chem.,1997,16(3):534-542.
    [101]Comber MH, Williams TD, Stewart KM. The effect of nonylPhenol on daphnia magna. Wat. Rcs.,1993,27(2):273-276.
    [102]Shurin JB, Dodson SI. Sublethal toxic effects of cyanobacterm and nonylPhenol on environmental sex determination and development in daphnia. Environ. Toxical. Chem.,1997,16(6):1369-1276.
    [103]Baldwin WS, Stephen EG, Damian S, et al. Metabolic and rogenization of female daphnia magna by the xenoestrogen 4-nonylphenol. Environ. Toxicol. Chem.,1997, 16(9):1905-1911.
    [104]张志杰编著.环境污染生态学.北京:中国环境科学出版社,1999.
    [105]尹伊伟等.酚类及重金属对大鳞副泥鳅胚胎和鱼苗阶段的毒性研究.环境科学研究,1997,10(3):36-40.
    [106]阎海,叶常明,雷志芳.酚类化合物抑制斜生栅藻生长的毒性效应.环境化学,1998,17(2):127-130.
    [107]聂晶磊,刘锋,周春玉,刘征涛.氯酚类化合物对金鱼的急性和亚急性毒性研究.环境科学研究,2001,14(3):6-8.
    [108]卢玲,沈英娃.酚类、烷基苯类、硝基苯类化合物和环境水样对剑尾鱼和稀有驹鲫的急性毒性.环境科学研究,2002,15(4):57-59.
    [109]高晓莉,齐凤生,王丽敏,李豫红.蒽与5种酚类化合物对泥鳅的联合毒性研究.水利渔业,2004,24(2):65-66.
    [110]赵丽,王明仕,刘征涛,冯流,孔志明.酚类化合物对小白鼠脾脏细胞DNA毒性的构效相关研究.安全与环境学报,2006,6(5):27-30.
    [111]Joseph S. Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons:Relationship to carcinogenicity. Chemosphere,1997,34(4): 835-848.
    [112]Fang GC, Chang KF, Tapper NJ, et al. Estimation of PAHs dry deposition and BaP toxic equivalency factors (TEFs) study at urban, industry park and rural sampling sites in central Taiwan, Taichung. Chemosphere,2004,55:787-796.
    [113]王平利,戴春雷,张成江.城市大气中颗粒物的研究现状与健康效应.中国环境监测,2005,21(1):83-87.
    [114]李新荣,李本纲,陶澍等.天津地区的人群对多环芳烃的暴露.环境科学学报,2005,25(7):989-993.
    [115]赵云英,马永安.天然环境中多环芳烃的迁移转化及其对生态环境的影响.海关环境科学,1998,17(2):68-72.
    [116]Davila DR, Davis DP, Campbell K, et al. (Cambier JC, Zigmond LA, Burchiel SW.) Role of alterations in Ca(2+)-associated signaling pathways in the immunotoxicity of polycyclic aromatic hydrocarbons. J Toxicol. Environ. Health,1995,45(2):101-26.
    [117]Krieger JA, Davila DR, Lytton J, et al. Inhibition of sarcoplamic/endoplasmic reticulum calcium ATPases (SERCA) by polycyclic aromatic hydrocarbons in HPB-ALL human T cells and other tissues. Toxicol. Appl. Pharmacol.,1995,133(1): 102-8.
    [118]江玉,韩秀荣,张军,祝陈坚,蒋凤华,王修林.海洋浮游植物对2-甲基萘的生物富集研究.青岛海洋大学学报,2002,32(1):101-106.
    [119]Huang XD, Dixon DG, Greenberg BM. Impacts of UV radiation and photomodification on the toxicity of PAHs to the higher plant Lemna gibba (duckweed). Environ. Toxicol. Chem.,1993,12:1067-1077.
    [120]Ren L, Huang XD, McConkey BJ, et al. Photoinduced toxicity of three polycyclic aromatic hydrocarbons (fluoranthene, pyrene, and naphthalene) to the duckweed Lemna gibba L. G23. Ecotox. Environ. Saf.,1994,28:160-171.
