电力谐波有源补偿新方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输变电安全是关系我国经济持续、稳定发展的关键,也是国家“十一五”规划及中长期科技发展规划的重要研究领域。电力谐波污染对电力系统稳定、安全、经济运行造成巨大威胁,是影响输变电安全的重要因素之一,所以电力谐波抑制的研究已成为世界各国的研究重点。本论文针对电力谐波的抑制提出了双频变换器理论及三相直流侧有源电力滤波技术,并进行了深入研究。研究内容主要包括:双频变换器系列的拓扑结构、控制策略及其在电力谐波治理等领域中的应用;用于谐波治理的三相整流桥直流侧有源电力滤波器拓扑结构和控制方法,以及在电力谐波治理中采用的单周控制方法。
     论文首先针对变换器的容量和性能之间的矛盾,从变换器理论的角度,提出了基本双频DC-DC变换器系列拓扑结构。该结构由高频单元和低频单元组合运行,两单元功能相对分离。其中,低频单元主要处理功率;高频单元提高变换器性能,仅处理很小部分的功率,可以在现有功率器件水平下同时提高变换器的容量和性能。
     随后,论文采用变换器拓扑结构推演的方法,对基本双频DC-DC变换器进行了拓展,将能量单向流动的双频DC-DC变换器推广到能量可以双向流动的单相桥式、三相桥式结构的双频AC-DC、DC-AC变换器,形成了较完整的双频变换器系列拓扑结构,为双频变换器在大功率场合的应用奠定了基础。
     在提出双频变换器的基础上,论文主要对双频变换器在有源电力滤波器(APF)、功率因数校正器(PFC)等领域中的应用进行了深入研究。理论和仿真、实验研究结果表明:双频APF、PFC中的高频单元仅处理很小部分的功率,与工作在高频状态下的单频APF、PFC相比,效率大大提高,而它们的谐波补偿效果相当,可以在现有功率器件水平下提高功率等级、增大容量。同时,论文对双频变换器的建模和参数设计等方面也进行了研究,为双频变换器的实际应用打下了基础。论文还对双频变换器在逆变器、开关功率放大器等中的应用进行了研究。
     针对大量使用的三相不可控整流桥,论文提出了三相直流侧有源电力滤波的新概念,研究出了三相并联型直流侧有源电力滤波器的拓扑结构及其相关控制策略。研究表明:针对同样的整流桥负载,与传统的三相交流侧有源电力滤波器相比,三相直流侧APF具有更小的补偿容量、开关应力,以及更好的补偿效果。为了更进一步减少有源开关数量,论文还提出了谐波注入式结构的三相直流侧并联型有源电力滤波器。
     最后,论文对在电力谐波治理中采用的单周控制方法所存在的一些问题进行
The safety problem of transmitting and transforming power is critical for our country's economy developing continuously and steadily, and it is also an important research field in "the fifteenth national five year plan" and "the moderate and long time science and technology development program". Power harmonic pollution is a large threat for power system running steadily, safely and economically, and one of the important factors that affect the safety of transmitting and transforming power. Thus, research on power harmonic suppression becomes the focus around the world. This dissertation studied novel methods of power harmonic active compensation, especially on the converter with double-frequency which is used to improve the compensation capacity and compensation performance of power harmonic suppression, three-phase DC side active power filter on the DC side of uncontrolled rectifier that suppresses the power harmonic, and the concerned one-cycle control method.
    Firstly, the DC-DC converter with double-frequency was proposed in the point of basic converters in order to solve the contradiction between the capacity and the compensation performance of power harmonic suppression equipment. In the proposed topology, high frequency unit and low frequency unit worked combinatorially, but the functions of which separated relatively. The low frequency unit processed the output power, while the high frequency unit improved the converter performance. Under the nowadays power components development level, this can increase the capacity of the converter, as well as improving the performance, which pave the way to improve the performance of APR
    Then the dissertation developed the basic DC-DC converter with double-frequency by the converter topology deducing method. From the DC-DC converter with double-frequency in which power flowed in one direction, to the AC-DC and DC-AC converters of single-phase bridge and three-phase bridge structure with double-frequency in which power flowed in two directions, a list of converter with double-frequency is formed.
