硅基介孔材料改性吸附/捕集CO_2研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
诸多科学研究结果表明,人类活动造成了全球变暖和气候变化,这引起了全世界的极大关切。政府间气候变化委员会(IPCC)在其报告中特别指出,CO_2对全球变暖和气候变化的影响最大,是最为重要的温室气体。CO_2的捕集与封存(CCS)是减少温室气体CO_2排放的最有效手段之一。
     本文旨在利用吸附的方法,通过对硅基介孔材料表面改性来捕集分离CO_2。经过X射线光电子能谱(XPS)、X射线衍射(XRD)、能谱仪(EDS)、透射电镜(TEM)及扫描电镜(SEM)等多种方法分析表明乙酸铅浸渍于硅基介孔材料表面后经过焙烧变为PbO。本文分别研究了无水和水存在的条件下PbO/SilicaGel、PbO/SBA-15及PbO/MCM-41等硅基介孔材料改性吸附剂对CO_2的吸附效果,同时研究了这些材料对混合气中CO_2的吸附分离效果。结果表明,这些改性材料在水存在的条件下之所以能吸附CO_2的原因在于其表面的PbO与CO_2发生了化学反应,其对CO_2的吸附量与所负载PbO的量成正比。实验中PbO/SilicaGel、PbO/SBA-15和PbO/MCM-41三种吸附剂对CO_2的吸附量分别达到了240.86mg·g~(-1)、229.89mg·g~(-1)和273.93mg·g~(-1),并且,随着PbO负载量的增加,硅基改性吸附剂会吸附更多的CO_2,但此时需要更长的时间达到吸附平衡,这便失去了快速捕集CO_2的意义。实验发现,硅基改性吸附剂在PbO单层分散时捕集CO_2的速度最快,此时PbO/Silica Gel、PbO/SBA-15和PbO/MCM-41三种吸附剂的CO_2平衡吸附量分别为116.38mg·g~(-1)、163.54mg·g~(-1)和184.79mg·g~(-1)。
     密闭空间中CO_2的浓度高于2%时人便不再适于置留其间,本文中以CO_2含量13.03%的原料气在所制备的硅基改性吸附剂上测试穿透实验,结果显示PbO/Silica gel、PbO/SBA-15和PbO/MCM-41三种吸附剂在水汽存在条件下均能让穿过其间的原料气中CO_2的浓度长时间保持在2%以下,三种吸附剂在PbO单层分散时对原料气中CO_2的吸附量分别达到58.4mg·g~(-1)、80.6mg·g~(-1)和102.2mg·g~(-1)。这表明,本文中所制备的吸附剂不仅能够快速吸附纯CO_2气体,还能捕集碳含量较低的混合气中的CO_2,是一种适用于密闭空间中CO_2捕集的新型改性吸附剂。
     化学吸附剂的再生往往较为困难,本文中通过将吸附饱和的硅基改性吸附剂在氮气保护条件下于380℃焙烧3个小时即可再生,经过循环测试,发现再生后的吸附剂吸附捕集CO_2的效果依然良好,因此,用PbO改性硅基介孔材料后所得的吸附剂是一种比较理想的CO_2捕集和分离材料。
Many scientific reports show that human intervention has caused Earth’s currenttemperature and climate changes, and this is a matter of immense concern. TheReports by Intergovernmental Panel on Climate Change (IPCC) suggest that CO_2isthe most important greenhouse gas due to its greatest effect on global warming andclimate changes. CO_2Capture and Storage is one of the most effective measures forgreenhouse carbon oxide emission reduction.
     The mean body of this paper aims to research capture and separation CO_2usingmodified silicon-based mesoporous materials through adsorption method. By way ofX ray photoelectron spectroscopy (XPS), X ray diffraction (XRD), energy dispersivespectrometer (EDS), transmission electron microscope (TEM) and scanning electronmicroscope (SEM), the analysis result of experiments indicated that acetic acid leadimpregnated on a silicon surface into PbO by roasting. In this study, CO_2adsorption inthe presence and absence of H2O was investigated on different modified silicon-basedmesoporous materials including lead oxide modified silica gel (PbO/Silica gel), leadoxide modified SBA-15(PbO/SBA-15), as well as lead oxide modified MCM-41(PbO/MCM-41). It is shown that the reason these modified silicon-based mesoporousmaterials adsorb CO_2is that there is a chemical reaction tetween CO_2and PbO scattedon the silica-based mesoporous materials at the existence of water, and the CO_2adsorption quantity is proportional to the amount of and PbO. In the experiments themaximum CO_2adsorption amount of three adsorbents inculuding PbO/Silica gel,PbO/SBA-15and PbO/MCM-41reached to240.86mg·g~(-1),229.89mg·g~(-1)and273.93mg·g~(-1)respectively. The results show that, with the increasing of PbO loaded.Modified silicon-based adsorbents can adsorb more CO_2, but at the longer timerequired to reach adsorption equilibrium, which will be meanless for caputre CO_2rapidly. The study shows that lead oxide modified silicon-based porous materialscapture CO_2fastest when PbO dispersed as a monolayer, meanwhile, the equilibriumCO_2adsorption capacity of PbO/Silica gel, PbO/SBA-15and PbO/MCM-41is116.38mg·g~(-1),163.54mg·g~(-1)and184.79mg·g~(-1)respectively.