    [121]Weinstein JE, Oris JT, Taylor DH. An ultrastructural examination of the mode of UV-induced toxic action of fluoranthene in the fathead minnow. Pimphalespromelas. Aquat. Toxicol.,1997,39:1-22.
    [122]Boese BL, Lamberson JO, Swartz RC, et al. Photoinduced toxicity of PAHs and alkylated PAHs to a marine infaunal amphipod (Rhepoxynius abronius). Arch. Environ. Contam. Toxicol.,1998,34:235-240.
    [123]Gala WR, Giesy JP. Using the carotenoid biosynthesis inhibiting herbicide, Fluoridone, to investigate the ability of carotenoid pigments to protect algae from the photo induced toxicity of anthracene. Aquat. Toxicol.,1993,27:61-71.
    [124]Gala WR, Giesy JP. Flow cytometric determination of the photoinduced toxicity of anthracene to the green algae Selenastrum capricornutum. Environ. Toxicol. Chem., 1994,13:831-840.
    [125]Huang XD, Krylov SN, Ren L, et al. Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons (Π):an empirical model for the toxicity of 16 polycyclic aromatic hydrocarbons to the duckweed Lemna gibba L. G23. Environ. Toxicol. Chem.,1997, 16:2296-2303.
    [126]Duxbury CL, Dixon DG, Greenberg BM. Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemna gibba. Environ. Toxicol. Chem.,1997,16:1739-1748.
    [127]杜兴旗.氰化物的毒性及其解毒方法.渭南师范学院学报(增刊),2005,14:55-57.
    [128]田坏疆.氰化物与人体健康.环境保护,1989,8:16-17.
    [129]仲崇波.王成功.陈炳辰.氰化物的危害及其处理方法综述.金属矿山,2001,5:44-47.
    [130]王东波.有机氰废水的处理方法研究进展.辽宁城乡环境科技,2002,22(6):4-6.
    [131]马蕊,林英,牛翠娟.淡水水域富营养化及其治理.生物学通报,2003,38(11):5-9.
    [132]肖兴富,李文奇,刘娜,杨旭光.富营养化水体中蓝藻毒素的危害及其控制.中国水利水电科学研究院学报,2005,3(2):116-123.
    [133]Chen JC, Lei SC. Toxicity of ammonia and nitrite to Penaeus m onodon juveniles. Journal of World Aquaculture Society,1990,21:300-306.
    [134]Chen JC, Kou YZ. Effects of ammonia on growth and molting of Penaeus japonicus juveniles. Aquaculture,1992,104:245-260.
    [135]杨凤,高悦勉,苏延明,等.海湾扇贝幼贝对pH和氨态氮的耐受性研究.大连水产学院学报,1999,14(3):13-18.
    [136]栾红兵,兰锡禄.总氨氮对海湾扇贝幼体的毒性试验.海洋科学,1990,(1):64-65.
    [137]张东鸣,余涛,周景祥等.总氨氮在渔业生产中的作用评述.吉林农业大学学 报,1999,21(3):124-128.
    [138]Sampaio LA, Wasielesky W, Camposmiranda-Fil-Ho K. Effect of salinity on acute toxicity of ammonia and nitrite to juvenile Mugil platanus. Bulletin of Environmental Contamination and Toxicology,2002,68:668-674.
    [139]沈成钢,杨凤,刘长发等.氨态氮在低温下对鱼的急性毒性研究.大连水产学院学报,1995,10(3):58-64.
    [140]杜浩,危起伟,刘鉴毅,等.苯酚、Cu2+、亚硝酸盐和总氨氮对中华鲟稚鱼的急性毒性.大连水产学院学报,2007,22(2):118-122.
    [141]曹翠玲,李生秀,张占平.氮素形态对小麦生长中后期保护酶等生理特性的影响.土壤通报,2003,34(4):295-298.
    [142]Ni L. Effects of water column nutrient enrichment on the growth of Potamogeton maackianus A. Been. J Aquat. Plant Manage,2001,39:83-87.
    [143]朱伟,张俊,赵联芳.底质中氨氮对沉水植物生长的影响.生态环境,2006,15(5):914-920.
    [144]马正学,康瑞琴,孙宏飞等.孙晓东焦化废水污染土壤中原生动物的群落特征.西北师范大学学报(自然科学版),2007,43(5):90-93.
