煤矿井下排水系统运行可靠性研究与控制系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,为了抑制煤矿灾难事故,我国许多煤矿企业都在不断提高其安全生产能力,以适应煤炭工业的发展要求。而煤矿井下排水系统作为煤矿生产的四大系统之一,担负着排除煤炭生产过程中产生各种积水的重任,对维护煤矿系统正常生产起着重要的作用。因此,研究煤矿井下排水系统的运行可靠性对于提高煤炭企业的安全生产有着重要的意义。
     本文首先根据某矿井的原始资料,对排水设备进行了选型设计。其中,引入了可靠性数学模型,并采用了一种全新的选择设计方法,即根据经济可靠的原则选择排水设备。这种方法可以有效的应用于排水系统的选型设计和排水设备可靠性改造中。
     在离心式水泵排水系统中,调节阀门是必不可少的元件之一。它一方面担负着水泵站可靠运行,另一方面可以控制水泵流量,影响系统的工作特性。本课题对煤矿排水系统中使用的调节阀门进行了系统分析和研究,并将其优缺点和适用性进行了概括叙述,然后提出了一种以多功能水泵控制阀代替传统的调节阀门应用于煤矿井下排水系统的改造方法。
     文中首先分析多功能水泵控制阀的结构特点和工作原理。然后从工程流体力学方面对该阀门的水锤防护进行了分析研究,从理论上证明该阀门相比于普通的逆止阀,在排水系统中有着更好的水锤防护能力。最后结合煤矿井下排水系统的实际情况以及在阀门研究中常用到的计算流体动力学分析方法,利用计算流体动力学分析软件——FLUENT6.2,对多功能水泵控制阀的稳态、动态性能进行了仿真研究。其中在对多功能水泵控制阀动态性能的数值模拟研究中使用到了动网格技术。
     随着自动控制技术的发展,将工业控制技术与通信技术应用于煤炭工业领域已成为一种必然趋势。我们根据文中所选用的排水设备,研制出其相应的自动控制系统。该控制系统采用西门子公司推出的S7-300系列PLC作为现场中心控制单元和安装有北京三维力控科技有限公司开发的组态软件(Force Control 6.0)的PC上位机作为远程监控中心。设计了基于PROFIBUS-DP协议和TCP/IP协议的总线监控网络,实现了对排水系统实时、准确的现场控制与远程监控。
     最后为了提高排水系统的运行可靠性,本文还对抑制控制系统各种干扰因素进行了研究。
In recent years, in order to control the mine’s disaster happened frequently,there are some effective approaches should be taken to improve the capacity of coal mining enterprises’s safety to adapt the development of coal industry requirement. As one of the four component parts in coal mine system,the coal mine drainage system play an important role in normal production and has responsible for excluding the water which arise in the course of coal production. Therefore,studying the operational reliability is one of the great significant things about the coal mine safety production.
     Above all,according to some coal mine’s raw data, a new approach that reference the mathematical model of reliability can be adopted. Base on the principle of economy and reliability when selecting and designing the drainage device can improve its operational reliability.
     Regulating valves are essential components in the centrifugal pump drainage system. It responsible for the pump station reliable operation, on the other hand could control the pump flow, and affect the system's operating characteristics. This study focus on the performance of regulating valve, and summarized the merits and drawbacks,and then this study propose that using the multi-function control valve for pumping system to replace the traditional regulating valves in coal mine drainage system. First of all, the structure and working principle of multi-function control valve for pumping system will be studied. and then,research the water hammer protection on the aspect of engineering fluid mechanics,theoretical proved that this valve have better water hammer protection capability than the ordinary check valve. At last, with the actual situation in coal mine drainage systems and Fluid Dynamics Analysis(CFD),this study simulate the valve’s steady-state performance and dynamic performance simulation through using fluid dynamics simulation software--FLUENT6.2.The technology of dynamic mesh will be used in study dynamic performance.
     With the continuous development of automation technology in our country, appling the industrial control technology and communication technology to the coal industry have become an inevitable trend. Based on the choice of drainage facilities,we have developed the corresponding automatic control system in which the Siemens S7-300 series PLC as an on-site central control unit and the PC host computer with configuration software (Force Control 6.0) as an remote monitoring center,we also have designed the bus monitoring network which base on PROFIBUS-DP and TCP / IP protocol, achieved the drainage system real-time、accurate on-site control and remote monitoring.
     To increase the operation reliability of coal mines drainage system, the various interfering factors in the automatic control system been studied
引文
[1]张景成,张立秋.水泵与水泵站[M].哈尔滨:哈尔滨工业大学出版社, 2003.
    [2]李海峰.矿山井下排水系统经济分析与对策[J].矿山机械,2007,35(11):150-152.
    [3]大同煤矿学校编.矿山机械[M].北京:煤炭工业出版社,1999.
    [4]谭得健,郝榕,马立建等.国内外煤矿自动化现状及我国煤矿自动化发展对策[J].煤矿自动化,1995,(1):1-5.
    [5] W. Gerald Wilbanks.50 Years of Progress in Measuring and Controlling Industrial Processes[J].IEEE Control Systems Magazine, Feb.1996.
    [6]高林.煤矿井下排水自动控制的研究与开发[D].太原:太原理工大学,2007.
    [7]龚文.煤矿排水系统经济与安全性分析[J].同煤科技,2007,35(11):19-20.
    [8]李辉,王永健,侯艳杰.矿井排水系统可靠性模型研究及应用[J].矿业工程,2006,4(3):53-55.
    [9]白铭声.矿井排水装置运行于选择设计[M].北京:煤炭工业出版社,1992.
