针状中孔结构炭基材料的制备及其超电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电极材料是制约超级电容器性能提高的关键,要获得高功率性能,电解液离子在电极材料中的扩散阻力必须要小。多孔炭作为目前最具实用价值的炭电极材料,如何获得最优的电化学性能,依然是研究者们面临的一个巨大挑战。本论文旨在设计、制备具有针状中孔结构且电导率高的多孔炭,以这种笔直的中孔作为离子传输的通道,离子扩散阻力小,多孔炭可以获得优异的倍率性能,并通过与金属氧化物的复合,构建高比能量、高比功率的超级电容器体系。以自制的针状纳米Mg(OH)2/MgO(Mg(OH)2热解后的产物)为模板剂,采用不同的碳前驱体制备了多孔炭,通过氮气吸附、X-射线衍射、透射电镜、循环伏安及恒流充放电等测试方法对材料的结构与性能进行了表征,研究了材料制备工艺对孔结构、形貌等特性的影响,探索了结构特性与电容性能的关系。
     首先以可溶性淀粉为碳前驱体,制备了以中孔为主的多孔炭,总孔容可达3.5cm3g-1,其中中孔孔容占80%以上,中孔炭的结构与性能受炭化工艺影响较大,其比容量较高,倍率性能优异。中孔炭的表面积比容量与其孔径呈对数关系,在约5-12nm的范围内增加较快,随着材料孔径继续增大,其比容量逐渐接近恒定值。发现针状模板剂的存在导致多孔炭中出现局域的类石墨结构,并提出其模板导向形成机制。
     为了获得更高的比容量,分别采用间苯二酚/甲醛有机凝胶和易石墨化的煤焦油沥青为碳前驱体,制备了微孔丰富、中孔发达的多孔炭。针状模板的存在促使基元炭颗粒内部形成大量微孔,使多孔炭比表面积很高,这些微孔与模板脱除后留下的针状中孔形成类仙人柱形貌的层次孔结构,该结构有利于提高微孔在大电流下的利用率。并采用低用量的NaOH对材料进行活化,大大提高了多孔炭的表面积,比容量也大大提高。在6M KOH溶液中,以经硝酸/硫酸氧化的沥青制得的多孔炭的比容量最高达到282F g-1,在50A g-1的电流下容量仍能保持65%。
     进一步采用炭直接还原高锰酸钾的方法,成功的将无定形MnO2负载到中孔炭的孔内部,制得中孔炭/MnO2复合材料。复合材料仍保持多孔性,孔分布的基本特征与基材中孔炭有相似性。因多孔炭成为导电骨架,复合材料的倍率性能较粉体MnO2大大提高。以复合材料为正极、高比容量多孔炭为负极组装的水系非对称电容器体系,表现出高比能量、高比功率的特性。
Electrode material is a key factor for improving supercapacitors performance. Asmall resistance of electrolyte ion diffusion in the electrode material is necessary tohigher power output. Upto now, porous carbon is the best one among the carbonelectrode materials in practical utility. How to realize the optimal electrochemicalpropereis of the porous carbon is a great challenge for the researchers. The work aimsto design and prepare a sort of porous carbon with needle-like mesoporous structureand high conductivity, and then a composite consisting of the porous carbon andmetallic oxide, and subsequently construct a supercapacitor system with high specificenergy and high specific power. Electrolyte ions transfer in such a straight mesopores,the ion diffusion resistance is really low. As a result, the porous carbon will show anexcellent rate performance. In this work, porous carbons were prepared from differentcarbon precursors by needle-like Mg(OH)2/MgO (MgO is the product of the Mg(OH)2pyrolysis) templates. Some testing techniques, such as N2adsorption, X-ray diffraction,Transmission electron microscope (TEM), cyclic voltammetry (CV) and galvanostaticcharge/discharge, were used to characterize the structure and property of theexperiment samples. The effect of manufacturing parameters on the characteristics ofthose samples, such as pore structure and morphology, were studied in detail, and therelation between the structure characteristics and the capacitive capability was alsoinvestigated.
     Firstly, mesoporous carbon was prepared from soluble starch. The highest valueof total pore volume is3.5cm3g-1, in which80%is mesopore volume. Carbonizationtechnics affect the structure and electrochemical property greatly. The prepared carbonmaterials shows a relative high specific capacitance and an excellent rate capability.Specific capacitance normalized by specific surface area and pore diameter show alogarithmic relationship. With the pore diameter increasing, the specific capacitancenormalized by specific surface area increases quickly in the range of5-12nm, thenapproaches a constant value gradually. It is found that a graphite-like domain can beformed in the porous carbon due to the presence of needle like template, and amechanism that the needle-like template act as a director reagent is proposed.
     Then, in order to obtain a higher specific capacitance, porous carbons with largemicropores and abundant mesopores were prepared from resorcinol/formaldehyde-based organic aquagel and coal tar pitch. Due to the needle like template, largemicropores are formed in the inner of the basic carbon particles, resulting in that theprepared porous carbon shows a large specific surface area. Those micropores and themesopores remained after removing template in the porous carbon might form acolumnar cactus-like pore texture, which is favorable to improve the utilization ratio ofthe miropores under a high charge/discharge current. Through small amounts of NaOHactivation, the specific surface area of the porous carbon increased greatly, resulting ina great improvement of the capacitance. In6M KOH solution, the porous carbon madefrom coal tar pitch oxidized with nitricacid/vitriol shows a highest specific capacitanceof282F g-1, which could be retained65%under a current density of50A g-1.
     Further, mesoporous carbon/MnO2composite was prepared by the method thatcarbon reduces potassium permanganate directly. Amorphous MnO2is loaded in thepore inner of mesoporous carbon, and the composite shows a porous characteristic.The basic feature of pore size distribution of the composite is similar as that of themesoporous carbon. Carbon acts as the conductive framework, thus the compositeshows a more better rate capability than powder MnO2. An asymmetric aqueoussupercapacitor system is constructed by the carbon/MnO2composite as anode materialand the porous carbon with high capacitance as cathode material, and shows a highspecific energy and high specific power characteristic.