    [145]纳明亮,徐明岗,张建新,宫春艳,段爱莲.我国典型土壤上重金属污染对番茄根伸长的抑制毒性效应.生态毒理学报,2008,3(1):81-86.
    [146]宋玉芳,周启星,许华夏,宋雪英,龚平.菲、芘、1,2,4-三氢苯对土壤高等植物根伸长抑制的生态毒性效应.生态学报,2002,22(11):1945-1950.
    [147]Serres FJ de(Ed.). Environmental monitoring for genotoxicity with plant systems. Mutat Res,1992,270:81-85.
    [148]Ma TH. The international program on plant bioassays collaborative studies with plant systems. Mutat Res,1999,426:97-98.
    [149]Sandhu SS, Serres FJ de, et al. International program on chemical safety scollaborative study on plant systems to detect genotoxic effects of environmental chemicals:Introduction and study design. Mutat Res,1994,310:169-173.
    [150]Fiskes joG. The Allium test as a standard in environmental monitoring. Hereditas, 1985,102:99-112.
    [151]陈小勇,宋勇昌.蚕豆叶片SOD活性监测大气SO2污染的可行性研究.植物生态学报,1995,19(1):23-28.
    [152]Nicoloff H & Kappas A. Benomyl-induced mitotic disturbances in Hordeum vulgare. Mutat Res,1987,189:271-275.
    [153]Pan JW, Zhu MY, Chen H. Aluminum-induced cell death in root-tips cells of barely. Environmental and Experimental Botany,2001,46:71-79.
    [154]Pan JW, Zhu MY, et al. Inhibition of cell growth caused by Aluminum toxicity results from Aluminum-induced cell death in barely suspension cells. Journal of plant nutrition,2002,25(5):1063-1073.
    [155]仪慧兰,张自立.NaCl对大麦细胞分裂和染色体行为的影响.遗传,1995,17(3):27-30.
    [156]段昌群,王焕校.重金属对蚕豆的细胞遗传学毒性作用和对蚕豆根尖微核技术的探讨.植物学报,1995,37(1):14-24.
    [157]Goche E. The micronucleus test:its value as a predictor of rodent carcinogens versus its value in risk assessment. Mutat Res,1996,352:189-190.
    [158]Tucker JD & Preston RJ. Chromosome aberrations, micronuclei, aneuploidy, sister chromatid exchanges, and cancer risk assessment. Mutat Res,1996,365:147-159.
    [159]毛德寿等编著.环境生化毒理学.辽宁大学出版社,1986.
    [160]Ma TH. Vicia cytogenetic tests for environmental mutagens. A report of the U.S. Environmental Protection Agency Gene-Tox program. Mutat Res,1982,99:251-271.
    [161]Plewa MJ. Specific-locus mutation assays in Zea mays. A report of the U.S. Environmental Protection Agency Gene-Tox program. Mutat Res,1982,99:317-337.
    [162]Grant WF. Chromosome aberration assays in Allium. A report of the U.S. Environmental Protection Agency Gene-Tox program. Mutat Res,1982,99: 273-291.
    [163]Ennever FK, Andreano G & Rosenkranz HS. The ability of plant genotoxicity assays to predict carcinogenicity. Mutat Res,1988,205:99-105.
    [164]Ma TH, Xu C & Xu Z, et al. An improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutat Res,1995,334:185-195.
    [165]Grant WF. Higher plant assays for the detection of genotoxicity in air polluted environments. Ecosystem Health,1998,4:210-229.
    [166]Grant WF. Higher plant assays for the detection of chromosomal aberrations and gene mutations-a brief historical background on their use for screening and monitoring environmental chemicals. Mutat Res,1999,426:107-112.
    [167]Ma TH. The international program on plant bioassays collaborative studies with plant systems. Mutat Res,1999,426:97-98.
    [168]Kirsch VM, Elhajouji A, Cundari E, et al. The in vitro micronucleus test:a multi-endpoint assay to detect simultaneously mitotic delay, apoprosis, chromosome breakage, chromosome loss and nondisjunction. Mutat Res,1997,392(1-2):19-39.
    [169]Willenkens H, et al. Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiol,1994,106:1007-1014.
