新疆地区煤火燃烧系统热动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤火是伴生煤炭资源开发的一种灾害,在世界主要产煤国普遍存在。煤火不仅燃烧损失大量煤炭资源,还对区域环境产生严重影响。煤火燃烧系统热动力特性是煤火研究领域的核心内容,其研究旨在揭示煤火热动力演化过程,为煤火高效治理、科学定量评价煤火环境影响提供基础。本论文以新疆地区煤火为研究对象,较系统地从煤火赋存物理边界、火区持续燃烧供氧动力、火区煤燃烧放热特性与传热特性等方面开展了其燃烧系统热动力特性研究。
     应用岩层控制理论分析了火区空间的状态特性,提出了确定火区控制体物理空间边界的方法,初步构建了火区控制体模型。火区控制体地表范围以走向、倾向最外层裂隙为界,地下区域范围以走向、倾向岩层移动角、煤层赋存底板等高线推断。在火区控制体模型研究基础上,结合火区内孔隙介质透气率、裂隙介质透气率,提出了火区等效透气率计算模型。火区控制体内存在燃烧垮落空区、裂隙区域。燃烧垮落空区透气率符合孔隙介质透气率计算模型,裂隙区域透气率符合裂隙透气率计算模型,火区等效透气率是孔隙、裂隙透气率的有效组合。根据火区等效透气率理论计算模型,初步构建了火区等效透气率实验方法,可用于火区控制体围岩不同介质组合透气率的模拟测试。结合火区控制体模型,研究了火区控制体孔隙介质围岩导热率的计算方法。
     通过对火区烟气流动特性的研究,揭示了火区煤持续燃烧供氧动力-火风压的形成机制,提出了煤田火区火风压的计算方法与参数确定方法。火区控制体内烟气属自然对流条件迫使下的气体流动,其与火区环境大气间的温度差产生的重力差是引起烟气流动的主要动力。地面覆盖前后火区控制体内烟气流动状态不同,覆盖前空气流经火区控制体内状态变化基本符合等压过程,覆盖后烟气在火区控制体内状态变化基本符合等容过程。在此基础上提出采用火区状态系数C表征火区覆盖前后空气/烟气流动状态的变化,并设计了火区状态系数C的实验装置和试验方法。
     应用燃烧学理论对火区煤燃烧状态进行了分析,提出了火区控制体煤燃烧放热计算模型,即火区控制体热源强度模型。火区过量空气系数是反映煤燃烧状态的参数之一,实际火区多属于富燃料燃烧。由于煤火的复杂性,采用煤燃烧反应动力学研究方法描述火区控制体内煤燃烧状态具有一定局限性。对于整体火区燃烧系统热动力特性规律研究而言,可采用单位质量煤燃烧需氧量、放热量和火区烟气流量计算火区控制体煤燃烧放热量。
     应用传热学理论研究了火区与外部环境的热量传递方式,提出了煤火火源温度计算模型。煤火热量传递包括火区控制体内围岩导热、火区地表与环境大气的对流传热、火区地表的辐射传热以及火区烟气的传质传热。其中火区内以导热方式传向地面的热量以对流和辐射方式散失。火区地表与空气的对流传热符合外掠平板自然对流模型,对流传热系数根据空气流动雷诺数确定的流动状态计算。建立了火区控制体单位时间散热量和累积散热量计算模型。
     以典型火区1-水西沟火区和典型火区2-托洛盖05火区为例,进行了火区煤燃烧系统热动力特性部分参数的计算。结果表明地表辐射散热量普遍高于对流散热和传质散热。由建模及实例分析,在煤火治理中需要强调的治理原则:一是首先应考虑置换火区热量,尤其需要置换火区高温区域热量以快速降低火区内外温度差,及时减少火区供氧动力;二是对非高温区域裂隙及时进行覆盖封堵,增加空气渗入火区的阻力,及时降低火区供氧量。
     通过本论文研究,首次较系统地构建了煤火燃烧系统热动力特性基本模型,为揭示新疆地区煤火燃烧系统热动力演化的本质提供了定量分析手段。
Coal fire is one of disasters associated with coal mining activities over the world.Coal fire not only consumes the coal resource for nothing, but also brings someserious problems to local environment, such as the pollution to air, the damage to soils,and the contamination to underground water and consequently the health problem tohuman beings. The thermal dynamic characteristic of coal combustion system for coalfire is the core of research in the coal fire field because of its important roles ofrevealing the mechanism of coal fire propagation and improving the coal fireextinction efficiency as well as scientifically evaluating the coal fire’s impact onenvironment. This dissertation focused on the modeling of the thermal dynamiccharacteristics of coal fires’ combustion system in Xinjiang region, including researchof the physical boundary of coal fire control volume, the dynamic of oxygen supply tocoal fire, the characteristics of heat generation from coal combustion under coal fireconditions, and the characteristics of heat transfer with coal fire and so forth. Theresults and conclusions have been obtained in this dissertation as follows.