引文
[1] Nishino A. Capacitors: Operating principles, current market and technical trends. J. PowerSources1996;60:137-147.
    [2] Burke A. Ultracapacitors: why, how, and where is the technology. J. Power Sources2000;91:37-50.
    [3] Conway B E. Electrochemical Supercapacitors: Scientific Fundamentals and TechnologicalApplications. Kluwer Academic/Plenum Publishers: New York.1999.
    [4] Kotz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim.Acta2000;45:2483-2498.
    [5] Huggins R A. Supercapacitors and electrochemical pulse sources. Solid State Ion.2000;134:179-195.
    [6] Nomoto S, Nakata H, Yoshioka K, et al. Advanced capacitors and their application. J. PowerSources2001;97-8:807-811.
    [7] Miller R J, Burke A F. Electrochemical capacitors:challenges and opportunities forreal-world applications. The Electrochemical Society Interface2008(spring):53-57.
    [8] Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material forelectrochemical capacitors. J. Electrochem. Soc.1995;142:2699-2703.
    [9] Zheng J P, Jow T R, Jia Q X, et al. Proton insertion into ruthenium oxide film prepared bypulsed laser deposition. J. Electrochem. Soc.1996;143:1068-1070.
    [10]刘海晶,夏永姚.混合型超级电容器的研究进展.化学进展2011;23:595-604.
    [11]程立文,汪继强,谭玲生.超级电容器的技术与应用市场发展简评.电源技术2007;31:921-925.
    [12]李会巧.超级电容器及其相关材料的研究[博士学位论文].上海:复旦大学化学系,2008.
    [13] Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy incapacitors. Carbon2001;39:937-950.
    [14] Salitra G, Soffer A, Eliad L, et al. Carbon electrodes for double-layer capacitors-I. Relationsbetween ion and pore dimensions. J. Electrochem. Soc.2000;147:2486-2493.
    [15] Eliad L, Salitra G, Soffer A, et al. Ion sieving effects in the electrical double layer of porouscarbon electrodes: Estimating effective ion size in electrolytic solutions. J. Phy. Chem. B2001;105:6880-6887.
    [16] Eliad L, Salitra G, Soffer A, et al. Proton-selective environment in the pores of activatedmolecular sieving carbon electrodes. J. Phy. Chem. B2002;106:10128-10134.
    [17] Shi H. Activated carbons and double layer capacitance. Electrochim Acta1996;41:1633-1639.
    [18] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at poresizes less than1nanometer. Science2006;313:1760-1763.
    [19] Huang J S, Sumpter B G, Meunier V. A universal model for nanoporous carbonsupercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.Chem.-Eur. J.2008;14:6614-6626.
    [20] Huang J S, Sumpter B G, Meunier V. Theoretical model for nanoporous carbonsupercapacitors. Angew. Chem. Int. Ed.2008;47:520-524.
    [21] Li H Q, Luo J Y, Zhou X F, et al. An ordered mesoporous carbon with short pore length andits electrochemical performances in supercapacitor applications. J. Electrochem. Soc.2007;154:A731-A736.
    [22] Qu D Y, Shi H. Studies of activated carbons used in double-layer capacitors. J Power Sources1998;74:99-107.
    [23] Yang Y S. Adjustment to properties of porous carbon for electrochemical capacitors. Battery2006;36:34-36.
    [24] Qu D Y. Studies of the activated carbons used in double-layer supercapacitors. J. PowerSources2002;109.
    [25] Rychagov A Y, Urisson N A, Vol'fkovich Y M. Electrochemical characteristics and propertiesof the surface of activated carbon electrodes in a double-layer capacitor. R. J. Electrochem.2001;37:1172-1179.
    [26] Kim C H, Pyun S I, Shin H C. Kinetics of double-layer charging/discharging of activatedcarbon electrodes-Role of surface acidic functional groups. J. Electrochem. Soc.2002;149:A93-A98.
    [27]刘亚菲,胡中华,许琨,等.活性炭电极材料的表面改性和性能.物理化学学报2008;24:1143-1148.
    [28] Bleda-Martinez M J, Macia-Agullo J A, Lozano-Castello D, et al. Role of surface chemistryon electric double layer capacitance of carbon materials. Carbon2005;43:2677-2684.
    [29] Ruiz V, Blanco C, Raymundo-Pinero E, et al. Effects of thermal treatment of activated carbonon the electrochemical behaviour in supercapacitors. Electrochim. Acta2007;52:4969-4973.
    [30] Hsieh C T, Teng H. Influence of oxygen treatment on electric double-layer capacitance ofactivated carbon fabrics. Carbon2002;40:667-674.
    [31] Oda H, Yamashita A, Minoura S, et al. Modification of the oxygen-containing functionalgroup on activated carbon fiber in electrodes of an electric double-layer capacitor. J. PowerSources2006;158:1510-1516.
    [32] Kodama M, Yamashita J, Soneda Y, et al. Preparation and electrochemical characteristics ofN-enriched carbon foam. Carbon2007;45:1105-1107.
    [33] Kodama M, Yamashita J, Soneda Y, et al. Structural characterization and electric double layercapacitance of template carbons. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.2004;108:156-161.
    [34] Jurewicz K, Pietrzak R, Nowicki P, et al. Capacitance behaviour of brown coal based activecarbon modified through chemical reaction with urea. Electrochim. Acta2008;53:5469-5475.
    [35] Hulicova D, Kodama M, Hatori H. Electrochemical performance of nitrogen-enriched carbonsin aqueous and non-aqueous supercapacitors. Chem. Mat.2006;18:2318-2326.
    [36]文越华,曹高萍.纳米玻态炭-超级电容器的新型电极材料.新型炭材料2003;18:219-224.
    [37] Nian Y R, Teng H S. Nitric acid modification of activated carbon electrodes for improvementof electrochemical capacitance. J. Electrochem. Soc.2002;149:A1008-A1014.
    [38] Nian Y R, Teng H S. Influence of surface oxides on the impedance behavior of carbonbasedelectrochemical capacitors. J. Electroanal. Chem.2003;540:119-127.
