基于数值实验的采煤沉陷与地质影响因素量化关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外关于采煤沉陷机理及其规律的研究已经取得了大量的研究成果,但由于对地质因素考虑不周,对采煤沉陷与地质因素之间量化关系的研究程度较低,目前已经取得的相关研究成果,还不能满足在采前对开采沉陷进行准确预计的要求。本文主要通过计算机数值试验,提取出在一定开采条件下构造介质、构造界面、构造应力等地质因素与采煤沉陷的关系数据,然后利用支持向量机软件,构建上述地质因素与地表最大下沉值之间的量化关系式。本文研究工作取得以下主要成果:
     在不考虑构造界面和构造应力情况下,如果采深(覆岩厚度)保持不变,松散层厚度与地表最大下沉值正相关,基岩层厚度与地表最大下沉值负相关。覆岩综合硬度和土岩比是能够综合反映构造介质(覆岩)厚度特征和硬度特征的两个因素,前者与地表最大下沉值负相关,后者与地表最大下沉值正相关。在没有煤层覆岩中各个岩层的物理力学参数,因而无法准确计算覆岩综合硬度的情况下,可利用土岩比代表构造介质特征对采煤沉陷进行预计。土岩比与地表最大下沉值的量化公式如下:
     f_4(x) = -80.54*(0.49x+1)~(10)+80.54*(0.06x+1)~(10)-524.8776在不考虑构造应力情况下,以RFPA软件中的均值度模拟节理密度,随着均值度增加,即节理密度减小,地表最大下沉值相应减小。随着节理倾角增加,地表最大下沉值先减小后增大,其最小值对应的节理倾角在40°~50°间,且节理倾角不同,地表最大下沉点出现的位置有所不同。
     在不考虑构造界面影响的情况下,随着挤压应力的增大,地表最大下沉值减小,但下沉范围有所扩大。在节理倾角一定的情况下,随着挤压应力的增大,地表最大下沉值减小;在相同强度的挤压应力作用下,随着节理倾角增大,地表最大下沉值先减小后增大。在逆断层倾角、落差一定时,随着挤压应力的增大,地表最大下沉值减小,地表下沉盆地范围则有所增大;在一定强度的挤压应力作用下,随着逆断层落差的增加,地表最大下沉值增加。在正断层倾角、落差一定的情况下,随着拉张应力的增加,拉张应力区的分布范围扩大,地表最大下沉值增大,下沉盆地的范围则无明显变化。
As so far now, the mechanisms and the regularity of how geological factors influencing the mining subsidence had been studied a lot, but due to the geological factors had not been fully considered, so the quantitative relation between these factors and the mining subsidence had little been realized, and the research achievement at present can’t meet the demand of accurate prediction before the mining activities. So by means of numerical test, this paper got the date between the geological factors, such as tectonic medium, interfaces and stresses, and mining subsidence under some certain mining conditions. At last, the quantitative relations were established. The main results were as following :
     Without considering structural interfaces and tectonic stresses, when the mining depth was certain, the losses thickness had a negative relation with the ground maximum subsidence value, and the relation was positive between the bedrocks thickness and the maximum subsidence value. The comprehensive hardness of overburdens and the ratio of soil and rock thicknesses could be used to reflect the thickness and hardness characteristics of tectonic medium, and the former had a negative relation with the ground maximum subsidence value, the latter had a positive relation. If the phicical and mechanical parameters of overlying strata couldn’t be obtained, then the comprehensive hardness of overburdens couldn’t be actually calculated, under this situation, the ratio of soil and rock thicknesses could be used to predict the mining subsidence as the main structural medium factor, and the quantitative relation between the ratio and the maximum subsidence value was as following :
     f_4(x) = -80.54*(0.49x+1)~(10)+80.54*(0.06x+1)~(10)-524.8776
     Without tectonic stresses’s influencing, letting average degree of rock represent the joint density in RFPA numerical software, when the average degree of rock increased, the joint density would reduce meanwhile, and the maximum subsidence value would reduce accordingly. As for the joint’s angle, the maximum value would decrease firstly and then increase, the minimum appeared when the joint angle was between 40 degree and 50 degree, and the position of the maximum value in the groud was different as the angle changed.