     The CO_2concentration that is over2%in enclosed chamber will be unsuitablefor healthy.13.03%of the CO_2content of the raw gas is uesd to test penetration experiment in modified silicon adsorbents. The result shows these three kinds ofadsorbents, PbO/Silica gel, PbO/SBA-15and PbO/MCM-41, can make CO_2concentration of gas mixture under2%for a long time in the water vapor condition,and the CO_2adsorption capacity of gas mixture by these three adsorbents is58.4mg·g~(-1),80.6mg·g~(-1)and102.2mg·g~(-1)respectively, which indicates the adsorbentsprepared by this method can not only rapidly adsorb pure CO_2gas, but also cancapture CO_2from low carbon content of mixture and they are new adsorbents beingapplied to capture CO_2in enclosed chamber.
     Chemical adsorbent is always much harder to be regenerated. In this paper, thesilica-based-functionalized adsorbents that adsorbed maximumly can be regeneratedat380℃for3hours under the protection of nitrogen. It is found that regeneratedabsorbents have a good effect of adsorption for capture and store carbon dioxide afterseveral cyclings. So lead oxide modified silicon-based porous materials are ideal CO_2capture and separation adsorbents.
引文
[1] IPCC, Climate Change2007: Synthesis Report. Contribution of Working Groups I,II and III to the Fourth Assessment Report of the Intergovernmental Panel onClimate Change, Geneva: IPCC,2007
    [2] IPCC, Climate Change2001: The Scientific Basis. Contribution of WorkingGroup I to the Third Assessment Report of the Intergovernmental Panel onClimate Change, Cambridge: Cambridge University Press,2001
    [3] Mitchell J. F. B., The greenhouse effect and climate change, Reviews ofGeophysics,1989,27(1):115~139
    [4] Petit J. R., Jouzel J., Raynaud D., et al., Climate and atmospheric history of thepast420000years from the Vostok ice core, Antarctica, Nature,1999,399(6735):429~436
    [5] Karl T. R., Trenberth K. E., Modern Global Climate Change, Science,2003,302(5651):1719~1723
    [6] Lashof D. A., The dynamic greenhouse: Feedback processes that may influencefuture concentrations of atmospheric trace gases and climatic change, ClimaticChange,1989,14(3):213~242
    [7] Huber M., Knutti R., Anthropogenic and natural warming inferred from changesin Earth’s energy balance, Nature Goescience,2012,5:31~36
    [8] Standing T. H., Climate change projections hinge on global CO2, temperature data,Oil&Gas Journal,2001,99(46):20~22,24,26
    [9] Fourier J., Remarques Générales Sur Les Températures Du Globe Terrestre Et DesEspaces Planétaires, Annales de Chimie et de Physique,1824,27:136~167
    [10] Rotty R. M., Past and future emission of CO2, Cellular and Molecular LifeSciences,1980,36(7):781~783
    [11]迪安(Dean J. A.),兰氏化学手册(第二版)(魏俊发,等,译),北京:科学出版社,2003
    [12] Madsen E., Effect of CO2concentration on growth and fruit production of tomatoplants, Acta Agriculturae Scandinavica,1974,24(3):242~246
    [13] Fierro A., Tremblay N., Gosselin A., Supplemental Carbon Dioxide and LightImproved Tomato and Pepper Seedling Growth and Yield, HortScience,1994,29(3):152~154
    [14]汪廷魁,李中华,郭厚文,等,CO2处理种子灭菌防病的方法及应用,安徽农业科技,2006,34(3):525~526
    [15]江怀友,沈平平,卢颖,等,CO2提高世界油气资源采收率现状研究,特种油气藏,2010,17(2):5~10
    [16] Prusty B. K., Sorption of methane and CO2for enhanced coalbed methanerecovery and carbon dioxide sequestration, Journal of Nature Gas Chemistry,2008,17(1):29~38
    [17] B wadt W., Johansson B., Wunderli S., et al., Independent comparison ofSoxhlet and supercritical fluid extraction for the determination of PCBs in anIndustrial soil, Analytical Chemistry,1995,67(14):2424~2430
    [18]张玉红,温慧,黄檗中小檗碱的超临界二氧化碳萃取工艺研究,林产化学与工业,2010,30(4):103~106
    [19]陈立秋,超临界二氧化碳染色的技术进步,纺织导报,2008,6:87~89
    [20]李佐花,液体CO2作发泡剂的聚氨酯软泡生产工艺及设备,聚氨酯工艺,2006,21(1):39~41
    [21]靳治良,钱玲,吕功煊,二氧化碳化学——研究与展望,化学进展,2010,22(6):1102~1115
    [22]艾尚坤,周定,孙金镖,等,Sabatier反应低温催化剂研究,航天医学与医学工程,1999,13(4):278~280
    [23] Omae I., Aspects of carbon dioxide utilization, Catalysis Today,2006,115(1~4):33~52
