城市固体废物焚烧过程二噁英与重金属排放特征及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要针对我国实际工程领域内废物焚烧过程中二噁英与重金属的排放与控制,开展了一系列内容丰富的研究工作,得到了一些具有现实指导意义的研究结论。本文主要研究内容如下:
     (1)对全国范围内垃圾焚烧设施进行基础资料调研,统计出了具有代表性的二噁英排放水平数据,即排放区间为0.0042-7.90ng I-TEQ/Nm~3,平均为0.561ng I-TEQ/Nm~3,85%排放可达到现行的国家排放标准1.0ng I-TEQ/Nm~3。然后对我国不同地区的8家典型生活垃圾焚烧设施开展现状调研与全面监测工作,从区域分布、焚烧技术、运营管理水平等方面总体上阐述了我国典型生活垃圾焚烧设施特征污染物(二噁英、重金属)的排放水平与排放特征。
     (2)对我国典型垃圾焚烧设施的二噁英、重金属产生与排放的影响因素进行了系统研究。首先考察了不同焚烧工艺、工况(正常与非正常)以及管理水平等对二噁英/重金属排放的影响,得到运营管理不善导致的非正常工况运行排放了最高浓度水平的二噁英,范围8.01-181.69ng I-TEQ/Nm~3,平均78.18ng I-TEQ/Nm~3,而非正常工况运行不一定能导致重金属排放的增加;其次分析了生活垃圾组成中关键成分(含水率、热值、氯、硫含量、重金属自身含量与理化特性等)对二噁英/重金属排放的影响;接着研究了污染控制中的关键技术(急冷设备与活性炭的投加)对二噁英/重金属排放的影响,得到急冷设备能有效地降低二噁英的排放,主要能够抑制低氯代二噁英的生成,活性炭吸附能力也主要体现在对烟气中的低氯代二噁英的移除,短期内未投加活性炭对重金属同样具备高的移除效率;最后研究了焚烧炉启动不同阶段二噁英生成与排放,结果表明,启动阶段二噁英的排放要高于正常运行的,其中在投料阶段二噁英的排放最高,在稳定阶段,由于记忆效应的作用,二噁英排放并不能立刻降到正常值。
     (3)研究了城市生活垃圾焚烧运行参数、常规污染指标与二噁英的关联关系。针对某个正常运行的垃圾焚烧设施,分析不同工况参数下二噁英排放量的变化规律,探讨了各种运行参数、常规污染因子与二噁英关联的可行性,与部分参数、因子建立了一定的线性相关性;采用多元线性回归分析法,建立了二噁英与多变量的关联性,相关系数达到0.9,能作为该焚烧设施二噁英的控制模型,并为污染物排放与工况参数的联动监测提供指导。
     (4)研究了垃圾焚烧非正常工况下二噁英与重金属的排放。首先结合国内文献报道与实际监测数据,提供了全国范围内具有代表性的垃圾焚烧设施正常运行下二噁英排放因子,即0.0154-10.720μg I-TEQ/t-waste,平均1.602μg I-TEQ/t-waste;接着对非正常工况进行了分类,并研究了不同环节非正常工况下二噁英产生与排放特征,得到非正常工况运行会显著地增加二噁英的排放,随着非正常工况环节数的增加,二噁英的排放逐步增加,不同工况系列的异构体分布特征非常相似;非正常工况下二噁英的排放因子是正常工况下的2-3个数量级,并根据《二噁英和呋喃排放识别和量化标准工具包》对不同非正常工况系列二噁英排放因子作了校正推算;最后研究了非正常工况下重金属(Hg、Cd、Pb、Zn、Cr、Cu、Ni、Tl)的排放因子,得到重金属的排放因子随工况的变化没有任何规律性,但可以作为不同工况下垃圾焚烧重金属排放因子的数据参考。
     (5)研究了5%、10%、15%与20%质量比的污泥与煤共焚烧过程中二噁英与重金属的排放、质量平衡与分布特征。结果表明,随着混合燃料中污泥含量的增加,二噁英的排放从7.00pg I-TEQ/Nm~3增加到32.72pg I-TEQ/Nm~3,混合燃料中高的硫含量以及相对低的氯含量能促进二噁英的排放降低;污泥中二噁英的异构体分布图与输出产物(烟气、底灰与飞灰)中的明显不同;二噁英负平衡说明煤粉炉电厂污泥与煤共焚烧不是二噁英的源头。烟气、飞灰与底灰中重金属的浓度与排放因子均随着混合燃料中重金属输入值的增加而增加,重金属的分布特征主要取决于自身的挥发性质,氯在一定程度上改变了重金属的分布特性。
The incineration technology is playing an increasingly important role in treatingmunicipal solid waste (MSW) in large-and-medium size cities due to its advantages includingvolume and mass reduction, detoxification, and energy recovery. Based primarily on fieldmeasurements, much detailed research work was conducted to investigate emission andcontrol of PCDD/F and heavy metal in municipal solid waste incinerators (MSWI). The maintopics of this dissertation are as follows:
     (1) According to the survey about MSWI basic information in China, the representativePCDD/F emission levels ranged between0.0042and7.90ng I-TEQ/Nm~3, with a mean valueof0.561ng I-TEQ/Nm~3.85%emission values can meet Chinese dioxin emission standard(1.0ng I-TEQ/Nm~3), however, only42%under EU standard (0.1ng I-TEQ/Nm~3). Then theexhaustive research and monitoring were carried out in8typical MSWIs in China. Based onregional distribution, incineration technology and management level, the PCDD/F and heavymetal emission levels and characteristics were totally elaborated from Chinese typicalMSWIs.