     Coal fire burns in subsurface area. With the application of rocks control theory, amethod was proposed to determine the physical boundary of coal fire control volume,and a preliminary model of coal fire control volume has been established. Bothorientated and inclined boundaries of underground part of coal fire control volumecan be determined by using overlying rocks movement angle and contour map of coalseam deposit. The surface boundary of coal fire control volume can be determined bythe farthest faults/cracks along directions of the orientation and the inclination of coalfire. Based on the research of control volume of coal fire, and together with the use offluid theory within porous medium, the model of equivalent permeability (EP) of coalfire control volume was put forward firstly. Then, an experimental facility for EP wasdesigned, which it’s useful to study the EP with different mediums and differentcombinations of these mediums. As an important property of coal fire control volume,the overlying rocks’ thermal conductivity also was studied in this dissertation. Amethod was proposed to calculate it with an assumption of homogenous medium in alldirections for each rock layer.
     With analyzing the model of air/smoke flow of coal fire, a method of calculatingthe fire-heating air pressure (FAP) was proposed. It is known the air/smoke movesforced by the natural convection. The dynamic of its movement is the gravity difference between the fresh air and the hot smoke which is due to their temperaturedifference. It shows that the air/smoke state after covering is different from the onebefore covering. Before covering, the variety of air/smoke state within the fire zoneabides with constant volume process. After covering, it abides with constant pressureprocess. This dissertation also put forward a coal fire state coefficient C to indicate thechange of air/smoke state with the going on of extinction, and designed anexperimental facility for studying it.
     With the application of combustion theory, the state of coal combustion withinfire zone was analyzed at first. Then, a model of calculating the heat-generation fromcoal fire zone, i.e. the heat source model of coal fire, was proposed. Excess aircoefficient is one kind of parameter to indicate the coal combustion state within firezone. In fact, almost all coal fire is under conditions of rich combustible materialcombustion. For coal fire’s complication, it’s hard to describe coal combustion stateby using the kinetic theory of coal combustion. In order to study the thermal dynamiccharacteristics of any given whole coal fire, a heat source model, which is based onthe oxygen requirement and heat-generation for per kilogram coal combustion and theair/smoke flow amount, was established.
     Based on the theory of heat transfer, the style of heat transportation with coal firewas analyzed, and the model of calculating the fire source temperature was proposed.Heat transfer of coal fire includes the heat conductivity within fire zone, the heatdissipation by radiation from the surface of fire zone, and the heat dissipation byconvection as well as the heat taken away by mass transport. Plate natural convectionmodel can be used to describe the heat transfer by convection with coal fire. Theconvective coefficient can be determined by use the Reynolds number and otherparameters. Other two models also were proposed to calculate the heat dissipation andaccumulated heat dissipation.
     At the end of this dissertation, examples, i.e. the Shui-xi-gou coal fire and theNo.5fire zone of Tuo-luo-gai coal fire, were given to make calculation with parts ofabove proposed models. Results show that heat dissipation by radiation is greater thanother kinds of heat-transfer styles. From modeling of thermal dynamic characteristicsof coal combustion for coal fire and given example analysis, the principle of coal fireextinction will be emphasized again, i.e. heat-removing is an effective measurementto reduce the oxygen supply because it can reduce the coal fire zone’s temperaturequickly, another effective measurement is to cover faults/cracks located in lower temperature area of coal fire to increase the resistance for air leaking into the firezone.
     From the research, the basic models of describing coal fire thermal dynamiccharacteristics were established firstly. It will provide a quantitative method to revealthe essence of evolution of thermal dynamic characteristics of coal combustion forcoal fires in Xinjiang region.
引文
[1]管海晏,冯亨特伦,谭永杰等.中国北方煤田自燃环境调查与研究[M].北京:煤炭工业出版社,1998.
    [2] Claudia Kuenzer, Jianzhong Zhang, Anke Tetzlaff, etal. Uncontrolled coal fires and their environmentalimpacts: Investigating two arid mining regions in north-central China [J]. Applied Geography,2007,27(1):42-62.
    [3]齐德香,蔡忠勇,曹建文等.新疆维吾尔自治区第三次煤田火区普查报告[R].新疆煤田灭火工程局,2008.