    [24] Kusama H., Okabe K., Sayama K., et al., Ethanol synthesis by catalytichydrogenation of CO2over Rh-Fe/SiO2catalysts, Energy,1997,22(2~3):343~348
    [25] Tamaura Y., Tahata M., Complete reduction of carbon dioxide to carbon usingcation-excess magnetite, Nature,1990,346(6281):255~256
    [26]高建平,向辉,二氧化碳和环氧化合物合成生物降解塑料,天然气化工,2004,29(2):55~57
    [27] Lou Z. S., Chen Q. W., Zhang Y. F., et al., Diamond Formation by Reduction ofCarbon Dioxide at Low Temperatures, Journal of the American Chemical Society,2003,125(31):9302~9303
    [28]郭庆杰,温室气体二氧化碳捕集和利用技术进展,北京:化学工业出版社,2010
    [29] Scambos T. A., Hulbe C., Fahnestock M., et al., The link between climatewarming and break-up of ice shelves in the Antarctic Peninsula. Journal ofGlaciology,2000,46(154):516~530
    [30] Rothrock D. A., Yu Y., Maykut G. A., Thinning of the Arctic sea-ice cover,Geophysical Research Letters,1999,26(23):3469~3472
    [31] Meehl G. A.,Washington W. M, Collins W. D., et al., How much more globalwarming and sea level rise, Science,2005,307(5716):1769~1772
    [32] Marquis M., Tans P., Carbon crucible, Science,2008,320(5875):460~461
    [33]刘芳,再生氨法脱除燃煤电厂烟气中二氧化碳的实验研究[博士学位论文],北京;清华大学,2009
    [34] Lüthi D., Floch M. L., Bereiter B., High-resolution carbon dioxide concentrationrecord650000~800000years before present, Nature,2008,453(7193):379~382
    [35]庞刚生,煤炭液化技术及其发展意义,科技情报开发与经济,2006,16(9):160~162
    [36] Caldeira K., Wickett M. E., Oceanography: Anthropogenic carbon and ocean pH,Nature,2003,425(6956):365
    [37] Archer D., Eby M., Brovkin V., et al., Atmospheric lifetime of fossil fuel carbondioxide, Annual Review of Earth and Planetary Sciences,2009,37:117~134
    [38] Schrag D. P., Preparing to Capture Carbon, Science,2007,315(5813):812~813
    [39] IEA, Technology Roadmap: Carbon capture and storage, International EnergyAgency,2009
    [40] MIT, the Future of Coal—Options for a Carbon-Constrained World,Massachusetts Institute of Technology,2007
    [41] Working Group III of the Intergovernmental Panel on Climate Change, IPCCspecial report on carbon dioxide capture and storage, Cambridge: CambridgeUniversity Press,2005
    [42]闵剑,加璐,我国碳捕集与封存技术应用前景分析,石油石化节能与减排,2011,1(2):21~27
    [43] Nozaki T., Takano S., Kiga T., et al., Analysis of the flame formed duringoxidation of pulverized coal by an O2-CO2mixture, Energy,1997,22(2~3):199~205
    [44] TanY. W., Croiset E., Douglas M. A., et al., Combustion characteristics of coalin a mixture of oxygen and recycled flue gas, Fuel,2006,85(4):507~512
    [45] Croiset E., Thambimuthu K. V., NOx and SO2emissions from O2/CO2recyclecoal combustion, Fuel,2001,80(14):2117~2121
    [46] Buhre B. J. P., Elliott L. K., Sheng C. D., et al., Oxyfuel combustion technologyfor coal-fired power generation, Progress in Energy Combustion Science,2005,31(4):283~307
    [47] Scheffknecht G., Leema A. M., Schnell U., Oxy-fuel coal combustion-A reviewof the current state-of-the-art, International Journal of Greenhouse Gas Control,2011,5S: S16~S35
    [48] Bhown A. S., Freeman B. C., Analysis and Status of Post-Combustion CarbonDioxide Capture Technologies, Environmental Science&Technology,2011,45(20):8624~8632
    [49] Samanta A., Zhao A., Shimizu G. K. H., et al., Post-Combustion CO2CaptureUsing Solid Sorbents: A Review, Industrial&Engineering Chemistry Research,2012,51(4):1438~1463
    [50]郑晓鹏,海上天然气田伴生CO2的海上捕集及回注技术,中国造船,2007,48(B11):297~302
    [51] Moritis G., CO2sequestration adds new dimension to oil,gas production, Oil andGas Journal,2003,101(9):71~83
    [52] Wright I. W., The In Salah gas CO2storage project, IPTC11326,2007
    [53]国际能源署(IEA),二氧化碳捕集与封存:碳减排的关键选择(能源与环境政策研究中心(CEEP)译),北京:中国环境科学竖版社,2010
    [54] Franklin M. O. J., Onshore Geologic Storage of CO2, Science,2009,325(5948):1656~1658
    [55] van der Meer L. G. H., Computer modeling of underground CO2storage, EnergyConservation Management,1996,37(6~8):1155~1160