    [39] Nakamura M, Nakanishi M, Yamamoto K. Influence of physical properties of activatedcarbons on characteristics of electric double-layer capacitors. J. Power Sources1996;60:225-231.
    [40] Yoshida A, Tanahashi I, Nishino A. Effect of concentration of surface acidicfunctional-groups on electric double-layer properties of activated carbon-fibers. Carbon1990;28:611-615.
    [41] Kastening B, Hahn M, Rabanus B, et al. Electronic properties and double layer of activatedcarbon. Electrochim. Acta1997;42:2789-2799.
    [42] Kastening B. A model of the electronic properties of activated carbon. Ber. Bunsen-Ges. Phys.Chem. Chem. Phys.1998;102:229-237.
    [43] Wu F C, Tseng R L, Hu C C, et al. Physical and electrochemical characterization of activatedcarbons prepared from firwoods for supercapacitors. J. Power Sources2004;138:351-359.
    [44] Gryglewicz G, Machnikowski J, Lorenc-Grabowska E, et al. Effect of pore size distribution ofcoal-based activated carbons on double layer capacitance. Electrochim. Acta2005;50:1197-1206.
    [45] Mitani S, Lee S I, Yoon S H, et al. Activation of raw pitch coke with alkali hydroxide toprepare high performance carbon for electric double layer capacitor. J. Power Sources2004;133:298-301.
    [46] Teng H S, Chang Y J, Hsieh C T. Performance of electric double-layer capacitors usingcarbons prepared from phenol-formaldehyde resins by KOH etching. Carbon2001;39:1981-1987.
    [47] Kierzek K, Frackowiak E, Lota G, et al. Electrochemical capacitors based on highly porouscarbons prepared by KOH activation. Electrochim. Acta2004;49:515-523.
    [48] Zhu Y D, Hu H Q, Li W C, et al. Resorcinol-formaldehyde based porous carbon as anelectrode material for supercapacitors. Carbon2007;45:160-165.
    [49]张琳,刘洪波,李步广,等.双电层电容器用酚醛树脂基活性炭的制备.电子元件与材料2005;24:35-38.
    [50] Xing W, Qiao S Z, Ding R G, et al. Superior electric double layer capacitors using orderedmesoporous carbons. Carbon2006;44:216-224.
    [51] Kim C. Electrochemical characterization of electrospun activated carbon nanofibres as anelectrode in supercapacitors. J. Power Sources2005;142:382-388.
    [52] Leitner K, Lerf A, Winter M, et al. Nomex-derived activated carbon fibers as electrodematerials in carbon based supercapacitors. J. Power Sources2006;153:419-423.
    [53] Xu B, Wu F, Chen S, et al. Activated carbon fiber cloths as electrodes for high performanceelectric double layer capacitors. Electrochim. Acta2007;52:4595-4598.
    [54] Lee J G, Kim J Y, Kim S H. Effects of microporosity on the specific capacitance ofpolyacrylonitrile-based activated carbon fiber. J. Power Sources2006;160:1495-1500.
    [55] Wang K P, Teng H S. The performance of electric double layer capacitors using particulateporous carbons derived from PAN fiber and phenol-formaldehyde resin. Carbon2006;44:3218-3225.
    [56] Schmidt M, Schwertfeger F. Applications for silica aerogel products. J. Non-Cryst. Solids1998;225:364-368.
    [57] Hwang S W, Hyun S H. Capacitance control of carbon aerogel electrodes. J. Non-Cryst.Solids2004;347:238-245.
    [58] Zhu Y D, Hu H Q, Li W C, et al. Cresol-formaldehyde based carbon aerogel as electrodematerial for electrochemical capacitor. J. Power Sources2006;162:738-742.
    [59] Pekala R W, Farmer J C, Alviso C T, et al. Carbon aerogels for electrochemical applications. J.Non-Cryst. Solids1998;225:74-80.
    [60] Wei Y Z, Fang B, Iwasa S, et al. A novel electrode material for electric double-layercapacitors. J. Power Sources2005;141:386-391.
    [61] Zhao H X, Zhu Y D, Li W C, et al. Pore structure modification and electrochemicalperformance of carbon aerogels from resorcinol and formaldehyde. New Carbon Mater.2008;23:361-366.
    [62]孟庆函,刘玲,宋怀河,等.炭气凝胶为电极的超级电容器电化学性能的研究.无机材料学报2004;19:593-598.
    [63] Tamon H, Ishizaka H, Yamamoto T, et al. Influence of freeze-drying conditions on themesoporosity of organic gels as carbon precursors. Carbon2000;38:1099-1105.
    [64]郭艳芝,沈军,王珏.常压干燥法制备炭气凝胶.新型炭材料2001;16:55-57.
    [65] Tamai H, Ikeuchi M, Kojima S, et al. Extremely large mesoporous carbon fibers synthesizedby the addition of rare earth metal complexes and their unique adsorption behaviors. Adv.Mater.1997;9:55-58.
    [66] álvarez S, Blanco-Lopez M C, Miranda-Ordieres A J, et al. Electrochemical capacitorperformance of mesoporous carbons obtained by templating technique. Carbon2005;43:866-870.
    [67] Liu H Y, Wang K P, Teng H. A simplified preparation of mesoporous carbon and theexamination of the carbon aceessibility for electric double layer formation. Carbon2005;43:559-566.
    [68] Fuertes A B, Lota G, Centeno T A, et al. Templated mesoporous carbons for supercapacitorapplication. Electrochim. Acta2005;50:2799-2805.
    [69] Yoon S, Oh S M, Lee C W, et al. Pore structure tuning of mesoporous carbon prepared bydirect templating method for application to high rate supercapacitor electrodes. J. Electroanal.Chem.2011;650:187-195.
    [70] Xia Y D, Yang Z X, Mokaya R. Templated nanoscale porous carbons. Nanoscale2010;2:639-659.
    [71] Liang C D, Li Z J, Dai S. Mesoporous carbon materials: Synthesis and modification. Angew.Chem. Int. Ed.2008;47:3696-3717.
    [72] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv.Mater.2006;18:2073-2094.
    [73] Zhang F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly orderedmesoporous polymers and carbon frameworks with Ia(3)over-bard bicontinuous cubicstructure. J. Am. Chem. Soc.2005;127:13508-13509.