    Based on the proposed converter with double-frequency, the dissertation mainly studied the application of the converter with double-frequency in active power filter(APF), power factor correction(PFC) etc. The result indicated that: under the nowadays power components development level, the APF and PFC with
引文
[1] 王兆安,杨君,刘进军等.谐波抑制和无功功率补偿.第一版.北京.机械工业出版社,1998
    [2] 张一中,宁元中,宋永华等.电力谐波.第一版.成都.成都科技大学出版社,1992
    [3] A. Domijian, G. Lamer, E. Embriz-Santander, et al, Watthour meter accuracy under controlled unbalanced harmonic voltage and current conditions. IEEE Trans. Power Deli., 1996, 11(1), pp: 64-72
    [4] IEEE Working Group on Nonsinusiodal Situations, A survey of north american electric utility concerns regarding nonsinusoidal waveforms, IEEE Trans. Power Deli., 1996, 11(1), pp: 73-78
    [5] 鲍敏铎.电力系统谐波及其危害.浙江电力,1994,16(4),pp:18-22
    [6] 李健生,肖遥.华中500kV系统谐波测试及其结果分析.中国电力,1994,27(1),pp:45-49
    [7] Buddingh P. C., Even harmonic resonance——an unusual problem, IEEE Trans. Ind. Applicat., July/Aug. 2003, 39(4), pp: 1181-1186
    [8] Keiji Wada, Hideaki Fujita, Hirofumi Akagi, Considerations of a Shunt Active Filter Based on Voltage Detection for Installation on a Long Distribution Feeder, IEEE Trans. Ind. Applicat., 2002, 38(4), pp: 1123-1130
    [9] Z. Chen, F. Blaabjerg, J. K. Pedersen, Harmonic resonance damping with a hybrid compensation system in power systems with dispersed generation, IEEE PESC, Archen, Germany, 2004, pp: 3070-3076
    [10] E. J. Currence, J. E. Plizga, H. N. Nelson, Harmonic resonance at a medium-sized industrial plant, IEEE Trans. Ind. Applicat., July/Aug. 1995, 31(4), pp: 682-690
    [11] 廖秀华.氯碱企业变电系统谐波危害案例及对策.中国氯碱,2002,23(10),pp:1-2
    [12] 李美锦.煤矿供电系统中谐波危害的防治.煤矿安全,2002,33(8),pp:34-35
    [13] 周理兵,陆佳政,马志云.系统谐波与负序电流对水轮发电机的影响.华中科技大学报(自然科学版),2002,30(5),pp:68-70
    [14] G. Mahesh, R Ganesan, Sisir K. Das, Effects of power harmonics and its control techniques, INCEMIC, 1999, pp: 400-405
    [15] J. C. Das, Passive Filters—Potentialities and Limitations, IEEE Trans. Ind. Applicat. 2004, 40(1), pp: 232-241
    [16] M. H. J. Bollen, What is power quality?. Electric Power Systems Research, 2003, 66(1), pp: 5-14
    [17] 吴竟昌,孙树勤,宋文南等.电力系统谐波.第一版.北京.水利电力出版社,1988
    [18] 夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波.第一版.北京.水利电力出版社,1994
    [19] Pee-Chin Tan, Poh Chiang Loh, Donald Grahame Holmes, Optimal Impedance Termination of 25-kV Electrified Railway Systems for Improved Power Quality, IEEE Trans. Power Del., Apr. 2005, 20(2), pp: 1703-1710
    [20] Q. Chen, Z. Chert, Malcolm McCormick, The application and optimization of C-type filter in a combined harmonic power filter, IEEE Pesc, Archen, Germany, 2004, pp: 1041-1045
    [21] Deorge J.Wakileh 著.徐政译.电力系统谐波——基本原理、分析方法和滤波器设计.第一版.北京,机械工业出版社,2003
    [22] Department of Defence, Electromagnetic emission and susceptibility requirements for the control of electromagnetic interference, US MIL-STD-461B, 1980
    [23] IEC 555-2, Limits concerning harmonic currents for equipment having an. input current <16A per phase, Nov. 1991
    [24] IEEE recommended practices and requirements for harmonic control in electrical power systems, IEEE Std 519-1992, Apr. 1993
    [25] IEC 1000-3-2, Electromagnetic Compatibility Part 3: Section 2: Limits for harmonic current emissions (equipment input current ≤16A perphase), Mar. 1995
    [26] IEC 1000-3-4, Electromagnetic Compatibility Part 3: Section 4: Limits for harmonic current emissions (equipment input current> 16A perphase), Apr. 1995
    [27] EN61000-3-2、IEC61000-3-2、GBl7625.1谐波电流发射限值(设备每相输入电流小于16A),http://www.laplace.cn/page/standard/EN61000-3-2.htm
    [28] 吕骞.供电质量的指标释义及标准,http://www.chinarein.com/ndlk/ndqh/web/2004/docs/2004-05/2004-05-03-htm
    [29] Ewald F. Fuchs,. Dietrich, J. Roesler,' Mohammad A. S. Masoum, Are Harmonic Recommendations According to IEEE and IEC Too Restrictive?, IEEE Trans. Power Del., Oct. 2004, 19(4), pp: 1775-1786
    [30] IEEE Working Group on Nonsinusiodal Situations effects on meter performance and definitions of power, Practical definitions for powers in systems with nonsinusoidal waveforms and unbalanced loads a discussion, IEEE Trans. Power Del., 1996, 11(1), pp79-101