    [56] Schrag D. P., Storage of Carbon Dioxide in Offshore Sediments, Science,2009,325(5948):1658~1659
    [57] Luyssaert S., Schulze E.–D., B rner A., Old-growth forests as global carbonsinks, Nature,2008,455:213~215
    [58] Jou F.Y., Mather A. E, Otto F. D., The solubility of CO2in a30mass percentmonoethanolamine solution, the Canadian Journal of Chemical Engineering,1995,73(1):140~147
    [59] Kennard M. L., Meisen A., Solubility of carbon dioxide in aqueousdiethanolamine solutions at elevated temperatures and pressures, Journal ofChemical Engineering Data,1984,29(3):309~312
    [60] Yu W. C., Astarita G., Kinetics of carbon dioxide absorption in solutions ofmethyldiethanolamine, Chemical Engineering Science,1985,40(8):1585~1590
    [61] Bishnoi S., Rochelle G. T., Absorption of carbon dioxide in aqueouspiperazine/methyldiethanolamine, AIChE Journal,2002,48(12):2788~2799
    [62] Dubois L., Thomas D., CO2Absorption into Aqueous Solutions ofMonoethanolamine, Methyldiethanolamine, Piperazine and their Blends,Chemical Engineering Technology,2009,32(5):710~718
    [63] Aronu U. E., Svendsen H. F., Hoff K. A., et al., Solvent selection for carbondioxide absorption, Energy Procedia,2009,1(1):1051~1057
    [64] Amann J. M. G., Bouallou C., A New Aqueous Solvent Based on a Blend ofN-MethylDiEthanolAmine and TriEthylene TetrAmine for CO2Recovery inPost-Combustion: Kinetics Study, Energy Procedia,2009,1(1):901~908
    [65] Bai H., Yeh A. C., Removal of CO2Greenhouse Gas by Ammonia Scrubbing,Industrial and Engineering Chemistry Research,1997,36(6):2490~2493
    [66] Yeh A. C., Bai H., Comparison of ammonia and monoethanolamine solvents toreduce CO2greenhouse gas emissions, Science of the Total Environment,1999,228(2~3):121~133
    [67] You J. K., Park H., Yang S. H., et al., Influence of additives including amine andhydroxyl groups on aqueous ammonia absorbent for CO2capture, Journal ofPhysical Chemistry B,2008,112(14):4323~4328
    [68]张阿玲,温室气体CO2的控制和回收利用,北京:中国环境出版社,1996
    [69] Powell C. E., Qiao G. G., Polymeric CO2/N2gas separation membranes for thecapture of carbon dioxide from power plant flue gases, Journal of MembraneScience,2006,279(1~2):1~49
    [70] Linga P., Adeyemo A., Englezos P., Medium-Pressure Clathrate Hydrate/Membrane Hybrid Process for Post-combustion Capture of Carbon Dioxide,Environmental Science&Technology,2007,42(1):315~320
    [71] Ho M. T., Leamon G., Allinson G. W., et al., Economics of CO2and Mixed GasGeosequestration of Flue Gas Using Gas Separation Membranes, Industrial andEngineering Chemistry Research,2006,45(8):2546~2552
    [72] Zou J., Ho W. S. W., CO2-selective polymeric membranes containing amines incrosslinked poly (vinyl alcohol), Journal of Membrane Science,2008,286(1~2):301~321
    [73] Huang J., Zou J., Ho W. S. W., Carbon Dioxide Capture Using a CO2-SelectiveFacilitated Transport Membrane, Industrial and Engineering Chemistry Research,2008,47(4):1261~1267
    [74] Takamura Y., Narita S., Aoki J., Evaluation of dual-bed pressure swingadsorption for CO2recovery from boiler exhaust gas, Separation andPurification Technology,2001,24(3):519~528
    [75] Yoshida M., Ritter J. A., Kodama A., Enriching Reflux and Parallel EqualizationPSA Process for Concentrating Trace Components in Air, Industrial andEngineering Chemistry Research,2003,42(8):1795~1803
    [76] Chou C. T., Wu C. L., Chiang A. S. T., A complementary pressure swingadsorption process configuration for air separation, Separations Technology,1994,4(2):93~103
    [77] Alpay E., Chatsiriwech D., Kershenbaum L. S., Combined reaction andseparation in pressure swing processes, Chemical Engineering Science,1994,49(24):5845~5864
    [78]陈健,古共伟,郜豫川,我国变压吸附技术的工业应用现状及展望,化工进展,1998,1:14~17
    [79] Bond G. M., Stringer J., Brandvold D. K., et al., Development of IntegratedSystem for Biomimetic CO2Sequestration Using the Enzyme CarbonicAnhydrase, Energy&Fuels,2001,15(2):309~316