    [74] Meng Y, Gu D, Zhang F, et al. A family of highly ordered mesoporous polymer resin andcarbon structures from organic-organic self-assembly. Chem. Mater.2006;18:4447-4464.
    [75] Liang C D, Dai S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bondinginteraction. J. Am. Chem. Soc.2006;128:5316-5317.
    [76] Li W R, Chen D H, Li Z, et al. Nitrogen-containing carbon spheres with very large uniformmesopores: The superior electrode materials for EDLC in organic electrolyte. Carbon2007;45:1757-1763.
    [77] Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route towardapplications. Science2002;297:787-792.
    [78] Niu C M, Sichel E K, Hoch R, et al. High power electrochemical capacitors based on carbonnanotube electrodes. Appl. Phy. Lett.1997;70:1480-1482.
    [79]吴锋,徐斌.碳纳米管在超级电容器中的应用研究进展.新型炭材料2006;21:177-184.
    [80]章仁毅,张小燕,樊华军,等.基于碳纳米管的超级电容器研究进展.应用化学2011;28:489-499.
    [81] Frackowiak E, Metenier K, Bertagna V, et al. Supercapacitor electrodes from multiwalledcarbon nanotubes. Appl. Phys. Lett.2000;77:2421-2423.
    [82] An K H, Jeon K K, Heo J K, et al. High-capacitance supercapacitor using a nanocompositeelectrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc.2002;149:A1058-A1062.
    [83]马仁志,魏秉庆,徐才录,等.应用于超级电容器的碳纳米管电极的几个特点.清华大学学报(自然科学版)2000;40:7-10.
    [84] Jurewicz K, Babel K, Pietrzak R, et al. Capacitance properties of multi-walled carbonnanotubes modified by activation and ammoxidation. Carbon2006;44:2368-2375.
    [85] Brownson D A C, K D, Kampouris, et al. An overview of graphene in energy production andstorage applications. J. Power Sources2011;196:4873–4885.
    [86] Stoller M D, Park S, Zhu Y, et al. Graphene-Based Ultracapacitors. Nano Lett.2008;8:3498-3502.
    [87] Wang Y, Shi Z, Huang Y, et al. Supercapacitor Devices Based on Graphene Materials. J. Phys.Chem. C2009;113:13103–13107.
    [88] Vivekchand S R C, Rout C S, Subrahmanyam K S, et al. Graphene-based electrochemicalsupercapacitors. J. Chem. Sci.2008;120:9-13.
    [89] Dash R K, Nikitin A, Gogotsi Y. Microporous carbon derived from boron carbide. Micropor.Mesopor. Mater.2004;72:203-208.
    [90] Avila-Brande D, Katch N A, Urones-Garrote E, et al. Nano-structured carbon obtained bychlorination of NbC. Carbon2006;44:753-761.
    [91] Smorgonskaya E A, Kyut R N, Danishevskii A M, et al. Ultra-small angle X-ray scatteringfrom bulk nanoporous carbon produced from silicon carbide. Carbon2004;42:405-413.
    [92] J nes A, Thomberg T, Lust E. Synthesis and characterisation of nanoporous carbide-derivedcarbon by chlorination of vanadium carbide. Carbon2007;45:2717-2722.
    [93] Dash R, Chmiola J, Yushin G, et al. Titanium carbide derived nanoporous carbon forenergy-related applications. Carbon2006;44:2489-2497.
    [94] Leis J, Arulepp M, Kuura A, et al. Electrical double-layer characteristics of novelcarbide-derived carbon materials. Carbon2006;44:2122-2129.
    [95] J nes A, Lust E. Electrochemical characteristics of nanoporous carbide-derived carbonmaterials in various nonaqueous electrolyte solutions. J. Electrochem. Soc.2006;153:A113-A116.
    [96] Chmiola J, Yushin G, Dash R, et al. Effect of pore size and surface area of carbide derivedcarbons on specific capacitance. J. Power Sources2006;158:765-772.
    [97] Arulepp M, Leis J, Kuura A. Proceedings of the15th International Seminar on Double LayerCapacitors and Hybrid Energy Storage Devices. Florida Educational Seminar2005:12-21.
    [98] Jow T R, Zheng J P. Electrochemical capacitors using hydrous ruthenium oxide and hydrogeninserted ruthenium oxide. J. Electrochem. Soc.1998;145:49-52.
    [99] Liu X, Pickup P G. Ru oxide supercapacitors with high loadings and high power and energydensities. J. Power Sources2008;176:410-416.
    [100] Takasu Y, Nakamura T, Ohkawauchi H, et al. Dip-coated Ru-V oxide electrodes forelectrochemical capacitors. J. Electrochem. Soc.1997;144:2601-2606.
    [101] Jeong Y U, Manthiram A. Amorphous ruthenium-chromium oxides for electrochemicalcapacitors. Electrochem. Solid State Lett.2000;3:205-208.
    [102] Goodenough J B, Lee H Y, Manivannan V. Supercapacitors and batteries. Solid State IonicsV1999;548:655-665.
    [103] Huang J H, Lai Q Y, Song J M, et al. Capacitive performance of amorphous V2O5forsupercapacitor. Chin. J. Inorg. Chem.2007;23:237-242.
    [104]闪星,张密林.纳米氧化镍在超大容量电容器中的应用.功能材料与器件学报2002;8:35-39.
    [105] Pang S C, Anderson M A, Chapman T W. Novel electrode materials for thin-filmultracapacitors: Comparison of electrochemical properties of sol-gel-derived andelectrodeposited manganese dioxide. J. Electrochem. Soc.2000;147:444-450.
    [106] Xu C J, Li B H, Du H D, et al. Supercapacitive studies on amorphous MnO2in mild solutions.J. Power Sources2008;184:691-694.
    [107] Lee K, Wang Y, Cao G H. Dependence of electrochemical properties of vanadium oxidefilms on their nano-and microstructures. J. Phys. Chem. B2005;109:16700-16704.