    [170]Abe S & Sasaki M. Chromosome aberrations and sister chromatid exchanges in Chinese hamster cells exposed to various chemicals. J Natl Cancer Inst,1977,58: 1635-1643.
    [171]Miller B, et al. Evaluation of the in vitro micronucleus test as an alternative to the in vitro chromoaomal aberration assay:position of the GUM working group on the in vitro micronucleus test. Mutat Res,1998,410:81-116.
    [172]Kanaya N, Gill BS, Grover IS, et al. Vicia faba chromosomal aberration assay. Mutat Res,1994,310:231-247.
    [173]Levan A. The effect of colchicine on root mitosis of Allium. Hereditas,1992,24: 471-486.
    [174]William FG. Higher plant assays for the detection of chromosomal aberrations and gene mutations-a brief historical background on their use for screening and monitoring environmental chemicals. Mutat Res,1999,426:107-112.
    [175]Plewa MJ. Specific-locus mutation assays in Zea mays. A report of the U.S. Environmental Protection Agency Gene-Tox program. Mutat Res,1982,99: 317-337.
    [176]Constantin MJ & Nilan RA. The chlorophyll-deficient mutant assay in barley (Hordeum vulgare). A report of the U.S. Environmental Protection Agency Gene-Tox program. Mutat Res,1982,99:37-49.
    [177]Hung V. Ability of various mutagens to induce chromosomal aberrations in peas (Pisum sativum L.). Acta Agron Hung,1989,38:357-366.
    [178]Sablina AA, Liyinskaya GV, Rubtsova SN, et al. Activation of P53-mediated cell cycle checkpoint'in response to micronuclei formation. J Cell Sci,1998,111(7): 977-984.
    [179]金波,陈光荣.遗传毒理与环境检测.武汉:华中师范大学出版社(第一版),1998.
    [180]Fenech M, Holland N, Chang WP, et al. The human micronucleus project-an international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutat Res,1999,428(2):271-283.
    [181]Kong ZM, et al. Monitoring the genotoxicity of Lake Taihu using two kinds of micronucleus test. Environ Poll,1998,99:279-232.
    [182]Steinkellner H, et al. Genotoxic effects of heavy metals:comparative investigation with plant bioassays. Environ Mol Mutagen,1998,31(2):183-191.
    [183]Goche E. The micronucleus test:its value as a predictor of rodent carcinogens versus its value in risk assessment. Mutat Res,1996,352:189-190.
    [184]Marzin D. The position of the in vitro micronucleus test within the battery of screening for genotoxic potential determination and the regulatory guidelines. Mutat Res,1997,392(1-2):175-181.
    [185]Fenech M. The advantage and disadvantage of the cytokinesisblock micronucleus method. Mutat Res,1997,392(1-2):11-18.
    [186]Ma TH, et al. Tradescantia micronucleus test. Mutat Res,1994,310:221-230.
    [187]Aardema MJ, Albertini S, Arni P, et al. Aneuploidy:a report of an ECETOC task force. Mutat Res,1998,410(1):3-9.
    [188]王永兴等.应用蚕豆根尖细胞微核技术监测太湖水质的研究.中国环境科学,1997,17(3):252-254.
    [189]薛开先,臧宇.蚕豆根尖微核试验的应用与发展.癌变·畸变·突变,1999,11(3):158-160.
    [190]Marshak A. The effects of X-rays on chromosomes in mitosis. Proc Natl Acad Sci U..A.1937,23:362-369.
    [191]Degrassi F & Rizzzoni M, Micronucleus test in Vicia faba root tips to detect mutagen damage in fresh-water pollution. Mutat Res,1982,97:19-21.
    [192]王英彦,汤大友.蚕豆根尖细胞微核检测技术的污染指示性与其它指标的比较.中国环境科学,1987,7(5):45-48.
    [193]张小璇,任源,韦朝海等.焦化废水生物处理尾水中残余有机污染物的活性炭吸附及其机理.环境科学学报.2007,27(7):1113-1120.
    [194]杨国栋,石晓枫,杨靖辉,杨布亚.山西省焦炭生产地区的农村环境现状及污染防治对策.环境保护,1998,11:15-17.