    [80] Bhattacharya S., Nayak A., Shiavone M., et al., Solubilization and concentrationof carbon dioxide: Novel spray reators with immobilized carbonic anhydrase,Biotechnology and Bioengineering,2004,86(1):37~46
    [81] Cheng L., Zhang L., Chen H., et al., Carbon dioxide removal from air bymicroalgae cultured in a membrane-photobioreactor, Separation and PurificationTechnology,2006,50(3):324~329
    [82] Skj nes K., Lindblad P., Muller J., BioCO2–A multidisciplinary, biologicalapproach using solar energy to capture CO2while producing H2and high valueproducts, Biotechnology and Bioengineering,2007,24:405~413
    [83]李天成,冯霞,李鑫钢,二氧化碳处理技术现状及其发展趋势,化学工业与工程,2002,19(2):191~196,215
    [84]费维扬,艾宁,陈健,温室气体CO2的捕集和分离——分离技术面临的挑战与机遇,化工进展,2005,24(1):1~4
    [85]高洁,郭斌,温室气体二氧化碳的回收与资源化,污染防治技术,2007,20(1):56~59
    [86] Chue K. T., Kim J. N., Yoo Y. J., Comparison of Activated Carbon and Zeolite13X for CO2Recovery from Flue Gas by Pressure Swing Adsorption,Industrialand Engineering Chemistry Research,1995,34(2):591~598
    [87] Chou C. T., Chao-Yuh Chen C. Y., Carbon dioxide recovery by vacuum swingadsorption, Separation and Purification Technology,2004,39(1~2):51~65
    [88] Skarstrom C. W., Method and apparatus for fractionating gaseous mixtures byadsorption, USA,2944627,1960
    [89]冯孝庭,吸附分离技术,北京:化学工业出版社,2000
    [90]徐东,张军,李刚,等,电厂废气中饱和水蒸气对活性炭变压吸附捕集CO2的影响,燃料化学学报,2011,39(3):169~174
    [91] Ho M. T., Allinson G. W., Wiley D. E., Reducing the Cost of CO2Capture fromFlue Gases Using Pressure Swing Adsorption, Industrial and EngineeringChemistry Research,2008,47(14):4883~4890
    [92] Merel J., Clausse M., Meunier F., Experimental Investigation on CO2Post-Combustion Capture by Indirect Thermal Swing Adsorption Using13Xand5A Zeolites, Industrial and Engineering Chemistry Research,2008,47(1):209~215
    [93] Fabuss B. M., Dubois W. H., Carbon adsorption-electrodesorption process,63rdAnnual Meeting of the Air Pollution Control Association, St Louis, MO,1970
    [94] Petkovska M., Tondeur D., Grevillot G., et al., Temperature-Swing GasSeparation with Electrothermal Desorption Step, Separation Science andTechnology,1991,26(3):425~444
    [95] An H., Feng B., Su S., CO2capture by electrothermal swing adsorption withactivated carbon fibre materials, International Journal of Greenhouse GasControl,2011,5(1):16~25
    [96] Wong S., Bioletti R., Carbon dioxide separation technologies, Carbon&EnergyManagement, Edmonton: Alberta Research council,2002
    [97] Grande C. A., Ribeiro R. P. P. L., Rodrigues A. E., CO2Capture from NGCCPower Stations using Electric Swing Adsorption (ESA),Energy&Fuels,2009,23(5):2797~2803
    [98]近藤精一,石川达熊,安部郁夫,吸附科学(第二版)(李国希,译),北京:化学工业出版社,2005
    [99] IUPAC, Manual of Symbols and Terminology, Pure and Applied Chemistry,1972,31:578~680
    [100] Ahmadpour A., Do D. D., The preparation of active carbon from coal bychemical and physical activation, Carbon,1996,34(4):471~479
    [101] Wigmans T., Industrial aspects of production and use of activated carbon,Carbon,1989,27(1):13~22
    [102] Jagtoyen M., Thwaites M., Stencel J., et al., Adsorbent carbon synthesis fromcoals by phosphoric acid activation, Carbon,1992,30(7):1089~1096
    [103] Illán-Gómez M. J., García-García A., Salinas-Mart nezde C., et al., ActivatedCarbons from Spanish Coals.2. Chemical Activation, Energy&Fuels,1996,10(5):1108~1114
    [104]凯利,巴德,活性炭及其工业应用(魏同成,译),北京:中国环境科学出版社,1990
    [105] Barrer R. M., Denny P. J., Hydrothermal chemistry of the silicates, Journal ofthe Chemical Society,1961,971~982
    [106]徐如人,庞文琴,屠昆岗,等,沸石分子筛的结构与合成,吉林:吉林大学出版社,1987
    [107]徐文旸,李瑞丰,曹景慧,等,硅沸石-2在合成气制低碳烯烃中的催化作用,燃料化学学报,1989,17(2):104~110
    [108] Bibby D. M., Dale M. P., Synthesis of silica-sodalite from non-aqueous systems,Nature,1985,317:157~158
    [109]商连第,王宗兰,揣效忠,等,八种晶型氧化铝的研制与鉴别,化学世界,1994(7):346~350
    [110]马云杰,黄高山,活性氧化铝制备及改性,广东化工,2010,37(11):77~78,83
    [111] Rousseau R. W., Handbook of Separation Processes Technology, New York:John Wiley&Sons,1987