    [108] Takahashi K, Wang Y, Lee K, et al. Solution synthesis and electrochemical properties ofV2O5nanostructures. Solid State Ionics2005;835:327-332.
    [109] Cheng J, Cao G-P, Yang Y-S. Characterization of sol-gel-derived NiOx xerogels assupercapacitors. J. Power Sources2006;159:734-741.
    [110] Wan C Y, Wang L J, Shen S D, et al. Effect of Synthesis Routes on the Performances ofMnO2for Electrochemical Capacitors. Acta Chim. Sin.2009;67:1559-1565.
    [111] Chen Z D, Gao L, Cao J Y, et al. Preparation and Properties of gamma-MnO2Nanotubes asElectrode Materials of Supercapacitor. Acta Chim. Sin.2011;69:503-507.
    [112] Zhang Z A, Yang B C, Deng M G, et al. Synthesis and characterization of nanostructuredMnO2for supercapacitor. Acta Chim. Sin.2004;62:1617-1620.
    [113] Zhang Y, Liu K Y, Zhang W, et al. Electrochemical performance of electrodes in MnO2supercapacitor. Acta Chim. Sin.2008;66:909-913.
    [114] Zhang B H, Zhang N. Research on nanophase MnO2for electrochemical supercapacitor.Acta Phys.-Chim. Sin.2003;19:286-288.
    [115] Dubal D P, Dhawale D S, Gujar T P, et al. Effect of different modes of electrodeposition onsupercapacitive properties of MnO2thin films. Appl. Surf. Sci.2011;257:3378-3382.
    [116] Reddy R N, Reddy R G. Sol-gel MnO2as an electrode material for electrochemicalcapacitors. J. Power Sources2003;124:330-337.
    [117] Chen X Y, Li X X, Jiang Y, et al. Rational synthesis of alpha-MnO2and gamma-Mn2O3nanowires with the electrochemical characterization of alpha-MnO2nanowires forsupercapacitor. Solid State Commun.2005;136:94-96.
    [118] Wang X Y, Huang W G, Sebastian P J, et al. Sol-gel template synthesis of highly orderedMnO2nanowire arrays. J. Power Sources2005;140:211-215.
    [119] Wang H Q, Yang G F, Li Q Y, et al. Porous nano-MnO2: large scale synthesis via a facilequick-redox procedure and application in a supercapacitor. New J. Chem.2011;35:469-475.
    [120] Xia H, Feng J K, Wang H L, et al. MnO2nanotube and nanowire arrays by electrochemicaldeposition for supercapacitors. J. Power Sources2010;195:4410-4413.
    [121] Li G R, Feng Z P, Ou Y N, et al. Mesoporous MnO2/Carbon Aerogel Composites asPromising Electrode Materials for High-Performance Supercapacitors. Langmuir2010;26:2209-2213.
    [122] Wang Y T, Lu A H, Zhang H L, et al. Synthesis of Nanostructured Mesoporous ManganeseOxides with Three-Dimensional Frameworks and Their Application in Supercapacitors. J.Phys. Chem. C2011;115:5413-5421.
    [123] Xia H, Lai M O, Lu L. Nanoporous MnOx thin-film electrodes synthesized byelectrochemical lithiation/delithiation for supercapacitors. J. Power Sources2011;196:2398-2402.
    [124] Cheong M, Zhitomirsky I. Electrophoretic deposition of manganese oxide films. Surf. Eng.2009;25:346-352.
    [125] Zolfaghari A, Ataherian F, Ghaemi M, et al. Capacitive behavior of nanostructured MnO2prepared by sonochemistry method. Electrochim. Acta2007;52:2806-2814.
    [126] Yang X H, Wang Y G, Xiong H M, et al. Interfacial synthesis of porous MnO2and itsapplication in electrochemical capacitor. Electrochim. Acta2007;53:752-757.
    [127] Li Y, Xie H Q. Mechanochemical-synthesized Al-doped manganese dioxides forelectrochemical supercapacitors. Ionics2010;16:21-25.
    [128] Deng J J, Deng J C, Liu Z L, et al. Capacitive characteristics of Ni-Co oxide nano-compositevia coordination homogeneous co-precipitation method. J. Mater. Sci.2009;44:2828-2835.
    [129] Pang X, Ma Z Q, Zuo L. Sn Doped MnO2Electrode Material for Supercapacitors. ActaPhys.-Chim. Sin.2009;25:2433-2437.
    [130] Athouel L, Moser F, Dugas R, et al. Variation of the MnO2birnessite structure uponcharge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4electrolyte. J. Phys. Chem. C2008;112:7270-7277.
    [131] Xie X Y, Liu W W, Zhao L Y, et al. Structural and electrochemical behavior of Mn-V oxidesynthesized by a novel precipitation method. J. Solid State Electrochem.2010;14:1585-1594.
    [132] Mastragostino M, Arbizzani C, Paraventi R, et al. Polymer selection and cell design forelectric-vehicle supercapacitors. J. Electrochem. Soc.2000;147:407-412.
    [133] Arbizzani C, Mastragostino M, Meneghello L. Polymer-based redox supercapacitors: Acomparative study. Electrochim. Acta1996;41:21-26.
    [134] Mastragostino M, Paraventi R, Zanelli A. Supercapacitors based on composite polymerelectrodes. J. Electrochem. Soc.2000;147:3167-3170.
    [135] Furtado C A, de Souza P P, Silva G G, et al. Electrochemical behavior of polyurethane etherelectrolytes/carbon black composites and application to double layer capacitor. Electrochim.Acta2001;46:1629-1634.
    [136]涂亮亮,贾春阳.导电聚合物超级电容器电极材料.化学进展2010;22:1610-1618.
    [137] Mondal S K, Barai K, Munichandraiah N. High capacitance properties of polyaniline byelectrochemical deposition on a porous carbon substrate. Electrochim. Acta2007;52:3258-3264.
    [138] Wang Y G, Li H Q, Xia Y Y. Ordered whiskerlike polyaniline grown on the surface ofmesoporous carbon and its electrochemical capacitance performance. Adv. Mater.2006;18:2619-2623.