     (2) The important factors that affected PCDD/F and heavy metal emissions weresystemtically investigated. First, the influence of different incineration technology,conditions(normal and abnormal), and management level on PCDD/F and heavy metalemission were examined. It can be obtained that abnormal operating conditions resulted in thehighest PCDD/F emission concentrations under bad management, ranging from8.01to181.69ng I-TEQ/Nm~3with78.18ng I-TEQ/Nm~3on average, but abnormal conditions didn’tnecessarily lead to increasing heavy metal emission. Second, the effects of the key ingredientin MSW, such as moisture content, calorific value, sulphur and chlorine content, and heavymetal input, were analyzed. Third, the influence of key technologies in pollution control, suchas quencher and activated carbon injection(ACI), on PCDD/F and heavy metal formation andemissions were studied. Results indicated that the quencher resulted in lower PCDD/Femissions through inhibiting the formation of lower chlorinated PCDD/F, and ACI alsomainly removed lower chlorinated PCDD/F. Although no activated carbon was injected priorto bag filter in a short time, the high removal efficiency can be obtained. Last, PCDD/F andheavy emissions were investigated in different stages during incinerator start-up period.Results indicated that PCDD/F emissions during start-up period were higher than duringnormal operation. After waste was feed dioxin emissions reached the highest concentrations.Due to memory effect, PCDD/F emissions cannot immediately drop to normal values.
     (3) The relationship between operation conditions, as well as regular parameters andPCDD/F emissions was studied in order to find the optimal conditions for minimizingPCDD/F emissions. Based on a normal operating MSWI, the change law of PCDD/Femission with different conditions and parameters was analyzed, and the correlativefeasibility was explored. So a significant linear correlation between partial conditions, as wellas parameters and PCDD/F emissions was established. Then through conducting a multipleregression analysis, the correlation between dioxin emission and multiple variables wasobtained. Thus a control model can be constructed and serve the purpose of determining howto reduce dioxin emissions.
     (4) PCDD/F and heavy metal emissions were investigated under abnormal conditions.First, according to the related literatures and monitoring data, the representative dioxinemission factors were provided under normal conditions (range:0.0154–10.720μgI-TEQ/t-waste, average:1.602μg I-TEQ/t-waste). Second, different abnormal conditionswere classified, and PCDD/F formation and emission characteristics were studied in differentsorts of abnormal conditions. Results indicated that abnormal conditions of the MSWI werefound to considerably increase PCDD/F emission, and PCDD/F emissions increased withincreasing abnormal condition sorts. The PCDD/F congener profiles presented greatsimilarities for different abnormal conditions. The emission factors in abnormal conditionswere23order of magnitude than that in normal conditions. Then according to StandardizedToolkit for Identification and Quantification of Dioxin and Furan Releases, emission factorswere regulated and estimated in different sorts of abnormal conditions. Finally, heavy metalemission factors were examined under abnormal conditions. It can be obtained that heavymetal emission factors didn’t show regularity with the changes of conditions.