    [31] Discussion of 'Update of harmonic standard IEEE-519 IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems [and reply], IEEE Trans. Ind. Applicat., Mar./Apr. 1991, 21(2), pp: 244
    [32] Thomas S. Key, Jih-Sheng Lai, IEEE and International Harmonic Standards Impact on Power Electronic Equipment Design, IEEE IECON, Nov. 1997, 2, pp: 430-436
    [33] A. do Oliveira, J. C. de Oliveira, Harmonic standards-The need for an integrated perspective, IEEE International Conference on Harmonics in Power Systems, Sept. 1992, pp: 295-302
    [34] Erich W. Gunther, Interharmonics-Recommended Updates to IEEE 519, IEEE Power Engineering Society Summer Meeting, 2002, pp: 950-954
    [35] S. Mark Halpin, Overview of Revisions to IEEE Standard 519-1992, IEEE Power Engineering Society Summer Meeting, July 2002, 2, pp: 65-68
    [36] Mark McGranaghan, Overview of the guide for applying harmonic limits on power systems-IEEE-519A, IEEE International Conference on Harmonics And Quality of Power, Oct. 1998, 1, pp: 462-469
    [37] Christopher K. Duffey, Ray P. Stratford, Update of harmonic standard IEEE-519 IEEE recommended practices and requirements for harmonic control in electric power systems, IEEE Trans. Ind. Applicat., 1989, 19(6), pp: 1025-1034
    [38] 莫青,孙浩良.IEC 标准中设备谐波电流限值的依据及推导.电网技术,2004,24(4),pp:67-70
    [39] 林海雪.从IEC电磁兼容标准看电网谐波国家标准.电网技术,1999,23(5),pp:64-68
    [40] 林海雪,周胜军.电气化铁路的谐波标准问题.中国电力,1999,32(9),pp:55-58
    [41] 林海雪.公用电网谐波国标中的几个问题.电网技术,2003,27(1),pp:65-70
    [42] 江钧祥.国标 GB/T14549-93《电能质量公用电网谐波》简介.电力电容器,1999,20(2),pp:21-25
    [43] 林海雪.国际电工委员会谐波标准简介.中国电力,1998,31(10),PP:55-59
    [44] 叶斌,刘志刚.国际谐波标准对电力电子装置设计的影响.铁道学报,2000,22(3),pp:102-106
    [45] 吕润馀.电能质量 公用电网谐波.2002 上海电能质量国际研讨会资料
    [46] 李令东,陈国生,谢列斌等.电能质量标准与电能质量监督管理,上海宝钢安大电能质量有限公司资料
    [47] Yaow-Ming Chen, Passive Filter Design Using Genetic Algorithms, IEEE Trans. Ind. Electr., Feb. 2003, 50(1), pp: 202-208
    [48] Mohamed M. A. A., Essam E. A. E., Ahmed M. I., et al, Practical Considerations Regarding Power Factor for Nonlinear Loads, IEEE Trans. Power Del., Jan. 2004, 19(1), pp: 337-341
    [49] Dimitrie Alexa, Adriana Sirbu, Dan-Marius Dobrea, An Analysis of Three-Phase Rectifiers With Near-Sinusoidal Input Currents, IEEE Trans. Ind. Electr., Aug. 2004, 51(4), pp: 884-891
    [50] Alexa D.; Sirbu A.; Dobrea D. M., et al, Topologies of three-phase rectifiers with near sinusoidal input currents, IEE Proc. Electric Power Applicat., Nov. 2004, 151(6), pp: 673-678
    [51] Sirbu A., Alexa D., Cleju I., et al, MATLAB-based design of rectifiers with almost sinusoidal input currents, International Symposium on Signals, Circuits and Systems(SCS), July 2003, 1, pp: 205-208
    [52] Vinatoru C.-S., Palagniuc V., Lupea, E., et al, An analysis and a simulation of static frequency converter using three-phase rectifiers with almost sinusoidal input currents, International Symposium on Signals, Circuits and Systems(SCS), July 2003, l,pp:209-212
    [53] Pletea I.-V., Alexa D., Sustainable electrical energy - wind energy conversion into electrical energy with RNSIC converter, IEEE International Symposium on Communications and Information Technology, Oct. 2004, 2,pp:867-870
    [54] Alexa D., Combined filtering system consisting of passive filter with capacitors in parallel with diodes and low-power inverter, IEE Proc. Electric Power Applicat., 1999, 146(1),pp:88-94
    [55] Noshirwan K. Medora, Alexander Kusko, Computer-Aided Design and Analysis of Power-Harmonic Filters, IEEE Trans. Ind. Applicat., Mar./Apr. 2000, 36(2), .pp: 604-613
    [56] Berizzi A., Castelli-Dezza K, Silvestri A., et al, An expert system for filter optimum location [in distribution networks], IEEE Power Engineering Society Winter Meeting, Jan.-Feb. 1999, 2,pp: 1269-1274
    [57] Hirofumi Akagi, Trends in active power line conditioners, IEEE Trans. Power Electr., 9(3), May 1994,pp:263-268
    [58] Hirofumi Akagi, New trends in active filters for power conditioning, IEEE Trans. Ind. Applicat., Nov.-Dec. 1996, 32(6),pp: 1312-1322
    [59] Grady W. M., Samotyj M. J., Noyola A. H., Survey of active power line conditioning methodologies, IEEE Trans. Power Del., July 1990, 5(3),pp: 1536-1542
    [60] M. El-Habrouk, M. K. Darwish, Pmehta, Active power filters : a review, IEE Proc. Electr. - Power Applicat., Jan. 2000,147(7),pp:403-414
