煤矿供电防越级跳闸保护系统的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿井下供电目前存在速断过流保护定值无法整定、漏电保护难实现比较等难题,导致漏电、短路等故障发生频繁,严重威胁供电可靠性。尤其广泛存在的“越级跳闸”问题,是影响煤矿井下可靠供电的一重要因素。鉴于此,结合实际工程提出一种煤矿供电防越级跳闸保护系统的应用方案,来彻底解决存在的“越级跳闸”问题,提高供电可靠性,实现“四遥”功能,为采区变无人值守创造条件。
     本文结合常村矿井下实际情况,线路主保护采用数字式光纤差动保护,对其进行理论阐述及分析;简述防越级跳闸保护系统,介绍其主要构成部分及特色;阐述常村矿井下供电目前技术现状,针对越级跳闸进行原因分析,并给出应用方案。最后在现场对系统进行调试,验证可行性。
     现场应用表明:系统运行稳定、设备功能齐全、可扩展性强、组网灵活、维护巡检方便,实现了保护的选择性和快速性,有效地避免了多次越级跳闸的发生,具有较高的使用价值和广阔的应用前景。
Mine existing quick-break power supply value can not be over-current protection setting, leakage protection and so difficult to achieve more difficult, leading to leakage, short circuit fault occurs frequently, a serious threat to reliability. In particular, widespread existence of "grade trip," the issue is the impact of a coal mine an important factor in reliable power supply. In view of this, combined with the actual project proposes a coal-powered anti-grade trip protection system applied research program, to solve the widespread problem of "grade trip" problem and improve power supply reliability and power supply system to achieve the "four remote" function, for the mining area to create conditions for unattended substation.
     In this paper, the actual situation of the mine often the village, the main protection line of digital fiber optic differential protection, its theoretical explanation and analysis; brief anti-grade trip protection system, introduce the main components and characteristics; describes regular village for the mine Electric current technology situation, analyzes the reason for the grade trip, and give applications. Finally, the system debugging in the field to verify the feasibility.
     Application shows that: the system is stable, the device functional and scalable, flexible networking, maintenance inspection easy to achieve the protection of the selectivity and fast, effectively prevent the occurrence of grade trip several times, with high use value and broad application prospects.
引文
[1]朱大新.数字化综合自动化系统的发展.电力自动化.2005,29(4):125
    [2]孟惠霞,胡满红.煤矿井下短路越级跳闸的故障分析[J].煤矿机械,2009,30(2)
    [3]张军,戚风林,常士中,申祝江,刘云龙.6KV配电室越级跳闸原因分析与改进[J].河南冶金2010,18(1)
    [4]赵学雷,张红兵,郑征,王福忠,陶海军.煤矿井下供电系统的区域选择性联锁保护的设计[J].工矿自动化,2010,36(3)
    [5]翟源涛,张根现.井下高压电网防越级跳闸研究[J].中国煤炭工业,2009,“”(10)
    [6] Wang Gang,Yuan Baoji,He Jiali. Implementation of Adaptive Dispersed Phase Current Differential Protection for Transmission Lines. 5th International Conference on Advances in power System Control. Operation & Management (Apscom~2000),Hong Kong,2000: 879~887
    [7] Microchip Technology Inc. dsPIC30F6014 Data Sheet– High Performance Digital Signal Controllers,2004
    [8]邓大鹏.光纤通信原理[M].北京:人民邮电出版社,2003
    [9]付国新,戴超金,侍昌江,张明勇.智能变电站故障滤波系统设计与探索[J].电力自动化设备,2010,30(7):1-5
    [10]袁振海,沈祥云,王险峰.零序直流选择性漏电保护原理分析[J].电工技术学报,2005,20(4):2-3