     For the tectonic medium without interfaces, with the increasing of compressive stresses value, the groud subsidence value would reduce while the scope would enlarge. For the overburden obtaining joints, the maximum subsidence value would reduce when the angle was fixed but the compressive stress value increased, and the maximum subsidence value would reduce firstly and then increase when the compressive stress value was fixed but the angle increased. For the reverse fault, the maximum subsidence value would reduce with the subsidence scope enlarging when the drop and angle were fixed, and the maximum subsidence value would increase with the drop’s increasing when the compressive stress was certain. When it was to the normal fault, with the increasing of tensile stress value, the distribution scope of tensile stress area enlarged, the maximum subsidence value increased, but the scope of subsidence basin had little change.
引文
[1] 郁钟铭,李奕樯.煤矿井工开采技术现状问题及发展[J].中国矿业,2005,14(9):1-2.
    [2] 杨伦.矿山开采沉陷对环境的损害比地震严重[J].科技导报,2001,9:53-55.
    [3] 毕忠伟,丁德馨.地下开采对地表的破坏与防治[J].安全与环境工程,2003,10(3):54-57.
    [4] 郑梁.煤炭开发对生态环境影响及环保对策探讨[J].引进与咨询,2002,(2):14-15.
    [5] 夏玉成.构造环境对煤矿区采动损害的控制机理研究[D].西安科技大学,2003.
    [6] 张恒军 , 程正文 , 吴玉梅 . 采煤诱发的自然灾害与对策研究 [J]. 山西水利科技,1994,24(1):62-64.
    [7] 钱鸣高,许家林等.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-344.
    [8]夏 玉 成 , 石 平 五 . 关 于 环 境 变 迁 和 矿 业 工 程 环 境 效 应 的 讨 论 [J]. 中 国 矿业,2002,11(1):63-65.
    [9] 许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报.2000,25(2):122-126.
    [10] 钱鸣高,李鸿昌.采场上覆岩层活动规律及其矿山压力的影响[J].煤炭学报.1982,(2).
    [11] 钱鸣高.采场上覆岩层岩体结构模型及其应用[J].中国矿业学院学报.1982,(2).
    [12] 吴立新,黄绍东等.山区厚硬覆岩条件下采动损害特征[J]. 水文地质工程地质.1994,3:35-38.
    [13] 王金庄,李永树等.巨厚松散层下采煤地表移动规律的研究[J].煤炭学报.1997,22(1):18-21.
    [14]于广明,谢和平,张玉卓等.节理对开采沉陷的影响规律研究[J].岩土工程学报.1998,20(6):96-98.
    [15] C.Doglioni;N.D.Agostinob;G.Mariottia:Normal faulting vs regional subsidence and sedimentation rate[J].Marine and petroleum Geology.1998,15:737-750.
    [16] 夏玉成主编.煤矿区地质环境承载能力研究[M].西安科技大学.2004,12:1-2.
    [17]T.P.T.McLennan ; E.M.Lohe ; T.D.Sullivan:Fault Styles in the Sydney-Bowen Basin:Implications for Coal Mining Conditions.Proceeding-Queensland Coal Symposium.117-121.
    [18] 郭文兵,邓喀中,白云峰.受断层影响地表移动规律的研究[J].辽宁工程技术大学学报.2002,21(6):713-715.
    [19] 阎於国,赵立武等.断层对开采移动参数的影响[J].徐煤科技.1997(3):8-9.
    [20] 夏玉成.构造环境对煤矿区采动损害的控制机理研究[J].西安科技大学.2003:23-25.