    [61] Welsh M., Mehta P., Darwish M. K., Genetic algorithm and extended analysis optimisation techniques for switched capacitor active filters-comparative study, IEE Proc. Electr. Power Applicat., 2000, 147(1),pp:21-26
    [62] Mehta P., Darwish M., Thomson T., Switched-capacitor filters, IEEE Trans. Power Electr., July 1990,5(3),pp:331- 336
    [63] Koozehkanani Z. D., Mehta P., Darwish M. K., Active filter for eliminating current harmonics caused by nonlinear circuit elements, Electronics Letters, June 1995, 31(13),pp:1041-1042
    [64] M.El-Habrouk, M. K. Darwish, Pmehta, Analysis and design of a novel active power filter configuration, IEE Proc. Electr. Power Applicat., Jan. 2000, 147(4),pp:320-328
    [65] Ribeiro E. R., Barbi I., A series active power filter for harmonic voltage suppression, IEEE Telecommunications Energy Conference, Oct. 2001,pp:514-519
    [66] Graovac D., Katic V., Rufer A., Power quality compensation using universal power quality conditioning system, IEEE Power Engineering Review, Dec. 2000,20(12),pp:58-60
    [67] Fujita H., Akagi H., The unified power quality conditioner: the integration of series and shunt-active filters, IEEE Trans. Power Electr., Mar. 1998, 13(2), pp: 315-322
    [68] Da Silva S. A. O., Donoso-Garcia P. F., Cortizo P. C., et al, A three-phase line-interactive UPS system implementation with series-parallel active power-line conditioning capabilities, IEEE Trans. Ind. Applicat., Nov. -Dec. 2002, 38(6), pp: 1581-1590
    [69] Ran L., Holdsworth L., Putrus G. A., Dynamic selective harmonic elimination of a three-level inverter used for static Var compensation Generation, lEE Proc. Trans. and Distr., Jan. 2002, 149(1), pp: 83-89
    [70] Tey L. H., So P. L., DSP-controlled active filters for system harmonics compensation, 2002. International Conference on Power System Technclogy, Oct. 2002, 1, pp: 453-458
    [71] Mattavelli P., Marafao F. P., Repetitive-based control for selective harmonic compensation in active power filters, IEEE Trans. Ind. Electr., Oct. 2004, 51(5), pp: 1018-1024
    [72] Newman M. J., Holmes D. G., A universal custom power conditioner (UCPC) with selective harmonic voltage compensation; IEEE IECON, Nov. 2002, 2, pp: 1261-1266
    [73] Woo-Cheol Lee, Taeck-Kie Lee, Dong-Seok Hyun, A three-phase parallel active power filter operating with PCC voltage compensation with consideration for an unbalanced load, IEEE Trans. Power Electr., Sept. 2002, 17(5), pp: 807-814
    [74] Kim Y. S., Kim J. S., Ko S. H., Three-phase three-wire series active power filter, which compensates for harmonics and reactive power, IEE Proc. Electr. Power Applicat., May 2004, 151(3), pp: 276-282
    [75] Lee G.-M., Dong-Choon Lee, Jul-Ki Seok, Control of series active power filters compensating for source voltage unbalance and current harmonics, IEEE Trans Ind. El(?)tr. Feb 2004, 51(1), pp: 132-139
    [76] Fangzheng Peng, H. Agagi, A. Nabae, A novel harmonic power filter, IEEE PESC, 1988, pp: 1151-1159
    [77] Lee G0-M., Dong-Choon Lee, Jul-Ki Seok, Control of series active power filters compensating for source voltage unbalance and current harmonics, lEEE Trans. Ind. Electr., Feb. 2004, 51(1), pp: 132-139
    [78] Fang Z. Peng, Harmonic sources and filtering approaches, IEEE Industry Applications Magazine, July/Aug. 2001, 7(4), pp: 18-25
    [79] Pee-Chin Tan, Poh Chiang Lob, Holmes D. G., A robust multilevel hybrid compensation system for 25-kV electrified railway applications, IEEE Trans. Power Electr., July 2004, 19(4), pp: 1043-1052
    [80] Rivas D., Moran L., Dixon J. W., et al, Improving passive filter compensation performance with active techniques, IEEE Trans. Ind. Electr., Feb. 2003, 50(1), pp: 161-170
    [81] Jou H.-L., Wu J.-C, Chang Y.-J., et al, New active power filter and control method, IEE Proc. Electr. Power Applicat., Mar. 2005,152(2),pp:175-181
    [82] Xu Yonghai, Xiao Xiangning, Liu Lianguang, New approaches of low cost hybrid active filter, Electric Power Engineering, International Conference on PowerTech., Aug.-Sept., 1999, pp: 291
    [83] Jung, G. H., Cho G. H., New power active filter with simple low cost structure without tuned filters, IEEE PESC, May 1998, 1, pp:217-222
    