     (5) The emission, mass balance, and distribution characteristics of PCDD/Fs as well asthose of heavy metals (Hg, Cd, Pb, Cr, and Cu) were investigated during the co-combustionof5%,10%,15%, and20%sewage sludge (SS) in a pulverized coal power plant. ThePCDD/F emissions increased from7.00pg I-TEQ/Nm~3to32.72pg I-TEQ/Nm~3as the amountof SS in the mixed fuel (MF) increased. High sulfur content and relatively low chlorine levelsin MF resulted in lower PCDD/F emissions. SS exhibited a remarkable difference in congenerprofiles compared with flue gas, bottom ash, and fly ash. The negative dioxin mass balanceindicated that the co-firing of SS with coal in power plants was not a source but a sink ofdioxins. The concentrations and emission factors of heavy metals in flue gas and bottom ash,as well as fly ash, all exhibited a tendency to increase with increasing input values of heavymetals in MF. The distribution characteristics of the investigated heavy metals were primarily dependent on the evaporative properties of these metals. The availability of chlorine couldalter the heavy metal distribution behavior.
引文
[1]白良成.生活垃圾焚烧处理工程技术[M].北京:中国建筑工业出版社,2009:85-86
    [2] Zhang G., Hai J., Cheng J. Characterization and mass balance of dioxin from a large-scalemunicipal solid waste incinerator in China[J]. Waste Management,2012,32(6):1156-1162
    [3]中华人民共和国国家统计局.主要国家和地区城市垃圾处理[Z].http://www.stats.gov.cn/was40/gjtjj_detail.jsp?searchword=%C0%AC%BB%F8&channelid=6697&record=20,2010
    [4]言惠.垃圾发电--保护环境,变害为宝[J].上海大中型电机,2005,1:1-6
    [5] Chen T., Yan J.H., Lu S.Y., et al. Characteristic of polychlorinated dibenzo-p-dioxins anddibenzofurans in fly ash from incinerators in China[J]. J Hazard Mater,2008,150(3):510-514
    [6] Li M., Xiang J., Hu S., et al. Characterization of solid residues from municipal solid wasteincinerator[J]. Fuel,2004,83(10):1397-1405
    [7]中华人民共和国国家统计局.各地区城市市容环境卫生情况[Z].http://www.stats.gov.cn/was40/gjtjj_detail.jsp?searchword=%C0%AC%BB%F8&channelid=6697&record=26,2010
    [8]陆胜勇.垃圾和煤燃烧过程中二噁英的生成、排放和控制机理研究[D].杭州:浙江大学,2004
    [9]李国建,赵爱华,张益.城市垃圾处理工程[M].北京:科学出版社,2003:4
    [10]张若冰.垃圾焚烧过程中典型重金属污染物的分布特性研究[D].杭州:浙江大学,2002
    [11]王爱香,张文旭.国内外二恶英研究进展[J].临沂师范学院学报,2006,28:75-78
    [12]周莉菊,冯家满,赵由才.二恶英的毒性及环境来源[J].工业安全与环保,2006,32:49-51
    [13] McKay G. Dioxin characterisation, formation and minimisation during municipal solidwaste (MSW) incineration: review[J]. Chem Eng J,2002,86(3):343-368
    [14] Rordorf B.F. Prediction of vapor pressures, boiling points and enthalpies of fusion fortwenty-nine halogenated dibenzo-p-dioxins and fifty-five dibenzofurans by a vapor pressurecorrelation method[J]. Chemosphere,1989,18:783-788
    [15] Govers H.A.J., Krop H.B. Partition constants of chlorinated dibenzofurans anddibenzo-p-dioxins[J]. Chemosphere,1998,37(9-12):2139-2152
    [16]徐旭,严建华,池涌,等.二恶英的理化特性及其分析方法[J].能源工程,2003,6:24-28
    [17]彭政.垃圾焚烧飞灰二噁英的控制技术研究[D].杭州:浙江大学,2007
    [18] Hagenmaier H., Lindig C., She J. Correlation of environmental occurrence ofpolychlorinated dibenzo-p-dioxins and dibenzofurans with possible sources[J]. Chemosphere,1994,29:2163-2174
    [19] Fiedler H., Lau C., Kjeller L.O., et al. Patterns and sources of polychlorinateddibenzo-p-dioxins and dibenzofurans found in soil and sediment samples in SouthernMississippi[J]. Chemosphere,1996a,32:421-432