    [4] Alfred E. Whitehouse, Asep A. S. Mulyana. Coal fires in Indonesia [J]. International Journal of CoalGeology,2004,59(1-2):91-97.
    [5] Glenn B. Stracher, Tammy P. Taylor. Coal fires burning out of control around the world: thermal dynamicrecipe for environmental catastrophe [J]. International Journal of Coal Geology,2004,59(1-2):7-17.
    [6] E. L. Heffern, D. A. Coates. Geologic history of natural coal-bed fires, Powder River basin,USA [J].International Journal of Coal Geology,2004,59(1-2):25-47.
    [7] Melissa A. Nolter, Daniel H.Vice. Looking back at the Centralia coal fire-a synopsis of its present status[J].International Journal of Coal Geology,2004,59(1-2):99-106.
    [8] R.S.Chatterjee.Coal fire mapping from satellite thermal IR data-a case example in Jharia Coalfield,Jharkhand[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2006,60(2):113-128.
    [9] J. Denis N. Pone, Kim A.A. Hein, Glenn B. Stratcher, et al. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa [J]. International Journal of CoalGeology,72(2007)124–140.
    [10]曾强.新疆煤田火灾烟气流动与传热特性的研究[J].煤炭学报,2009,34(6):792-796.
    [11]张秀山.物探方法在煤田火区上的应用价值[R].新疆煤田地质物探队,1985:1-22.
    [12] Stefan Voigt, Anke Tetzlaff, Jianzhong Zhang, etal. Integrating satellite remote sensing techniques fordetection and analysis of uncontrolled coal seam fires in North China [J]. International Journal of CoalGeology,2004,59(1-2):121-136.
    [13] Ann G. Kim. Locating fires in abandoned underground coal mine[J]. International Journal of CoalGeology,2004,59(1-2):49-62.
    [14]邬剑明,吴新文.同位素测氡技术在我国煤矿的研究应用[J].中国煤炭,1998,24(6):22-24.
    [15] S. Xue, B. Dickson, J.M. Wu. Application of222Rn technique to locate subsurface coal heatings inAustralia coal mines [J]. International Journal of Coal Geology,2008,74(2):139-144.
    [16] J. J HUANG, J. Bruining, K.A.H.H Wolf. Modeling of gas flow and temperature fields in undergroundcoal fires [J]. Fire Safety Journal,2001,36(5):477-489.
    [17] Karl-Heinz Wolf, Hans Bruining. Modeling the interaction between underground coal fires and theirs roofrocks [J]. Fuel,2007,86(17-18):2761-2777.
    [18] Taku S. Ide, David Pollard, Franklin M. Orr Jr. Fissure formation and subsurface subsidence in a coal bedfire[J]. International Journal of Rocks and Mechanics,2010,47(1):81-93.
    [19] D.H.Steve Zou, Chuxin Yu, Xuefu Xian. Dynamic nature of coal permeability ahead of a longwall face[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(5):693-699.
    [20] J.-A. Wang, H. D. Park. Fluid permeability of sedimentary rocks in a complete stress–strain process.Engineering Geology,2002,63(3-4):291-300.
    [21] Stephen D. Butt, Paul K. Frempong, Chinmoy Mukherjee, etal. Characterization of the permeability andacoustic properties of an outburst-prone sandstone [J]. Journal of Applied Geophysics,2005,58(1):1-12.
    [22] S. D. Butt. Development of an apparatus to study the gas permeability and acoustic emissioncharacteristics of an outburst-prone sandstone as a function of stress. International Journal of RockMechanics and Mining Sciences,1999,36(8):1079-1085.
    [23]曹代勇,樊新杰,吴查查等.内蒙古乌达煤田火区相关裂隙研究[J].煤炭学报,2009,34(8):1009-1014.
    [24]戚颖敏.矿井火灾灾变通风理论及其应用[M].北京:煤炭工业出版社,1978:35-37.
    [25]王省身,陈全.几种火风压算式的分析比较[J].火灾科学,1996,5(1):14-19.
    [26]张国枢,王省身.火风压的计算及其影响因素分析[J].中国矿业学院学报,1983(3):66-79.
    [27]张兴凯,姚尔义.火区火风压计算式的探讨[J].煤矿安全[J],1993(5):5-8.
    [28]王树刚,王如竹.火风压计算的新模型[J].煤矿安全,2002,33(6):9-12.
    [29]李唐山,周心权,谷红军.煤田露头自燃火风压数值的理论分析[J].煤炭学报,2005,30(6):
    [30]徐精彩,葛岭梅.煤炭低温自燃过程的研究[J].煤炭工程师,1989(5):7-13.