    [84] Po-Tai Cheng, Bhattacharya S., Divan D., Experimental verification of dominant harmonic active filter for high-power applications, IEEE Trans. Ind. Applicat., Mar.-Apr. 2000, 36(2), pp:567-577
    [85] Rivas D., Moran L., Dixon J., et al, A simple control scheme for hybrid active power filter, Generation, IEE Proc. Trans, and Distr., July 2002, 149(4), pp:485-490
    [86] Jou H.-L., Wu J.-C, Chang Y.-J., et al, A Novel Active Power Filter for Harmonic Suppression, Power Delivery, IEEE Trans. Power Del., Apr. 2005, 20(2), pp: 1507-1513
    [87] Sung, J.-H.; Park, S.; Nam, K.;New hybrid parallel active filter configuration minimising active filter size, IEE Proc. Electr. Power Applicat.,147(2), March 2000, pp: 93-98
    [88] Senini S., Wolfs P. J., Analysis and design of a multiple-loop control system for a hybrid active filter, IEEE Trans. Ind. Electr., Dec. 2002,49(6), pp: 1283-1292
    [89] Fei Liu, Yunping Zou, Kai Ding, et al, A novel combined control algorithm for the hybrid active power filter applied to high voltage grid, IEEE IECON, Nov. 2004, 2, pp: 1435-1439
    [90] Hafner J., Aredes M., Heumann K., A shunt active power filter applied to high voltage distribution lines, IEEE Trans.Power Del., Jan. 1997, 12(1), pp:266-272
    [91] Dirk Detjen, Joep Jacobs, Rik W. De Doncker, et al, A New Hybrid Filter to Dampen Resonances and Compensate Harmonic Currents in Industrial Power Systems With Power Factor Correction Equipment, IEEE Trans. Power Electr., Nov. 2001, 16(6), pp:821-827
    [92] Al-Zamil A.M., Torrey D.A., A passive series, active shunt filter for high power applications, IEEE Trans. Power Electr., Jan. 2001, 16(1), pp:101-109
    [93] Rahmani S., Al-Haddad K., Fnaiech F., A hybrid structure of series active and passive filters to achieving power quality criteria, IEEE International Conference on Man and Cybernetics, Oct. 2002, 3, pp: 6-9
    [94] Chiang S. J., Ai W. J., Parallel operation of three-phase four-wire active power filters without control interconnection, IEEE PESC, June 2002, 3, pp: 1202-1207
    [95] Chiang S. J., Chang J. M., Design and implementation of the parallelable active power filter, IEEE PESC, July 1999, 1,pp: 406-411
    [96] El Shatshat R., Kazerani M., Salama M. M. A., Multi converter approach to active power filtering using current source converters, IEEE Trans. Power Del., Jan. 2001, 16(1), PP38-45
    [97] Wanjun Lei, Fang Zhuo, Hongyu Li, et al, Study on the key-problems for digital controlled multiple parallel active power filter, IEEE IPEMC, 2004, 1, pp: 254-259
    [98] 卓放,胡军飞,王兆安.采用多重化主电路实现的大功率有源电力滤波器.电网技术,2000,24(8),pp:5-7
    [99] 卓放,周新,王兆安等.模块化PWM主电路实现的大容量有源电力滤波器.电力系统自动化,2002,26(16),pp:45-48
    [100] 卓放,何益宏,李红雨等.大容量有源电力滤波器实现方法的研究.电力电子技术,2001,35(2),pp:13-15
    [101] Luis A. Mor'an, Luciano Fern'andez, Juan W. Dixon, et al, A Simple and Low-Cost Control Strategy for Active Power Filters Connected in Cascade, IEEE Trans. Ind. Electr., Oct. 1997, 44(5), pp: 621-629
    [102] Chatterjee K., Femandes B. G., Dubey G. K., A novel high-power low-distortion synchronous link converter-based load compensator without the requirement of VAr calculator, IEEE Trans. Ind. Electr., June 2000, 47(3), pp: 542-548
    [103] Chatterjee K., Femandes B. G., Dubey G. K., A simplified control strategy for a high-power low-distortion synchronous link converter Var compensator, IEEE Trans. Power Del., Apr. 2000, 15(2), pp: 652-658
    [104] Moran L., Dixon J., Muller S., et al, An active power filter implemented with PWM voltage-source inverters in cascade, IEEE ISIE, May 1994, pp: 108-113
    [105] M. Basu, S. P. Das, G. K. Dubey, Parallel converter scheme for high-power active powel filters, IEE Proc. Electr. Power Applicat., July 2004, 151(4), pp: 460-466
    [106] Juan Dixon, Yamille del Valle, Marcos Orchard, et al A Full Compensating System for General Loads, Based on a Combination of Thyristor Binary Compensator, and a PWM-IGBT Active Power Filter, IEEE Trans. Ind. Electr., Oct. 2003, pp: 982-989
    [107] El Shatshat R., Kazerani M., Salama M. M. A., Modular active power-line conditioner, IEEE Trans. Power Del., Oct. 2001, 16(4), pp: 700-709