    [195]舒朝晖.关于山西省焦炭行业发展的思考.调查与思考,2004,6:20-23.
    [196]王绍文,钱雷,秦华.焦化废水无害化处理与回用技术[M].北京:冶金工业出版社,2005.
    [197]陈复.水处理技术及药剂大全[M].北京:中国石化出版社,2000.
    [198]徐长城,高原.TiO2光催化降解焦化废水的研究.云南化工,2003,1-4.
    [199]王翠红,辛晓芸.焦化废水中细菌质粒的研究.环境污染与防治,2005,27(3):195-197.
    [200]冯国丽.光合细菌法处理焦化废水.科技情报开发与经济,2005,132-134.
    [201]刘红,刘潘.多相光催化氧化处理焦化废水的研究.环境科学与技术,2006,103-105.
    [202]张洪起.粉末活性炭固定高效菌降解焦化废水的中试研究.河北工业大学学报,2006,43-48.
    [203]李立敏,黎刚.高效优势菌在焦化废水处理中的应用.燃料与化工,2006,44-46.
    [204]石新军.超声空化与Fenton试剂联合作用.化学工业与工程技术,2007,40-44.
    [205]于庆满.混凝-Fenton试剂氧化联合处理.工业水处理,2007,40-43.
    [206]赖鹏,赵华章.铁炭微电解深度处理焦化废水的研究.环境工程学报,2007,15-20.
    [207]李长征.优势茵对焦化废水中几种有机物降解特性的实验研究.环境科学研究,2007,20(1):100-103.
    [208]胡中豪.采用H.s.B菌液处理高浓度焦化废水的工艺研究.北京化工大学学报,2007,14-17.
    [209]何苗,张晓健,瞿福平,等.焦化废水中芳香族有机物及杂环化合物在活性污泥法处理中的去除特性.中国给水排水,1997,13(1):14-17.
    [210]樊丽华,梁英华等.焦化废水治理技术进展.环境科学与技术,2002,25(6):40-42.
    [211]奚旦立,孙裕生,刘秀英.环境监测.第三版.高等教育出版社,2004.
    [212]连军.焦化废水的多污染物评价.环境科学动态,2004,1:30-31.
    [213]叶少丹,马前,李义久等.焦化废水生化处理研究进展.工业水处理,2005,25(2):9-13.
    [214]Wang Wuncheng. Literature review on higher plats for toxicity testing. Water, Air and Soil Pollution,1991,59:381-400.
    [215]John C, et al. Biological Monitoring in water pollution. Pergamon Press,1982.
    [216]Levan A. The effect of colchicine on root mitosis of Allium. Hereditas,1992,24: 471-486.
    [217]汤鸿霄.用水废水化学.北京:中国建筑工业出版社,1978,87.
    [218]Li GK, Sang N, Zhao YC. Micronuclei induced by municipal landfill leachate in mouse bone marrow cells in vivo. Environmental Research,2004,95(1),77-81.
    [219]Sang N, Li GK. Chromosomal aberrations induced in mouse bone marrow cells by municipal landfill leachate. Environmental Toxicology and Pharmacology,2005, 20(1),219-224.
    [220]张贵友,田瑞华,戴尧仁.植物细胞凋亡的研究进展.生物工程进展,2001,21(6):22-27,8.
    [221]Conte C, Mutti I, Puglisi P, et al. (Ferrarini, A., Regina, G., Maestri, E.,ElFadel, M., Findikakis, A.N., Leckie, J.O.). Environmental impacts of solid waste landfilling. Journal of Environmental Management,1997,50 (1),1-25.
    [222]仪慧兰,张自立.NaCl胁迫对大麦细胞分裂及染色体行为的影响.遗传.2001,23(1),29-32.
    [223]仪慧兰,孟紫强.SO2衍生物对大蒜根尖细胞遗传损伤作用的研究.环境科学学报.2001,21(4),486-490.
    [224]Yi HL, Meng ZQ. Genotoxicity of hydrated sulfur dioxide on root tips of Allium sativum and Vicia faba. Mutation Research.2003,537,109-114
    [225]Shimizu N, Shingaki K, kaneko-Sasaguri Y, et al. When, where and how the bridge breaks:anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. Exp. Cell Res.,2005,302:233-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700