    [21] 夏玉成,雷通文.构造应力与采动损害关系的数值试验研究[J].辽宁工程技术大学学报.2006,25(4):527-529.
    [22] 夏 玉 成 . 构 造 应 力 对 煤 矿 区 采 动 损 害 的 影 响 探 讨 [J]. 西 安 科 技 学 院 院报,2004,24(1):72-77.
    [23] 隋惠权,于广明.地质动力引起岩层移动变异及突变灾害研究[J].辽宁工程技术大学学报(自然科学版).2002,21(1):25-27.
    [24] R. Begley;P. Beheler;A.W. Khair:A Windows Based Mechanistic Subsidence Prediction Model for Longwall Mining.Proceedings of the 5th Conference on the Use of Computer in the Coal Industry.1996,74-82.
    [25] Z. Agioutantis ; M. Karmis:Correlation of Subsidence Parameters and Damage Assessment due to Underground Mining. Proceedings of the 5th International Symposium on Environmental Issues and Waste Management in Energy and Mineral Production.1998,195-201.
    [26] L.J. Donnelly, H.De La Cruz, I.Asmar ec. The monitoring and prediction of mining subsidence in the Amaga, Angelopolis, Venecia and Bolombolo Regions, Antioquia, Colombia[J].Engineering Geology.2001,59:103-114.
    [27] 曹丽文,姜振泉.基于 GIS 和人工神经网络技术的开采沉陷预计建模方法[J].重庆大学学报.2002,25(12):141-144.
    [28] 郭文兵,邓喀中,邹友峰.地表下沉系数计算的人工神经网络方法研究[J].岩土工程学报.2003,25(2):212-215.
    [29] 朱宝龙,夏玉成.人工神经网络在矿井构造定量评价中的应用[J].煤田地质与勘探.2001,29(6):15-17.
    [30] Rajendra Singh,T.N.Sihgh,Bharat B.Dhar.Coal Pillar Loading in Shallow Mining Conditions[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1996,33:759-766.
    [31] A.A. Pimenov.About Possibility of Using Generalized Funtions for Determining Stress Field and Convergence of Single Mine Opening Under Condition of Forming Destruction Zone Around It[J].Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh,1991,4:48-51.
    [32] M.I.álvarez-Fernández, C.González-Nicieza, A.Menéndez-Díazb, A.E.álvarez-Vigil. Generalization of the n–k influence function to predict mining subsidence[J].Engineering Geology.2005,80:1-5.
    [33] 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].煤炭工业出版社.2000:78-116.
    [34] 李国正,王猛,曾华军(译).支持向量机导论[M].电子工业出版社,2004.
    [35] 中国气象局培训中心科技培训部.CMSVM 用户手册.2003 年.
    [36] Itasca Consulting Group, Inc. FLAC3D User Manuals, Version2.1 Minneapolis,Minnesota, 2002.
    [37] 唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].科学出版社,2003.
    [38] 肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1987.
    [39] E. Hoek, Brown E T. Underground Excavations in rock(2nd)[M]. Hereford: Austin & Sons Ltd, 1988.
    [40] 于远忠,宋建波.经验参数 m,s 对岩体强度的影响[J].岩土力学,2005,26(9):1462-1464.
    [41] 宋建波,于忠远,张倬元.基于 Hoek-Brown 经验强度的滑移线理论体系[J].西南工学院学报,2001,16(2):40-45.
    [42] 宋建波,于远忠.剪切破坏模式下均质岩基极限承载力的 Bell 解[J].岩石力学与工程学报,2002,21(3):410-412.
    [43] 宋建波,于远忠,刘汉超.用 Hoek-Brown 强度准则确定岩石地基极限承载力[J].地质灾害与环境保护,1999,10(4):67-72.
    [44] 展国伟.松散层和基岩厚度与裂隙带高度关系的实验研究[D].西安科技大学,2007,43-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700