    [108] El Shatshat R., Kazerani M., Salama M. M. A., Modular active power filtering approaches: Power splitting verses frequency splitting, IEEE Canadian Conference on Electrical and Computer Engineering, May 1999, 3, pp: 1304-1308[109] Woo-Cheol Lee, Taeck-Ki Lee, Sang-Hoon Lee, et al, A master and slave control strategy for parallel operation of three-phase UPS systems with different ratings, IEEE APEC, 2004, 1, pp: 456-462
    [110] Bin Shi, Venkataramanan G., Parallel operation of voltage source inverters with minimal intermodule reactors, IEEE IAS, 2004, pp: 162-165
    [111] Zhihong Ye, Boroyevich D., Jae-Young Choi, et al, Control of circulating current in two parallel three-phase boost rectifiers, IEEE Trans. Power Electr., Oct. 2002, 17(5), pp: 609-615
    [112] 姜桂宾,裴云庆,杨旭等.SPWM逆变电源的无互联信号线并联控制技术.中国电机工程学报,2003,23(12),PP:94-98
    [113] 程荣仓,刘正之.大容量单相逆变装置并联技术的分析.中国电机工程学报,2004,24(7),PP:112-116
    [114] 陈良亮,肖岚,龚春英等.逆变器并联系统直流环流产生原因及其检测与抑制方法.中国电机工程学报,2004,24(9),pp:56-60
    [115] Peng F.-Z., Akagi H., Nabae A., A study of active power filters using quad-series voltage-source PWM converters for harmonic compensation, IEEE Trans. Power Electr., Jan. 1990, 5(1), pp: 9-15
    [116] Fang Zheng Peng, McKeever J. W., Adams D. J., A power line conditioner using cascade multilevel inverters for distribution systems, IEEE Trans. Ind. Applicat., Nov.-Dec. 1998, 34(6), pp: 1293-1298
    [117] Sangsun Kim, Prasad N. Enjeti, A New Hybrid Active Power Filter (APF) Topology, IEEE Trans. Power Electr., Jan. 2002, 17(1), pp: 48-56
    [118] Sangsun Kim, Prasad N. Enjeti, A New Hybrid Active Power Filter (APF) Topology, IEEE APEC, Mar. 2001, 2, pp: 835-841
    [119] Lopez M., Moran L., Dixon J., A three-phase active power filter implemented with multiples single-phase inverter modules in series, IEEE ISIE, Dec. 2000, 1, pp: 96-101
    [120] Manjrekar M. D., Steimer P. K., Lipo T. A., Hybrid multilevel power conversion system: a competitive solution for high-power applications, IEEE Trans. Ind. Applicat., May-June 2000, 36(3), pp: 834-841
    [121] Manjrekar M. D., Steimer P., Lipo T. A., Hybrid multilevel power conversion system: a competitive solution for high power applications, IEEE IAS, Oct. 1999, 3, pp: 1520-1527
    [122] Lin B.-R., Hou Y.-L., Simplified control method for single-phase multilevel active rectifier with current harmonic filtering characteristics, IEE Proc. Electr. Power Applicat., Jan. 2001, 148(1), pp: 85-96
    [123] Bor-Ren Lin, Yi-Lang Hou, Single-phase integrated power quality compensator based on capacitor-clamped configuration, IEEE Trans. Ind. Electr., Feb. 2002, 49(1), pp: 173-185
    [124] Sun Hui, Zou Ji-yan, Li Wei-dong, A novel active power filter using multilevel converter with self voltage balancing, IEEE International Conference on Power System Technology, Oct. 2002, 4, pp: 2275-2279
    [125] Aburto V., Schneider M., Moran L., et al, Dixon, J.; An active power filter implemented with a three-level NPC voltage-source inverter, IEEE PESC, June 1997, 2, pp: 1121-1126
    [126] Wang Liqiao, Lin Ping, Li Jianlin, et al, Study on shunt active power filter based on cascade multilevel converters, IEEE PESC, June 2004, 5, pp: 3512-3516
    [127] Hernandez F., Moran L., Espinoza J., et al, A multilevel active front-end rectifier with current harmonic compensation capability, IEEE IECON, Nov. 2004, 2, pp: 1446-1451
    [128] Massoud A. M., Finney S. J., Williams B. W., Seven-level shunt active power filter Harmonics, International Conference on Quality of Power, Sept. 2004, pp: 136-141
    [129] Song B.-M., Lai J.-S., Chang-Yong Jeong, et al, A soft-switching high-voltage active power filter with flying capacitors for urban Maglev system applications, IEEE IAS, Sept.-Oct. 2001, 3, pp: 1461-1468
    [130] Tolbert L. M., Fang Zheng Peng, Habefler T. G., A multilevel converter-based universal power conditioner, IEEE Trans. Ind. Applicat., Mar.-Apr. 2000, 36(2), pp: 596-603
    [131] Luowei Zhou, K. Smedley, Unified constant-frequency integration control of single phase active power filters, IEEE APEC, Feb. 2000, pp: 413-419
    [132] K. Smedley, Luowei Zhou, Chongming Qiao, Unified constant frequency integration control of active power filters——steady state and dynamics, IEEE Trans. Power Electr., May 200 I, 16(3), pp: 428-436
    [133] K. Smedley, Luowei Zhou, Unified Constant-frequency Integration reset control of single phase active power filters, US Patent No. 6 249 108, June 2001