    [112] Yang R. T., Adsorbents: Fundamentals and Applications, Hoboken: Wiley-Interscience,2003
    [113] Yong Z., Mata V., Rodrigues A. E., Adsorption of carbon dioxide at hightemperature—A review, Separation and Purification Technology,2002,26(2~3):195~205
    [114] Sayari A., Belmabkhout Y., Serna-Guerrero R., Flue gas treatment via CO2adsorption, Chemical Engineering Journal,2011,171(3):760~774
    [115] Li J. R., Sculley J. L., Zhou H.C., Metal-Organic Frameworks for Separations,Chemical Reviews,2012,112(2):869~932
    [116] Kikkinides E. S., Yang R. T., Cho S. H., Concentration and recovery of CO2from flue gas by pressure swing adsorption, Industrial and EngineeringChemistry Research,1993,32(11):2714~2720
    [117] Cinke M., Li J., Bauschlicher Jr. C. W., et al., CO2adsorption in single-walledcarbon nanotubes, Chemical Physics Letter,2003,376(5~6):761~766
    [118] Ghosh A., Subrahmanyam K. S., Krishana K. S., et al., Uptake of H2and CO2by grapheme, Journal of Physical Chemistry C,2008,112(40):15704~15707
    [119] Burchell T. D., Judkins R. R., Rogers M. M., et al., A novel process andmaterial for the separation of carbon dioxide and hydrogen sulfide gas mixtures,Carbon,1997,35(9):1279~1294
    [120] Na B. K., Koo K. K., Eum H. M., et al., CO2recovery from flue gas by PSAprocess using activated carbon, Korean Journal of Chemical Engineering,2001,18(2):220~227
    [121] Do D. D., Wang K., A new model for the description of adsorption kinetics inheterogeneous activated carbon, Carbon,1998,36(10):1539~1554
    [122] Wang Y., Zhou Y., Liu C., et al., Comparative studies of CO2and CH4sorptionon activated carbon in presence of water, Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,322(1~3):14~18
    [123] Przepiórski J., Skrodzewicz M., Morawski A. W., High temperature ammoniatreatment of activated carbon for enhancement of CO2adsorption, AppliedSurface Science,2004,225(1~4):235~242
    [124] Zhang Y., Maroto-Valer M. M., Tang Z., Microporous activated carbonsproduced from unburned carbon fly ash and their application for CO2capture,Fuel Chemistry Division Preprints,2004,49:304~305
    [125] Cavenati S., Grande C. A., Rodrigues A. E., Adsorption equilibrium of methane,carbon dioxide, and nitrogen on zeolite13X at high pressures, Journal ofChemical&Engineering Data,2004,49(4):1095~1101
    [126] Harlick P. J. E., Tezel F. H., An experimental adsorbent screening study forCO2removal from N2, Microporous and Mesoporous Materials,2004,76(1~3):71~79
    [127] Siriwardane R. V., Shen M. S., Fisher E. P., et al., Adsorption of CO2onmolecular sieves and activated carbon, Energy&Fuels,2001,15(2):279~284
    [128] Siriwardane R. V., Shen M. S., Fisher E. P., Adsorption of CO2, N2, and O2onnatural zeolites, Energy&Fuels,2003,17(3):571~576
    [129] Klinowski J., Paz F. A. A., Silva P., et al., Microwave-Assisted Synthesis ofMetal–Organic Frameworks, Dalton Transactions,2011,40:321~330
    [130] Parnham E. R., Morris R. E., Ionothermal Synthesis of Zeolites, Metal–OrganicFrameworks, and Inorganic–Organic Hybrids, Account of Chemical Research,2007,40(10):1005~1013
    [131] Garay A. L., Pichon A., James S. L., Solvent-free synthesis of metal complexes,Chemical Society Reviews,2007,36:846~855
    [132] Rocca D. C., Liu D., Lin W., et al., Nanoscale Metal–Organic Frameworks forBiomedical Imaging and Drug Delivery, Account of Chemical Research,2011,44(10):957~968
    [133] Furukawa H., Ko N., Go Y. B., et al., Ultrahigh Porosity in Metal-OrganicFrameworks, Science,2010,329(5990):424~428
    [134] Murray L. J., Dincǎ M., Long R., Hydrogen storage in metal–organicframeworks, Chemical Society Reviews,2009,38(5):1294~1314
    [135] Li J. R., Kuppler R. J., Zhou H. C., Selective gas adsorption and separation inmetal–organic frameworks, Chemical Society Reviews,2009,38(5):1477~1504
    [136] Allendorf M. D., Bauer C. A., Bhakta R. K., et al., Luminescent metal–organicframeworks, Chemical Society Reviews,2009,38(5):1330~1352