    [20] Gu C., Li H., Teppen B.J., et al. Octachlorodibenzodioxin formation onFe(III)-montmorillonite clay[J]. Environ Sci Technol,2008,42(13):4758-4763
    [21] Kulkarni P.S., Crespo J.G., Afonso C.A.M. Dioxins sources and current remediationtechnologies-A review[J]. Environ Int,2008,34(1):139-153
    [22] UNEP. Standardized Toolkit for Identification and Quantification of Dioxin and FuranReleases[J]. Geneva: UNEP Chemicals,2005
    [23]李建新.城市焚烧过程重金属污染物迁移机理及稳定化处理技术研究[D].杭州:浙江大学,2004
    [24]陈尚兵,金浩.城市垃圾焚烧处理中重金属和有机氯化物的二次污染与防治[J].环境导报,1998,6:7-10
    [25] Vogger H., Braun H., Metzger M., et al. The specific role of cadmium and mercury inmunicipal solid waste incineration[J]. Waste Managent&Research,1986,4:65-74
    [26]张步庭.流化床内MSW焚烧过程中重金属挥发特性的研究[D].武汉:华中科技大学,2004
    [27] Hasselriis F., Licata A. Analysis of heavy metal emission data from municipal wastecombustion[J]. Journal of Hazardous Materials,1996,47(1–3):77-102
    [28] Shaub W.M. Mercury emissions from MSW incinerators: An assessment of the currentsituation in the United States and forecast of future emissions[J]. Resources, Conservation andRecycling,1993,9(1–2):31-59
    [29] Liberti L., Notarnicola M., Amicarelli V., et al. Mercury removal with powderedactivated carbon from flue gases at the Coriano municipal solid waste incineration plant[J].Waste Management&Research,1998,16(2):183-189
    [30] Korzun E.A., Heck H.H. Sources and Fates of Lead and Cadmium in Municipal SolidWaste[J]. Journal of the Air&Waste Management Association,1990,40(9):1220-1226
    [31] Conner J.R., Hoeffner S.L. A Critical Review of Stabilization/SolidificationTechnology[J]. Critical Reviews in Environmental Science and Technology,1998,28(4):397-462
    [32] Olie K. Chlorodibenzo-p-dioxins and Chlorodibenzofurans are Trace Components of FlyAsh and Flue Gas of Some Municipal Incinerators in the Netherlands [J]. Chemosphere,1977,6(8):455-459
    [33] Wilken M., Cornelsen B., Zeschmar-Lahl B., et al. Distribution of PCDD/PCDF andother organochlorine compounds in different municipal solid waste fractions[J]. Chemosphere,1992,25(7–10):1517-1523
    [34] Makoto S., Yoji S., Yasuhiro I., et al. Reduction of total dioxin emissions from MSWincinerators[J]. Organohalogen Compounds,1998,36:325-328
    [35] Buser H.R. Formation of polychlorinated dibenzofurans (PCDFs) and dibenzo-p-dioxins(PCDDs) from the pyrolysis of chlorobenzenes[J]. Chemosphere,1979,8(6):415-424
    [36] Abad E., Adrados M.A., Caixach J., et al. Dioxin Abatement Strategies and MassBalance at a Municipal Waste Management Plant[J]. Environmental Science&Technology,2001,36(1):92-99
    [37] Kanters M.J., van Nispen R., Louw R., et al. Chlorine Input and Chlorophenol Emissionin the Lab-Scale Combustion of Municipal Solid Waste[J]. Environmental Science&Technology,1996,30(7):2121-2126
    [38]陈彤.城市生活垃圾焚烧过程中二噁英的形成机理及控制技术研究[D].杭州:浙江大学,2006
    [39] Babushok V.I., Tsang W. Gas-phase mechanism for dioxin formation[J]. Chemosphere,2003,51(10):1023-1029
    [40] Stanmore B.R. The formation of dioxins in combustion systems[J]. Combustion andFlame,2004,136(3):398-427
    [41] Shaub W.M., Tsang W. Dioxin formation in incinerators[J]. Environmental Science&Technology,1983,17(12):721-730