    [134] Oscar Garcia, Maria Dolores, Martinez-Avial,et al, Harmonic reducer converter, IEEE Trans. Ind. Electr., Apr. 2003, 50(2), pp: 322-327
    [135] 杜雄,周雒维,谢品芳.直流侧有源电力滤波器主电路参数与补偿性能的关系.中国电机工程学报,2004,24(11),pp:39-42
    [136] 杜雄,周雒维,谢品芳等.—种改进的单周控制直流侧有源电力滤波器及其稳态和动态研究.中国电机.工程学报,2003,23(7),PP:12-17
    [137] 周雒维,杜雄,谢品芳等.DC侧APF与APF和PFC开关应力比较研究.中国电机工程学报,2003,23(8),pp28-31
    [138] 谢品芳,杜雄,周雒维.单周控制直流侧单相有源电力滤波器.电工技术学报,2003,18(4),pp:51-55
    [139] 肖国春,刘进军,杨军等.高压直流输电用直流有源电力滤波器的研究.电工技术学报,2001,16(1),pp:29—42
    [140] Wenyan Zhang, Asplund G., Aberg A., et al, Active DC filter for HVDC system——a test installation in the Konti-Skan DC link at Lindome converter station, IEEE Trans. Power Del., 1993, 18(3), pp: 1599-1606
    [141] 李旷,肖国春,王兆安.耦合变压器型串联直流有源电力滤波器的研究.西安交通大学学报,2004,38(6),pp:632-635
    [142] 李旷,肖国春,王兆安.稳定直流电源用串联型有源电力滤波器研究.电气传动自动化,2003,25(2),PP:10-13
    [143] 马小亮,王丙元,赵付田等.并联有源滤波在加速器电源中的应用.电工技术学报,2002年,17(3),pp:54-58
    [144] Wang Y., Joos G., Jin H., DC-Side Shunt-Active Power Filter for Phase-Controlled Magnet-Load Power Supplies, IEEE Trans. Power Electr., Sep. 1997, 12(5), pp: 765-771
    [145] Kitayama T., Shibayama A., Uno Y., et al, High-speed, high-accuracy magnet power supply using FET chopper for synchrotron facility, IEEE Particle Accelerator Conference, 1989, 2, pp: 1145-1147
    [146] Fang Zheng Peng, Jih-Sheng Lai, Generalized instantaneous reactive power theory for three-phase power systems, IEEE Trans. Instr. Meas., Feb. 1996, 45(1), pp: 293-297
    [147] Fang Zheng Peng, Ott. G. W. Jr., Adams D. J., Harmonic and reactive power compensation based on the generalized instantaneous reactive power theory for three-phase four-wire systems, IEEE Trans. Power Electr., Nov. 1998, 13(6), pp: 1174-1181
    [148] 王良,郝荣泰.三相不平衡有源无功和高次谐波补偿器控制系统的研究.电工技术学报,1996,11(4),pp:31-35
    [149] 丁洪发,段献忠,何仰赞.同步检测法的改进及其在三相不对称无功补偿中的应用.中国电机工程学报,2000,20(6),PP:17-20
    [150] 马大铭,朱东起.三相电压不对称时谐波和无功电流的准确检测.清华大学学报,1997,37(4),pp:7-10
    [151] Arafdar Haque M., Single-phase pq theory for active filters, IEEE TENCON, Oct. 2002, 3, pp: 1941-1944
    [152] 王群,吴宁,谢品芳.一种基于神经元的自适应谐波电流检测法.电力系统自动化,1997,21(10),PP:13-16
    [153] 王小华,何怡刚.一种新的基于神经网络的高精度电力系统谐波分析算法.电网技术,2005,29(3),PP:72-75
    [154] 杨晔,任震,唐卓尧.基于小波变换检测谐波的新方法.电力系统自动化,1997,21(10),pp:39-42
    [155] 周雒维,江泽佳,吴宁.基于补偿电流最小原理的谐波与无功电流检测方法.电工技术学报,1998,13(3),PP:33-36
    [156] Torrey D. A., Al-Zamel A. M. A. M., A single-phase active power filter for multiple nonlinear loads, IEEE APEC, Feb. 1994, 2, pp: 901-908
    [157] Torrey D. A., Al-Zamel A. M. A. M., A single-phase active power filter for multiple nonlinear loads, IEEE Trans. Power Electr., May 1995, 10(3), pp: 263-272
    [158] Wu J.-C., Jou H.-L., Simplified control method for the single-phase active power filter, IEE Proc. Electr. Power Applicat., May 1996, 143(3), pp: 219-224
    [159] Khadkikar V., Agarwal P., Chandra A., et al, A simple new control technique for unified power. quality conditioner (UPQC), International Conference on Harmonics and Quality of Power, Sept. 2004, pp: 289-293
    [160] Dallago E., Passoni M., Single-phase active power filter with only line current sensing, Electronics Letters, Jan. 2000, 36(2), pp: 105-106
    [161] Saetieo S., Devaraj R., Torrey D. A., The design and implementation of a three-phase active power filter based on sliding mode control, IEEE Trans. Ind. Applicat., Sept.-Oct. 1995, 31(5), pp: 993-1000
    [162] Pottker F., Barbi I., Power factor correction of non-linear loads employing a single phase active power filter: control strategy, design methodology and experimentation, IEEE PESC, June 1997, 1, pp: 412-417
    [163] Pottker de Souza F., Barbi I., Power factor correction of linear and nonlinear loads, employing a single phase active power filter based on a full-bridge current source inverter controlled through the sensor of the AC mains current, IEEE PESC, July 1999, 1, pp: 387-392
    [164] Teresa Esther Núnez-Zúniga E., José Antenor Pomilio, Shunt Active Power Filter Synthesizing Resistive Loads, IEEE Trans. Power Electr., Mar. 2002, 17(2), pp: 273-278
    [165] Cavallini A., Montanari G. C., Compensation strategies for shunt active-filter control, IEEE Trans. Power Electr., Nov. 1994, (9)6, pp: 587-593