    [139] Lin Y H, Wei T Y, Chien H C, et al. Manganese Oxide/Carbon Aerogel Composite: anOutstanding Supercapacitor Electrode Material. Adv. Energy Mater.2011;1:901-907.
    [140] Wang X Y, Liu L, Yi L H, et al. Mn2O3/carbon aerogel microbead composites synthesized byin situ coating method for supercapacitors. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.2011;176:1232-1238.
    [141] Lee Y J, Jung J C, Park S, et al. Nano-Sized Ni-Doped Carbon Aerogel for Supercapacitor. J.Nanosci. Nanotechnol.2011;11:6528-6532.
    [142] Lv G, Wu D C, Fu R W. Preparation and electrochemical characterizations ofMnO2-dispersed carbon aerogel as supercapacitor electrode material. J. Non-Cryst. Solids2009;355:2461-2465.
    [143] Lota G, Fic K, Frackowiak E. Carbon nanotubes and their composites in electrochemicalapplications. Energy Environ. Sci.2011;4:1592-1605.
    [144] Huang Q, Wang X, Li J, et al. Nickel hydroxide/activated carbon composite electrodes forelectrochemical capacitors. J. power sources2007;164:425-429.
    [145] Rarnani M, Haran B S, White R E, et al. Synthesis and characterization of hydrousruthenium oxide-carbon supercapacitors. J. Electrochem. Soc.2001;148:A374-A380.
    [146] Ramani M, Haran B S, White R E, et al. Studies on activated carbon capacitor materialsloaded with different amounts of ruthenium oxide. J. Power Sources2001;93:209-214.
    [147] Selvakumar M, Bhat D K. Activated carbon-polyethylenedioxythiophene compositeelectrodes for symmetrical supercapacitors. J. Appl. Poly. Sci.2008;107:2165-2170.
    [148] Dong X P, Shen W H, Gu J L, et al. MnO2-embedded-in-mesoporous-carbon-wall structurefor use as electrochemical capacitors. J. Phys.Chem. B2006;110:6015-6019.
    [149] Li Q A, Liu J H, Zou J H, et al. Synthesis and electrochemical performance of multi-walledcarbon nanotube/polyaniline/MnO2ternary coaxial nanostructures for supercapacitors. J.Power Sources2011;196:565-572.
    [150] Li J, Cui L, Zhang X G. Preparation and electrochemistry of one-dimensional nanostructuredMnO2/PPy composite for electrochemical capacitor. Appl. Surf. Sci.2010;256:4339-4343.
    [151] Ding K Q, Cheng F M. Cyclic voltammetrically prepared MnO2-PPy composite material andits electrocatalysis towards oxygen reduction reaction (ORR). Synth. Met.2009;159:2122-2127.
    [152] Song R Y, Park J H, Sivakkumar S R, et al. Supercapacitive properties ofpolyaniline/Nafion/hydrous RuO2composite electrodes. J. Power Sources2007;166:297-301.
    [153]许检红,王然,陈经坤,等.超级电容器在电动汽车上应用的研究进展.电池工业2008;13:344-348.
    [154] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas solidsystems with special reference to the determination of surface-area and porosity. Pure Appl.Chem.1985;57:603-619.
    [155] Deng Y H, Yu T, Wan Y, et al. Ordered mesoporous silicas and carbons with largeaccessible pores templated from amphiphilic diblock copolymer poly(ethyleneoxide)-b-polystyrene. J. Am. Chem. Soc.2007;129:1690-1697.
    [156] Wang L F, Zhao Y, Lin K F, et al. Super-hydrophobic ordered mesoporous carbon monolith.Carbon2006;44:1336-1339.
    [157] Inagaki M, Kobayashi S, Kojin F, et al. Pore structure of carbons coated on ceramic particles.Carbon2004;42:3153-3158.
    [158] Itagaki M, Suzuki S, Shitanda I, et al. Impedance analysis on electric double layer capacitorwith transmission line model. J. Power Sources2007;164:415-424.
    [159] Morishita T, Ishihara K, Kato M, et al. Preparation of a carbon with a2nm pore size and of acarbon with a bi-modal pore size distribution. Carbon2007;45:209-211.
    [160] Morishita T, Soneda Y, Tsumura T, et al. Preparation of porous carbons from thermoplasticprecursors and their performance for electric double layer capacitors. Carbon2006;44:2360-2367.
    [161] Morishita T, Tsumura T, Toyoda M, et al. A review of the control of pore structure inMgO-templated nanoporous carbons. Carbon2010;48:2690-2707.
    [162] Inagaki M, Kato M, Morishita T, et al. Direct preparation of mesoporous carbon from a coaltar pitch. Carbon2007;45:1121-1124.
    [163] Qiu L Z, Xie R C, Ding P, et al. Preparation and characterization of Mg(OH)2nanoparticlesand flame-retardant property of its nanocomposites with EVA. Compos. Struct.2003;62:391-395.
    [164] Ding Y, Zhang G T, Wu H, et al. Nanoscale magnesium hydroxide and magnesium oxidepowders: Control over size, shape, and structure via hydrothermal synthesis. Chem. Mater.2001;13:435-440.
    [165] Shen K, Huang Z H, Gan L, et al. Graphitic Porous Carbons Prepared by a ModifiedTemplate Method. Chem. Lett.2009;38:90-91.
    [166] Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors. J.Power Sources2006;157:11-27.
    [167] Li H Q, Wang Y G, Wang C X, et al. A competitive candidate material for aqueoussupercapacitors: High surface-area graphite. J. Power Sources2008;185:1557-1562.
    [168] T nurist K, J nes A, Thomberg T, et al. Influence of Mesoporous Separator Properties on theParameters of Electrical Double-Layer Capacitor Single Cells. J. Electrochem. Soc.2009;156:A334-A342.
    [169] Li Q Y, Wang H Q, Dai Q F, et al. Novel activated carbons as electrode materials forelectrochemical capacitors from a series of starch. Solid State Ionics2008;179:269-273.
    [170] Taberna P L, Simon P, Fauvarque J F. Electrochemical characteristics and impedancespectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc.2003;150:A292-A300.