    [31]郭兴明,徐精彩,惠世恩.煤自燃过程中极限参数的研究[J].西安交通大学学报,2001,35(7):682-686.
    [32]徐精彩,张辛亥,文虎,邓军.煤氧复合过程及放热强度测算方法[J].中国矿业大学报,2000,27(3):253-257.
    [33]王德明著.矿井火灾学.徐州:中国矿业大学出版社[M],2008:45-50.
    [34]陆伟,王德明,周福宝等.绝热氧化法研究煤的自燃特性[J].中国矿业大学学报,2005,34(2):213-217.
    [35]陆伟,王德明,仲晓星等.基于活化能的煤自燃倾向性研究[J].中国矿业大学学报,2006,35(2):201-205.
    [36]余明高,王清安,范维澄等.煤层自燃发火期的预测研究[J].中国矿业大学学报,2001,30(4):384-387.
    [37]于水军,余明高,段玉龙等.自燃矸石山爆炸的热力学模拟[J].煤炭学报,2007,32(9):945-949.
    [38]王继仁,邓存宝,邓汉忠等.煤表面对氧分子物理吸附的微观机理[J].煤炭转化,2007,30(4):18-21.
    [39]王继仁,邓存宝.煤微观结构与组分量质差异自燃理论[J].煤炭学报,2007,32(12):1291-1296.
    [40] B.K. Mazumadar. Theoretical oxygen requirement for coal combustion: relationship with its caloricficvalue [J]. Fuel,2000,79(11):1413-1419.
    [41]邹显宏,熊友辉,孙学信.基于CO2气体释放法的煤燃烧特性研究[J].燃料化学学报,2003,31(6):185-188.
    [42]邹显宏,熊友辉,孙学信.煤燃烧特性的EGA与TGA法比较研究[J].华中科技大学学报(自然科学版),2002,32(12):92-94.
    [43] Stefan Wessling, Claudia Kuenzer, Winfried Kessels, etal, Numerical Modeling for analyzing thermalsurface anomalies induced by underground coal fires. International Journal of Coal Geology [J],2008,74(3-4):175-184.
    [44] Jianzhong Zhang, Claudia Kuenzer. Thermal surface characteristics of coal fires:1results of in-situmeasurements. Journal of Applied Geophysics,2007,63(3-4):117-134.
    [45] M. Kraj iová, L. Jelemensky, M. Ki,etal. Model predictions on self-heating and prevention ofstockpiled coals [J]. Journal of Loss Prevention in the Process Industries,2004,17(3):205-216.
    [46] M. Hadavand, M. Yaghoubi. Thermal behavior of curved roof buildings exposed to solar radiation andwind flow for various orientations [J]. Applied Energy,2008,85(8):663-679.
    [47]张建荣,刘照球.混凝土对流换热系数的风洞实验研究[J].土木工程学报,2006,39(9):39-42.
    [48]张荣立,何国伟,李铎主编.采矿工程设计手册(M).北京:煤炭工业出版社,1239-1297.
    [49]钱明高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003:71-84.
    [50]梁运培,文光才.顶板岩层“三带”划分的综合分析法[J].煤炭科学技术,2000,28(5):39-42.
    [51] Yuan L, Smith A C. Numerical study on effects of coal properties on spontaneous heating in longwall gobareas[J]. Fuel,2008,87:3409-3419.
    [52]梁运涛,张腾飞,王树刚,等.采空区孔隙率非均质模型及其流场分布模拟[J].煤炭学报,2009,34(9):1203-1207.
    [53]张电吉,白世伟,杨春和.裂隙岩体渗透性分析研究[J].勘查科学技术,2003(1):24-27.
    [54] M. Bai, F. Meng, D. Elsworth, et al. Numerical modeling of stress-dependent permeability. Int. J. RockMech.&Min. Sci.1997,34(3-4),paper No.020.
    [55]张金才,刘天泉,张玉卓.裂隙岩体渗透特征的研究.煤炭学报,1997,22(5):481-485.
    [56]贾茂欣,郭文兵,陈敬年.地表非连续变形破坏类型及特征分析[J].焦作工学院学报(自然科学版),2000,19(4):278-280.
    [57] R.E.科林斯著.流体通过多孔材料的流动[M].石油工业出版社,1984.8第1版.
    [58]汤其建,张国枢,陈清华.松散煤体导热系数影响因素分析[J].江西煤炭科技,2006(4):24-26.
    [59]岳宁芳.松散煤体导热系数的分析[J].矿业安全与环保,33(3)2006:26-27.