    [10]谢辉,吴自诘,王胜利.液控自动闸阀的应用[J].给水排水,1998,24(9):65-67.
    [11]吴娟,寇子明.井下自动排水用液压可控闸阀设计[J].机械管理开发,2006,(3):23-25.
    [12]金锤.停泵水锤及其防护[M].北京:中国建筑工业出版社,1993.
    [13]株洲南方阀门制造有限公司,多功能水泵控制阀,中国,F16K15/18,00224979,2001.7.
    [14]王念慎,罗建群,宋莉等.多功能水泵控制阀对水锤的防护作用[J].中国给水排水,2007,23(2):103-105.
    [15]严敬.工程流体力学[M].重庆:重庆大学出版社,2007.
    [16] Wayne E.Luetzelschwab,Littleton,Colo.Method of using Polymer Flow Control Apparatus[M],2005,US4535884.
    [17] Wylie E B.Strecter V L,Fluid Transients[J].Mc-Graw-Hill Co,1998
    [18]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [19]王瑞金,王刚,张凯.FLUENT技术基础与应用实例[M].北京:清华大学出版社,2007.
    [20]于勇.FLUENT入门与进阶教程[M].北京:北京理工大学,2008.
    [21]董勇,李文英,王怀法.固—液旋流分离器两相流场数值模拟研究[J].煤矿机电,2009,(3):21-23.
    [22]张庆林,李文英.射流泵乳化液配液器的数值模拟研究[J].流体传动与控制,2009,(3):28-30.
    [23]和青芳.PRO/Engineer Wildfire 3.0基础设计[M].北京:电子工业出版社,2007.
    [24]黄亚明,王晓钧.给排水系统用阀门的检验和试验[J].阀门,2004,4:24-27.
    [25]杨亮,苏玉民.粘性流场中摆动尾鳍的水动力性能分析[J].哈尔滨工程大学学报,2007,28(10):1074-1078.
    [26]史忠军,徐敏,陈士橹.动网格技术[J].空军工程大学学报,2003,4(1):61-64.
    [27] MARK A P,Eloret C,etc.A Parallel Multiblock Mesh Movement Scheme For Complex Aeroelastic Application[J].AIAA,2001
    [28]吴娟,寇子明.电液控闸阀仿真分析[J].煤炭科学技术,2009,32(2):94-96.
    [29] SU Yumin,HUANG Sheng,PANG Yongjie,etc.Hydrodynamic analysis of submersible propulsion system imitating tuna-tail[J].The Ocean Engineeing,2002,20(2):54~59.
    [30]李志鹏,刘可佳,王贵生等.多功能水力控制阀的设计与实验研究[J].流体机械,2001,29(1):18-20.
    [31]郭金龙,马文智.PLC技术在矿井排水全自动控制系统中的应用[J].第18届全国煤矿自动化与信息化学术会议论文集:254-259.
    [32] Martin Pleau , Hubert Colas ,Pierre Lavallee , Genevieve Pelletier Richard Bonin . Global optimal real-time control of the Quebec urban drainage system[J]. Environmental Modelling & Software 20 (2005) :401-413
    [33] Yunan Hu,Koroleva,oslav, Miroslav Krsti.onlinear control of mine ventilation networks[J].Systems & Control Letters 49 (2003):239–254.
    [34] SHI Liping,ZHANG Guanglong,HU Yongjun.Coal Mine Central Pump Room’s Security Control System Based on PLC and OPC[J].IEE proc,2006.
    [35]宋杰,肖兴明,张宪峰等.煤矿井下排水泵站的监控系统设计[J].煤矿机械,2006,27(5): 844-846.
    [36]李海森,刘金龙,韩学义等.网络化煤矿井下排水监控系统[J].工矿自动化,2007,5(2):166-169.
    [37]陈子春,刘向昕.井下中央泵房水泵自动化控制系统的研究与应用[J].工矿自动化,2007,2(8):77-79.
    [38]黄长艺,卢文祥,熊诗波编.机械工程测量与试验技术[M].北京:机械工业出版社,2002.
    [39]黄军友.基于无线传感器网络的煤矿流量监测监控系统设计[J].煤矿机电,2009,(1):17-19.
    [40]何希才.传感器及其应用[M].北京:国防工业出版社,2001.
    [41]马胜利,温国栋.嵌入式技术在煤矿排水系统中的应用[J].西安科技大学学报,2009,29(1)9:3-96.
    [42]廖常初.S7-300/400PLC应用教程[M].北京:机械工业出版社,2009.
    [43] SIEMENS.SIMATIC S7 Configuring Hardware and Communication Connections STEP7 V5.0 Manual.
    [44] SIEMENS.Toolbox for Data Link PGs/PCs to SIMATIC S7.
    [45]葛轶.煤矿井工开采排水设备自动控制系统开发研究[D].太原:太原理工大学,2005.
    [46]杨涛.乳化液泵站液压系统建模仿真与控制系统开发[D].太原:太原理工大学,2008.
    [47] Anon Understanding PLC networks , EC&M: Electrical Construction and Maintenance[J].Jan, 1996, 95(1):3-10.
    [48]胡兵.西门子S7系列PLC与WinCC的通信[J].安徽电子信息职业技术学院学报,2009,8(44):55-57.
    [49]吴峰,胡大斌,胡锦晖.基于以太网的PLC通信技术研究[J].微处理机,2007,3(2):33-35.
    [50]李会娟.PLC控制系统传导干扰源与抗干扰分析[J].青海大学学报,2008,7(1):9-11.
    [51]艾莉,程加堂.PLC控制系统的电磁抗干扰技术研究[J].机械工程与自动化,2009,5(4):167-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700