    [166] Gonzalez D., Balcells J., Lovera S., et al, Comparison between unity power factor and instantaneous power theory control strategies applied to a three phase active power filter, IEEE IECON, Aug.-Sept. 1998, 2, pp: 843-847
    [167] Smedley K. M., Cuk S., One-cycle control of switching converters Power Electronics Specialists Conference, IEEE PESC, June 1991, pp: 888-896
    [168] Smedley K. M., Cuk S., One-cycle control of switching converters, IEEE Trans. Power Electr., Nov. 1995, 10(6), pp: 625-633
    [169] Chongming Qiao, Smedley K. M., Three-phase bipolar mode active power filters, IEEE Trans. Ind. Applicat., Jan.-Feb. 2002m, 38(1), pp: 149-158
    [170] 周林,蒋建文,周雒维等.基于单周控制的三相四线制有源电力滤波器.中国电机工程 学报,2003,23(3),PP:85-89
    [171] Chen, G., Chen Y., Smedley K. M., Three-phase four-leg active power quality conditioner without references calculation, IEEE APEC, 2004, 1, pp: 587-593
    [172] 许春雨,陈国呈,张瑞斌等.三相软开关逆变器的PWM实现方法.中国电机工程学报,2003,23(8),pp:23-27
    [173] 邓焰,叶浩屹,何湘宁.完全的无源软开关功率逆变器研究.电工技术学报,2002,17(1),pp:40-46
    [174] Peng Xu, Jia Wei, Lee, F. C., Multiphase coupled-buck converter-a novel high efficient 12 V voltage regulator module, IEEE Trans. Power Electr., 2003, 18(1), pp: 74-82
    [175] Xunwei Zhou, Pit-Leong Wong, Peng Xu, et al, Investigation of candidate VRM topologies for future microprocessors, IEEE Trans. Power Electr., 2000, 15(6), pp1172-1182
    [176] Pit-Leong Wong, Bo Yang, Peng Xu, et al, Quasi-square-wave rectification for front-end DC/DC converters,. IEEE PESC, 2000, pp: 18-23
    [177] Pit-Leong Wong, Peng Xu, Yang P., et al, Performance improvements of interleaving VRMs with coupling inductors, IEEE Trans. Power Electr., 2001, 16(4), pp: 499-507
    [178] Jesus L., Jorge Alberto M., Margarito M., Robust Stability Analysis for Current-Programmed Regulators, Industrial Electronics, IEEE Trans. Power Electr., 2002, 49(5), pp: 1138-1145
    [179] R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Second Edition, Kluwer Academic Publishers, 1995
    [180] Z. Lai, K. M. Smedley, A new extension of One cycle control and its application to switching power amplifiers, IEEE Trans. Power Electr., 1996, 11(1,) pp: 99-106
    [181] Chongrning Qiao, Keyue Ma Smedley, Unified Constant-Frequency Integration Control of Three-Phase Standard Bridge Boost Rectifiers With Power-Factor Correction IEEE Trans. On Ind. Electr., 2003, 50(1), pp: 100-107
    [182] Zhihong Ye, Modeling and Control of Parallel Three-Phase PWM Converters, Ph.D. thesis, Virginia Polytechnic Institute and State University, 2000
    [183] 姚为正,王群,刘进军等.有源电力滤波器对不同类型谐波源的补偿特性.电工技术学报,2000,15(6),pp:40-45
    [184] 曹建安.双开关三相有源功率因数校正技术的研究.西安交通大学博士论文,2002
    [185] K. Mark Smith, Zheren Lai, K. M. Smedley, A new PWM controller with One cycle response, IEEE Trans. Power Electr., 1999, 14(1), pp: 142-150
    [186] Z. Lai, K. Smedley, A General PWM Modulator and Its Applications, IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, Apr. 1998, 45(4), pp: 386-396
    [187] Z. Lai, K. Smedley, A Family of Power-Factor-Correction Controllers Based on the General PWM Modulator, IEEE Trans. Power Electr., May 1998, 13(3), pp: 501-510
    [188] 周雒维,罗全明,周林.积分复位控制三相六开关Boost型功率因数校正.电工技术学报,2002,17(2),pp:78-82
    [189] Chongrning Qiao, Keyue Ma Smedley, Three-Phase Unity-Power-Factor Star-Connected Switch (VIENNA) Rectifier With Unified Constant-Frequency Integration Control, IEEE Trans. Power Electr., July 2003, 18(4), pp: 952-957
    [190] Chongming Qiao, Keyue Ma Smedley, A General Three-Phase PFC Controller for Rectifiers With a Series-Connected Dual-Boost Topology, IEEE Trans. Ind. Applicat., 2002, 38(1), pp: 137-148
    [191] Chongming Qiao, Keyue. Ma Smedley, A General Three-Phase PFC Controller for Rectifiers With a Parallel-Connected Dual Boost Topology, IEEE Trans. Power Electr., Nov. 2002, 17(2), pp: 925-934
    [192] Guozhu Chen, Keyue M. Smedley, Steady-State and Dynamic Study of One-Cycle-Controlled Three-Phase Power-Factor Correction, IEEE Trans. Ind. Electr., Apr. 2005, 52(2), pp: 355-382
    [193] K. Smedley, Poincare stability analysis of switching converters with. nonlinear control, IEEE Power Electron. Society Newsletter, Jan. 2002, 14(1), pp: 3-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700