    [171] Sevilla M, Alvarez S, Fuertes A B. Synthesis and characterisation of mesoporous carbons oflarge textural porosity and tunable pore size by templating mesostructured HMS silicamaterials. Micropor. Mesopor. Mater.2004;74:49-58.
    [172] Qu D Y. Studies of the activated carbons used in double-layer supercapacitors. J. PowerSources2002;109:403-411.
    [173]瞿保钧,谢荣才.针状或薄片状纳米氢氧化镁及其制备方法:中国,00135436.1[P].2000-12-19.
    [174] Wang D W, Li F, Liu M, et al.3D aperiodic hierarchical porous graphitic carbon material forhigh-rate electrochemical capacitive energy storage. Angew. Chem.-Int. Edit.2008;47:373-376.
    [175] Jehlika J, Rouzaud J N. Glass-like carbon: New type of natural carbonaceous matter fromprecambrian rocks. Carbon1992;30:1133-1134.
    [176] Sullivan M G, K tz R, Haas O. Thick Active Layers of Electrochemically Modified GlassyCarbon Electrochemical Impedance Studies. J. Electrochem. Soc.2000;147:308-317.
    [177] Kim S J, Hwang S W, Hyun S H. Preparation of carbon aerogel electrodes for supercapacitorand their electrochemical characteristics. J. Mater. Sci.2005;40:725-731.
    [178] Lee Y J, Jung J C, Yi J, et al. Preparation of carbon aerogel in ambient conditions forelectrical double-layer capacitor. Curr. Appl. Phys.2010;10:682-686.
    [179] Probstle H, Wiener M, Fricke J. Carbon aerogels for electrochemical double layer capacitors.J. Porous Mater.2003;10:213-222.
    [180] Saliger R, Fischer U, Herta C, et al. High surface area carbon aerogels for supercapacitors. JNon-Cryst Solids1998;225:81-85.
    [181] Li J, Wang X Y, Huang Q H, et al. Studies on preparation and performances of carbonaerogel electrodes for the application of supercapacitor. J. Power Sources2006;158:784-788.
    [182] Fang B Z, Binder L. A modified activated carbon aerogel for high-energy storage in electricdouble layer capacitors. J. Power Sources2006;163:616-622.
    [183] Fang B, Wei Y Z, Maruyama K, et al. High capacity supercapacitors based on modifiedactivated carbon aerogel. J. Appl. Electrochem.2005;35:229-233.
    [184] Reuss M, Ratke L. RF-aerogels catalysed by ammonium carbonate. J. Sol-Gel Sci. Technol.2010;53:85-92.
    [185]赵海霞,朱玉东,李文翠,等. RF炭气凝胶孔结构的控制及其电化学性能研究.新型炭材料2008;23:361-366.
    [186]吴丁财,张淑婷,符若文.炭气凝胶及其有机气凝胶前驱体的研究进展.离子交换与吸附2003;19:473-480.
    [187] Wang J B, Yang X Q, Wu D C, et al. The porous structures of activated carbon aerogels andtheir effects on electrochemical performance. J. Power Sources2008;185:589-594.
    [188] Shen J, Hou J Q, Guo Y Z, et al. Microstructure control of RF and carbon aerogels preparedby sol-gel process. J. Sol-Gel Sci. Technol.2005;36:131-136.
    [189] Grenier-Loustalot M F, Larroque S, Grande D, et al. Phenolic resins.2. Influence of catalysttype on reaction mechanisms and kinetics. Polymer1996;37:1363-1369.
    [190]李文翠,朱盛维,郭树才.催化剂种类对间苯二酚甲醛气凝胶结构的影响.大连理工大学学报2000;40:417-419.
    [191] Fischer U, Saliger R, Bock V, et al. Carbon Aerogels as Electrode Material inSupercapacitors. J. Porous Mat.1997;4:281-285.
    [192] Kormann M, Gerhard H, Zollfrank C, et al. Effect of transition metal catalysts on themicrostructure of carbide-derived carbon. Carbon2009;47:2344-2351.
    [193] Lee Y J, Jung J C, Yi J, et al. Preparation of carbon aerogel in ambient conditions forelectrical double-layer capacitor. Curr. Appl. Phys.2010;10:682-686.
    [194]吴丁财.炭气凝胶的新方法制备及其应用[博士学位论文].广州:中山大学材料科学研究所,2006.
    [195] Fic K, Lota G, Frackowiak E. Electrochemical properties of supercapacitors operating inaqueous electrolyte with surfactants. Electrochim. Acta2010;55:7484-7488.
    [196]党阿磊,李铁虎,张文娟,等.煤沥青的最新研究进展.炭素技术2011;30:19-23.
    [197] Grzyb B, Albiniak A, Broniek E, et al. SO(2) adsorptive properties of activated carbonsprepared from polyacrylonitrile and its blends with coal-tar pitch. Micropor. Mesopor. Mat.2009;118:163-168.
    [198]李晶,黄可龙,刘业翔.超级电容器用活性炭的制备与电化学表征.材料科学与工艺2009;17:1-4.
    [199] Mitani S, Lee S L, Saito K, et al. Activation of coal tar derived needle coke with K2CO3intoan active carbon of low surface area and its performance as unique electrode of electricdouble-layer capacitor. Carbon2005;43:2960-2967.
    [200]张治安,崔沐,赖延清,等.中间相沥青粒径对活性炭材料及其电化学性能的影响.中国有色金属学报2008;18:1727-1731.
    [201] Feng Z H, Xue R S, Shao X H. Highly mesoporous carbonaceous material of activatedcarbon beads for electric double layer capacitor. Electrochim. Acta2010;55:7334-7340.
    [202] Li J, Lai Y Q, Song H S, et al. Influence of KOH activation techniques on pore structure andelectrochemical property of carbon electrode materials. J. Cent. South Univ. Technol.2006;13:360-366.
    [203] Choi Y O, Yang K S, Kim J H. Electrode of electric double layer capacitor prepared fromdensified activated carbon fiber. Electrochem.2001;69:837-842.
    [204] Dominguez A, Blanco C, Santamaria R, et al. Monitoring coal-tar pitch composition changesduring air-blowing by gas chromatography. J. Chromatogr. A2004;1026:231-238.