    [42] Huang H., Buekens A. On the mechanisms of dioxin formation in combustionprocesses[J]. Chemosphere,1995,31(9):4099-4117
    [43] Tuppurainen K., Halonen I., Ruokoj rvi P., et al. Formation of PCDDs and PCDFs inmunicipal waste incineration and its inhibition mechanisms: A review[J]. Chemosphere,1998,36(7):1493-1511
    [44] Dickson L.C., Karasek F.W. Mechanism of formation of polychlorinateddibenzo-p-dioxins produced on municipal incinerator flyash from reactions of chlorinatedphenols[J]. Journal of Chromatography A,1987,389(0):127-137
    [45] Froese K.L., Hutzinger O. Polychlorinated Benzene, Phenol, Dibenzo-p-dioxin, andDibenzofuran in Heterogeneous Combustion Reactions of Acetylene[J]. EnvironmentalScience&Technology,1996,30(3):998-1008
    [46] Vogg H., Metzger M., Stieglitz L. Recent findings on the formation and decompositionof PCDD/PCDF in municipal solid waste incineration[J]. Waste Management&Research,1987,5(3):285-294
    [47] Gullett B.K., Bruce K.R., Beach L.O., et al. Mechanistic steps in the production ofPCDD and PCDF during waste combustion[J]. Chemosphere,1992,25(7–10):1387-1392
    [48] Stieglitz L., Vogg H. On formation conditions of PCDD/PCDF in fly ash from municipalwaste incinerators[J]. Chemosphere,1987,16(8–9):1917-1922
    [49] Schwarz G., Stieglitz L. Formation of organohalogen compounds in fly ash bymetal-catalyzed oxidation of residual carbon[J]. Chemosphere,1992,25(3):277-282
    [50] Chang M.B., Huang T.F. The effects of temperature and oxygen content on thePCDD/PCDFs formation in MSW fly ash[J]. Chemosphere,2000,40(2):159-164
    [51] Wikstr m E., Marklund S. The influence of level and chlorine source on the formation ofmono-to octa-chlorinated dibenzo-p-dioxins, dibenzofurans and coplanar polychlorinatedbiphenyls during combustion of an artificial municipal waste[J]. Chemosphere,2001,43(2):227-234
    [52] Luijk R., Akkerman D.M., Slot P., et al. Mechanism of formation of polychlorinateddibenzo-p-dioxins and dibenzofurans in the catalyzed combustion of carbon[J].Environmental Science&Technology,1994,28(2):312-321
    [53] Ryan S.P., Altwicker E.R. Understanding the Role of Iron Chlorides in the De NovoSynthesis of Polychlorinated Dibenzo-p-dioxins/Dibenzofurans[J]. Environmental Science&Technology,2004,38(6):1708-1717
    [54] Buekens A., Huang H. Comparative evaluation of techniques for controlling theformation and emission of chlorinated dioxins/furans in municipal waste incineration[J].Journal of Hazardous Materials,1998,6(1):1-33
    [55]陈宋璇,黎小保.生活垃圾焚烧发电中二噁英控制技术研究进展[J].环境科学与管理,2012,37(5):89-93
    [56]赵毅,张玉海,闫蓓.二噁英的生产及污染控制[J].环境污染治理技术与设备,2006,7(11):1-6
    [57]诸冠华,蔡银科.垃圾焚烧中二噁英的减排措施——应对欧盟标准[J].城乡与环境,2011,1:78-79
    [58] Griffin R. A new theory of dioxin formation in municipal waste combustion[J].Chemosphere,1986,15(9-12):1987-1989
    [59] Gullett B.K., Bruce K.R., Beach L.O. Effect of sulfur dioxide on the formationmechanism of polychlorinated dibenzodioxin and dibenzofuran in municipal wastecombustors[J]. Environmental Science&Technology,1992,26(10):1938-1943
    [60] Buser H.R. Identification and sources of dioxin-like compounds: I.Polychlorodibenzothiophenes and polychlorothianthrenes, the sulfur-analogues of thepolychlorodibenzofurans and polychlorodibenzodioxins[J]. Chemosphere,1992,25(1–2):45-48