    [11] Ljubomir Akojovic,Jack Mcall, Time Newton. Modular relay architecture unifies protection and control. IEEE computer applications in power,1998.7: 369~378
    [12]李峥峰,杨曙年,喻道,路光辉.继电保护中光纤通信技术应用[J].电力自动化设备,2007,2(27):1-6
    [13]吴文瑕,陈柏峰,高燕.井下电网越级跳闸现象的研究及解决建议[J].工矿自动化,2008,6(12):1-5
    [14]夏勇军,胡刚,董永德.数字化变电站研究现状与应用展望.湖北电力,2007,31(3)
    [15]史泽兵.新型光纤纵差保护原理及装置的研究[D].华中科技大学硕士学位论文,2005.4
    [16]许正亚.电力系统继电保护.北京:中国电力出版社,1995,2~13
    [17]葛耀中.电流差动保护动作判据的分析和研究[J].西安交通大学学报,1980,14(2)
    [18] Kezunovic,M,Perunicic,B.Automated transmission 1ine fault analysis using synchronized sampling at two ends. IEEE Transactions on Power Systems,1996,V01.1l(1),PP:441-447
    [19] olio Cesar Stanchion de Souza,M.A.P. Rodriguez. Fault location in electric power systemsusing in diligent systems techniques. IEEE Trans on power delivery,January 2001,16(1):59-67
    [20] Izard Galijasevic,Ali A bur. Fault location using voltage measurement. IEEE Tram on power systems. April 2002,17(2):441-445
    [21] R SUBRAMANLAN. Substation Control System-Present Practices and Future Trends,CIGRE Paris SESSION 2004
    [22]刘宏君,孙一民,李延新.数字化变电站光纤纵差保护性能分析[J].电力自动化系统,2008,32(17)
    [23]贺敏.应用于110KV及以上电压等级的短线路光纤纵差保护[D].东南大学硕士学位论文,2003.1
    [24] Bloodhound K. Network Security Management with Intelligent Agents[A]. In: Network Operations and Management Symposium[C].2000
    [25]李靖波,刘沛.光纤纵差保护应用及灵敏度的提高[J].电力自动化设备,2002,22(4)
    [26] Mamoru Suzuki,Ryoichi Tusker. Development of Substation Digital Protection and Control System using Fiber-Optical Local Area Network. IEEE Transaction on power Delivery,1999,12( 3): 1369~1378
    [27] Southern E.P,Li H.Y,Crossley P.A,Ports S,Weller G.C.GPS synchronized current differential protection. Developments in Power System Protection , Sixth International Conference on(Conf.Publ.No.434),25~27 March 1997
    [28] Parker,A.D.,Birchenough,P.T,McLaren,P.G. Using a real time digital simulator to simulate multiple CTs for testing relays in current differential protection systems. Developments ill Power System Protection,2001. Seventh Intermational Conference Oil(IEE),9~12 April 2001
    [29] WU Wenxia,CHEN Bofeng,GAO Yan. The research and solutions of skip-level Interview underground network. Industry and Mine Automation, 2008,6(12):1-5
    [30] FU Guoxin, DAI Chaojin,SHI Changjiang,ZHANG Mingyo. Design of intelligent substation fault record[J].Electric Power Outomation Equipment. 2010,30(7):1-5
    [31] YUAN Zhenhai,SHEN Xiangyun,WANG Xianfeng. Study of Selective Leakage Protection Principle Based on Zero Sequence Directive Current [J]. Transactions of China Electro technical Society, 2005,20(4):1-3
    [32]刘荣.具有故障测距功能的光纤电流差动保护研究[D].山东大学硕士论文,2009.5
    [33]李宁.输电线路光纤电流差动保护研究[D].西安科技大学硕士论文,2007.4
    [34]许建德,陆以群.新型数字电流差动保护装置中的数据采样同步和通信方式[J].电力系统自动化, 1993,17(4):23~26
    [35]伍叶凯,员保记.利用故障分量的分相式电流差动保护[J].继电器,1996,24(3): 4~9
    [36]袁荣湘,陈德树,马天皓.基于故障分量的采样值电流差动保护研究—原理分析[J].继电器,2000,28(3):9-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700