    [205]王晓瑞,金鸣林,郑玉丽,等.煤沥青预处理工艺对活性炭孔结构的影响.煤炭转化2004;27:59-63.
    [206]王云龙,张生万,杜文,等.沥青活性炭的制备方法.新型炭材料2006;21:369-373.
    [207] Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganicnanocomposite materials. Chem. Mater.2001;13:3169-3183.
    [208] Zhang W, Huang Z-H, Cao G, et al. A novel mesoporous carbon with straight tunnel-likepore structure for high rate electrochemical capacitors. J. Power Sources2012;204:230-235.
    [209]吴卫泽,朱珍平,刘振宇.水性中间相沥青的制备研究.新型炭材料2001;16:8-13.
    [210] Li Z, Yan W, Dai S. A novel vesicular carbon synthesized using amphiphilic carbonaceousmaterial and micelle templating approach. Carbon2004;42:767-770.
    [211] Wang J, Chen M, Wang C, et al. Preparation of mesoporous carbons from amphiphiliccarbonaceous material for high-performance electric double-layer capacitors. J. PowerSources2011;196:550-558.
    [212] Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis ofmesoporous silica-based materials. Chem. Mat.1996;8:1147-1160.
    [213] Kruk M, Jaroniec M, Sayari A. Application of large pore MCM-41molecular sieves toimprove pore size analysis using nitrogen adsorption measurements. Langmuir1997;13:6267-6273.
    [214] Lota G, Grzyb B, Machnikowska H, et al. Effect of nitrogen in carbon electrode on thesupercapacitor performance. Chem. Phys. Lett.2005;404:53-58.
    [215] Reddy R N, Reddy R G. Synthesis and electrochemical characterization of amorphous MnO2electrochemical capacitor electrode material. J. Power Sources2004;132:315-320.
    [216]邓梅根,张治安,胡永达.超级电容器碳纳米管与二氧化锰复合电极材料的研究.硅酸盐学报2004;32:411-415.
    [217] Zhou Y K, He B L, Zhang F B, et al. Hydrous manganese oxide/carbon nanotube compositeelectrodes for electrochemical capacitors. J. Solid State Electrochem.2004;8:482-487.
    [218] Subramanian V, Zhu H W, Wei B Q. Synthesis and electrochemical characterizations ofamorphous manganese oxide and single walled carbon nanotube composites assupercapacitor electrode materials. Electrochem. Commun.2006;8:827-832.
    [219] Lee S W, Kim J, Chen S, et al. Carbon Nanotube/Manganese Oxide Ultrathin FilmElectrodes for Electrochemical Capacitors. ACS Nano2010;4:3889-3896.
    [220] Zheng H J, Tang F Q, Jia Y, et al. Layer-by-layer assembly and electrochemical properties ofsandwiched film of manganese oxide nanosheet and carbon nanotube. Carbon2009;47:1534-1542.
    [221] Wang Y H, Zhitomirsky I. Electrophoretic Deposition of Manganese Dioxide-MultiwalledCarbon Nanotube Composites for Electrochemical Supercapacitors. Langmuir2009;25:9684-9689.
    [222] Xie X F, Gao L. Characterization of a manganese dioxide/carbon nanotube compositefabricated using an in situ coating method. Carbon2007;45:2365-2373.
    [223]薛荣,阎景旺,田颖,等.镧掺杂的二氧化锰,碳纳米管电化学超级电容器复合电极.物理化学学报2011;27:2340-2346.
    [224] Liu X R, Pickup P G. Carbon Fabric Supported Manganese and Ruthenium Oxide ThinFilms for Supercapacitors. J. Electrochem. Soc.2011;158:A241-A249.
    [225] Wang J G, Yang Y, Huang Z H, et al. Coaxial carbon nanofibers/MnO2nanocomposites asfreestanding electrodes for high-performance electrochemical capacitors. Electrochim. Acta2011;56:9240-9247.
    [226] Jun Y, Zhuangjun F, Tong W, et al. Fast and reversible surface redox reaction ofgraphene-MnO2composites as supercapacitor electrodes. Carbon2010;48:3825-38333833.
    [227] Chen S, Zhu J W, Wu X D, et al. Graphene Oxide-MnO2Nanocomposites forSupercapacitors. ACS Nano2010;4:2822-2830.
    [228] Mao L, Zhang K, Chan H S O, et al. Nanostructured MnO2/graphene composites forsupercapacitor electrodes: the effect of morphology, crystallinity and composition. J. Mater.Chem.2012;22:1845-1851.
    [229] Lee H, Kang J, Cho M S, et al. MnO2/graphene composite electrodes for supercapacitors: theeffect of graphene intercalation on capacitance. J. Mater. Chem.2011;21:18215-18219.
    [230]李津,刘晓来,赵东林.二氧化锰改性石墨烯电极材料的电化学性能.电池工业2011;16:164-167.
    [231] Hibino M, Kawaoka H, Zhou H S, et al. Rapid discharge performance of composite electrodeof hydrated sodium manganese oxide and acetylene black. Electrochim. Acta2004;49:5209-5216.
    [232] Lin Y P, Tsai C B, Ho W H, et al. Comparative study on nanostructured MnO2/carboncomposites synthesized by spontaneous reduction for supercapacitor application. Mater.Chem. Phys.2011;130:367-372.
    [233] Jin X, Zhou W, Zhang S, et al. Nanoscale microelectrochemical cells on carbon nanotubes.Small2007;3:1513-1517.
    [234] Yan J, Fan Z J, Wei T, et al. Carbon nanotube/MnO2composites synthesized bymicrowave-assisted method for supercapacitors with high power and energy densities. J.Power Sources2009;194:1202-1207.
    [235] Benedetti T M, Goncales V R, Petri D F S, et al. Macroporous MnO2Electrodes Obtained byTemplate Assisted Electrodeposition for Electrochemical Capacitors. J. Braz. Chem. Soc.2010;21:1704-1709.
    [236] Wei J, Nagarajan N, Zhitomirsky I. Manganese oxide films for electrochemicalsupercapacitors. J. Mater. Process. Technol.2007;186:356-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700