    [137] Rosseinsky M. J., Recent developments in metal–organic framework chemistry:design, discovery, permanent porosity and flexibility. Microporous andMesoporous Materials,2004,73(1~2):15~30
    [138] Kurmoo M., Magnetic metal-organic frameworks, Chemical Society Reviews,2009,38(5):1353~1379
    [139] Meek S. T., Greathouse J. A., Allendorf M. D., et al., Metal-OrganicFrameworks: A Rapidly Growing Class of Versatile Nanoporous Materials,Advanced Materials,2011,23(2):249~267
    [140] Lee J. Y., Farha O. K., Roberts J., et al., Metal–organic framework materials ascatalysts, Chemical Society Reviews,2009,38(5):1450~1459
    [141] Zhang Z., Huang S., Xian S., et al., Adsorption Equilibrium and Kinetics of CO2on Chromium Terephthalate MIL-101F, Energy&Fuels,2011,25(2):835~842
    [142] Tan C., Yang S., Champness N. R., et al., High capacity gas storage by a4,8-connected metal–organic polyhedral framework, Chemical Communications,2011,47:4487~4489
    [143] Liang Z., Marshall M., Chaffee A. L., CO2adsorption-based separation bymetal organic framework (Cu-BTC) versus zeolite (13X), Energy and Fuels,2009,23(5):2785~2789
    [144] Zhang J., Xue Y. S., Liang L. L., et al., Porous coordination polymers oftransition metal sulfides with PtS topology built on a semirigid tetrahedrallinker, Inorganic Chemistry,2010,49(17):7685~7691
    [145] Cavenati S., Grande C. A., Rodrigues A. E., Metal Organic FrameworkAdsorbent for Biogas Upgrading, Industrial and Engineering ChemistryResearch,2008,47(16):6333~6335
    [146] Arstad B., Fjellv g H., Kongshaug K. O., et al., Amine functionalised metalorganic frameworks (MOFs) as adsorbents for carbon dioxide, Adsorption,2008,14(6):755~762
    [147] Couck S., Denayer J. F. M., Baron G. V., et al., An Amine-FunctionalizedMIL-53Metal-Organic Framework with Large Separation Power for CO2andCH4, Journal of the American Chemical Society,2009,131(18):6326~6327
    [148] Yong Z., Mata V., Rodrigues A. E., Adsorption of carbon dioxide at hightemperature—a review, Separation and Purification Technology,2002,26(2~3):195~205
    [149] Colombo G. V., Mills E. S., Regenerative Separation of Carbon Dioxide viaMetallic Oxide, Chemical Engineering Progress Symposium Series,1966,62(63):89~95
    [150] Feng B., An H., Tan E., Screening of CO2Adsorbing Materials for ZeroEmission Power Generation Systems, Energy&Fuels,2007,21(2):426~434
    [151] Salvador C., Lu D., Anthony E. J., et al., Enhancement of CaO for CO2capturein an FBC environment,Chemical Engineering Journal,2003,96(1~3):187~195
    [152] Abanades J. C., Alvarez D., Conversion Limits in the Reaction of CO2withLime, Energy&Fuels,2003,17(2):308~315
    [153]蔡翘,封根泉,杨元辅等,航空与空间医学基础,北京:国防工业出版社,1979
    [154]张文明,林水成,国外关于密闭环境中二氧化碳对机体的影响及其卫生标准研究概况,解放军预防医学杂志,1994,12(1):83~86
    [155] Blair T. L., Lead oxide technology—Past, present, and future, Journal of PowerSources,1998,73(1):47~55
    [156] Bruzs B., Velocity of Thermal Decomposition of Carbonates, the Journal ofPhysical Chemistry,1926,30(5):680~693
    [157] Brunauer S., Deming L. S., Deming W. D., et al., On a Theory of the van derWaals Adsorption of Gases, Journal of the American Chemical Society,1940,62(7):1723~1732
    [158] Sing K. S. W., Everett D. H., Haul R. A. W., et al., Reporting physisorptiondata for gas/solid systems with special reference to the determination of surfacearea and porosity,Pure and Applied Chemistry,1985,57(4):603~619
    [159] Gregg S. J., Sing K. S. W., Adsorption, Surface Area and Porosity, London:Academic Press,1982
    [160] Langmuir I., the Adsorption of Gases on Plane Surfaces of Glass, Mica andPlatinum, Journal of the American Chemical Society,1918,40(9):1361~1403
    [161] Brunauer S., Emmett P. H., Teller E., Adsorption of Gases in MultimolecularLayers, Journal of the American Chemical Society,1938,60(2):309~319
    [162] Rouquerol F., Rouquerol J., Sing K., Adsorption by powders and porous solids,London: Academic Press,1999