    [60] M. Kraj iová, L. Jelemensky, M. Ki a and J. Marko. Model predictions on self-heating andprevention of stockpiled coals. Journal of Loss Prevention in the Process Industries [J],2004,17(3):205-216.
    [61]郑彤,陈春云编.环境系统数学模型[M].化学工业出版社,2003年第1版.
    [62]小林清志著,刘吉萱译.工程热力学[M].水利电力出版社.1983:56-58.
    [63]新疆煤田灭火工程处.新疆阜康硫磺沟火区灭火工程竣工报告[R].1997.
    [64]新疆煤田灭火工程处.新疆昌吉硫磺沟煤田火区灭火工程竣工报告[R].2005.
    [65]文虎.煤自燃全过程实验模拟及高温区域动态变化规律的研究[J].煤炭学报,2004,29(6):689-693.
    [66]徐朝芬,张鹏宇,夏明,孙学信.实验条件对煤燃烧特性影响的分析[J].华中科技大学学报(自然科学版),2005,33(5):73-78.
    [67]倪晓奋.煤燃烧动力特性的热分析[J].水泥.石灰,1994(1):12-15.
    [68] Haejun Park, Ali S. Rangwala,and Nicholas A. Dembsey. A means to estimate thermal and kineticparameters of coal dust layer from hot surface ignition tests [J]. Journal of Hazardous Materials,2009,168(1):145-155.
    [69]程远平,李增华.煤炭低温吸氧过程及其热效应[J].中国矿业大学学报,1999,28(4):310-313.
    [70]马秀国,孙昭星.高灰分碳颗粒燃烧的数学求解[J].工程热物理学报,1991,12(2):324-327.
    [71]张百立,傅维标.炭/碳粒燃烧速率的通用计算方法[J].工程热物理学报,1992,13(3):318-323.
    [72]傅维标,郑双铭,张百立.煤焦燃烧反应动力学的通用规律研究[J].工程热物理学报,1994,15(4):435-440.
    [73]谢兴华,李寒旭.燃烧理论[M].徐州:中国矿业大学出版社,2002:68-85.
    [74]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社.
    [75]陈镜鸿,李传儒.热分析及其应用[M].北京:科学出版社.
    [76]何红舟,骆中泱,岑可法.不同热分析方法求解无烟煤燃烧反应动力学参数的研究[J].动力工程,2005,25(4):493-499.
    [77] B. K. Mazumdar. Theoretical oxygen requirement for coal combustion: relationship with its calorificvalue [J]. Fuel,79(2000)1413-1419.
    [78] B.K. Mazumdar. Thermochemical history in the genetic path of coal: derivation of a novel correlation forheat of combustion [J]. Fuel,79(2000)1267–1276.
    [79]余明高,段玉龙,郝强等.自燃煤矸石山温度场的有限元分析.中国安全科学学报,Vol.17(7)2007:14-19.
    [80]贾海林,余明高,潘荣锟,等.内因突变诱发煤矸石山喷爆事故的理论分析.煤炭学报,2008,33(11):1283-1286.
    [81]王海燕,周心权,张红军等.煤田露头自燃的渗流-热动力耦合模型及应用.北京科技大学学报,2010,32(2):152-157.
    [82] M. Kraj iová, L. Jelemensky, M. Ki, et al. Model predictions on self-heating and prevention ofstockpiled coals. Journal of Loss Prevention in the Process Industries,2004,17(3):205-216.
    [83] Ahmadreza K. Faghih, Mehdi N. Bahadori. Solar radiation on domed roofs. Energy and Buildings,41(2009)1238–1245.
    [84] M. Hadavand, M. aghoubi, H. Emdad. Thermal analysis of vaulted roofs. Energy and Buildings,40(2008)265–275.
    [85] M. Hadavand, M. Yaghoubi. Thermal behavior of curved roof buildings exposed to solar radiation andwind flow for various orientations. Applied Energy,85(2008)663–679.
    [86] Runsheng Tang, I.A. Meir, Y. Etzion. Thermal behavior of buildings with curved roofs as compared withflat roofs. Solar Energy,74(2003)273–286.
    [87] J.P.Holman. Heat Transfer [M]. Beijing:Machinery Industry Press,2005:71-129.
    [88]杨强生,浦保荣.高等传热学.上海:上海交通大学出版社,2001:137-151.
    [89]杨世铭,陶文铨.传热学.北京:高等教育出版社,2006:211-218.
    [90]新疆煤田灭火工程局.新疆吉木萨尔水西沟火区合作勘探报告.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700