    [163] Sing K. S. W., Adsorption methods for the characterization of porous materials,Advances in Colloid and Interface Science,1998,76~77:3~11
    [164] Kruk M., Jaroniec M., Choma J., Comparative analysis of simple and advancedsorption methods for assessment of microporosity in activated carbons, Carbon,1998,36(10):1447~1458
    [165] Setoyama N., Suzuki T., Kaneko K., Simulation study on the relationshipbetween a high resolution αs-plot and the pore size distribution for activatedcarbon, Carbon,1998,36(10):1459~1467
    [166] McKee D. W., The Sorption of Hydrocarbon Vapors by Silica Gel, Journal ofChemical Physics,1959,63(8):1256~1259
    [167] Barrett E. P., Joyner L. G., Halenda P. P., The Determination of Pore Volumeand Area Distributions in Porous Substances. I. Computations from NitrogenIsotherms, Journal of the American Chemical Society,1951,73(1):373~380
    [168] Kruk M., Jaroniec M., Adsorption Study of Surface and Structural Properties ofMCM-41Materials of Different Pore Sizes, Journal of Physical Chemistry B,1997,101:583~589
    [169]金克新,赵传钧,马沛生,化工热力学,天津:天津大学出版社,1990
    [170]孙艳,多孔介质储气研究[博士学位论文],天津:天津大学,2007
    [171] Yang R. T.,吸附法气体分离,(王树森,等,译),北京:化学工业出版社,2009
    [172] Do D. D., Adsorption analysis: Equilibria and Kinetics, London: ImperialCollege Press,1998
    [173] Ruthven D. M., Principles of Adsorption and Adsorption Processes, New York:John&Wiley,1984
    [174]熊洪允,曾绍标,毛云英,应用数学基础,天津:天津大学出版社,1994
    [175] Banhart J., Manufacture, characterizationand application of cellular metals andmetal foams, Progress in Materials Science,2001,46(6):559~632
    [176] Kruk M., Jaroniec M., Sang H. J., et al., Characterization of Regular andPlugged SBA-15Silicas by Using Adsorption and Inverse Carbon Replicationand Explanation of the Plug Formation Mechanism, Journal of PhysicalChemistry B,2003,107:2205~2213
    [177]韩喜江,固体材料常用表征技术,哈尔滨:哈尔滨工业大学出版社,2011
    [178] Vickerman J. C., Surface Analysis-The Principal Techniques, Chickester: JohnWiley&Sons,1997
    [179] Iler R. K., The Chemistry of Sicila, New York: John Wiley&Sons,1979
    [180] Jaroniec M., Kruk M., Olivier J. P., Standard Nitrogen Adsorption Data forCharacterization of Nanoporous Silicas, Langmuir,1999,15:5410~5413
    [181] Aristov B. G., Kiselev A. V., Absolute values of adsorption of nitrogen andargon on hydroxylated and dehydroxylated nonporous and wide-porous silicasurfaces, Kolloidnyi Zhurnal,1965,27(3):299~306
    [182]陈永,多孔材料制备与表征,合肥:中国科学技术大学出版社,2010
    [183] Mohamed M. A., Halawy S. A., Ebrahim M. M., Non-isothermal kinetic andthermodynamic study of the decomposition of lead acetate trihydrate,Thermochimica Acta,1994,239:249~262
    [184] Wagner C. D., Riggs W. M., Davis L. E., et al., Handbook of X RayPhotoelectron Spectroscopy, New York: Perkin-Elmer Corporation,1979
    [185]贾贤,材料表面现代分析方法,北京:化学工业出版社,2009
    [186] Briggs D., Seah M. P., Practical Surface Analysis (Second Edition), Volume1:Auger and X-ray Photoelectron Spectroscopy, New York: John Wiley&Sons,1993
    [187] Bru s B., Velocity and thermal decomposition of carbonates, the Journal ofPhisycal Chemistry,1926,30(5):680~693
    [188] Zhao D. Y., Feng J., Huo Q., et al., Triblock Copolymer Syntheses ofMesoporous Silica with Periodic50to300Angstrom Pores, Science,1998,279:548~552
    [189] Zhao D., Huo Q., Feng J., Nonionic Triblock and Star Diblock Copolymer andOligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally StableMesoporous Silica Structures, Journal of the American Chemical Society,1998,120:6024~6036
    [190]刘秀武,有序介孔材料吸附功能研究[博士学位论文],天津:天津大学,2005
    [191]李静雯,SBA-15介孔分子筛制备及其吸附和甲烷存储功能研究[硕士学位论文],天津:天津大学,2006
    [192] Shah P., Ramaswamy V., Lazar K., et al., Synthesis and characterization ofoxide-modified mesoporous SBA-15molecular sieves and catalytic activity intrans-estereification reaction., Applied Catalyst A: General,2004,273(1):239~248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700