    [61] Gullett B.K., Dunn J.E., Raghunathan K. Effect of Cofiring Coal on Formation ofPolychlorinated Dibenzo-p-Dioxins and Dibenzofurans during Waste Combustion[J].Environmental Science&Technology,1999,34(2):282-290
    [62] Samaras P., Blumenstock M., Lenoir D., et al. PCDD/F inhibition by prior addition ofurea to the solid fuel in laboratory experiments and results statistical evaluation[J].Chemosphere,2001,42(5–7):737-743
    [63] Ruokoj rvi P.H., Halonen I.A., Tuppurainen K.A., et al. Effect of Gaseous Inhibitors onPCDD/F Formation[J]. Environmental Science&Technology,1998,32(20):3099-3103
    [64] Ruokoj rvi P., Aatamila M., Tuppurainen K., et al. Effect of urea on fly ash PCDD/Fconcentrations in different particle sizes[J]. Chemosphere,2001,43(4–7):757-762
    [65]翁志华.固体废物焚烧中二噁英控制措施探讨[J].上海环境科学,2011,30(2):82-89
    [66] Gullett B.K., Lemieux P.M., Dunn J.E. Role of combustion and sorbent parameters inprevention of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran formationduring waste combustion[J]. Environmental Science&Technology,1994,28(1):107-118
    [67]李永华,胡小翠,郭建, et al.垃圾电厂二噁英的生成与控制技术[J].锅炉技术,2011,42(1):70-77
    [68]王伟.垃圾焚烧中抑制二噁英二次生成的方法探讨[J].电力科技与环保,2011,27(1):23-24
    [69] Tejima H., Nakagawa I., Shinoda T.-a., et al. PCDDs/PCDFs reduction by goodcombustion technology and fabric filter with/without activated carbon injection[J].Chemosphere,1996,32(1):169-175
    [70]宋薇,赵树青,刘晶吴,等.垃圾焚烧烟气中二噁英污染物控制技术研究[J].环境卫生工程,2011,19(1):1-3
    [71]胡斌,刘小峰,孙宏. Remedia(R)——一种去除二噁英的新技术[J].中国环保产业,2010,10:35-37
    [72] Weber R., Sakurai T., Hagenmaier H. Low temperature decomposition of PCDD/PCDF,chlorobenzenes and PAHs by TiO2-based V2O5–WO3catalysts[J]. Applied Catalysis B:Environmental,1999,20(4):249-256
    [73] Yang C.C., Chang S.H., Hong B.Z., et al. Innovative PCDD/F-containing gas streamgenerating system applied in catalytic decomposition of gaseous dioxins overV2O5–WO3/TiO2-based catalysts[J]. Chemosphere,2008,73(6):890-895
    [74] Chang F.-Y., Chen J.-C., Wey M.-Y., et al. Effects of particulates, heavy metals and acidgas on the removals of NO and PAHs by V2O5–WO3catalysts in waste incinerationsystem[J]. Journal of Hazardous Materials,2009,170(1):239-246
    [75]谷月玲,陈彤,严建华,等.二噁英光降解研究进展[J].太阳能学报,2007,28(10):1115-1119
    [76]潘雪君,杨国华,黄三,等.焚烧烟气中二噁英类控制技术研究进展[J].环境科学与技术,2012,35(7):122-125
    [77]黄蕾.垃圾焚烧过程中二噁英低温热处理及紫外光解试验研究[D].杭州:浙江大学,2005
    [78] Hirota K., Hakoda T., Taguchi M., et al. Application of Electron Beam for the Reductionof PCDD/F Emission from Municipal Solid Waste Incinerators[J]. Environmental Science&Technology,2003,37(14):3164-3170
    [79] Hung P.C., Chang S.H., Chi K.H., et al. Degradation of gaseous dioxin-like compoundswith dielectric barrier discharges[J]. Journal of Hazardous Materials,2010,182(1–3):246-251
    [80] Yoshida K., Yamamoto T., Kuroki T., et al. Pilot-Scale Experiment for SimultaneousDioxin and NO x Removal from Garbage Incinerator Emissions Using the Pulse CoronaInduced Plasma Chemical Process[J]. Plasma Chem Plasma Process,2009,29(5):373-386
    [81] Yousif S., Lockwood F.C., Abbas T. Modeling of toxic metal emissions from solid fuelcombustors[J]. Symposium (International) on Combustion,1998,27(2):1647-1654
    [82]谭中欣.典型危险废弃物焚烧过程中无机污染物HCl和重金属的生成特性及其控制的机理研究[D].杭州:浙江大学,2006
    [83] Cahill C.A., Newland L.W. Comparative Efficiencies of Trace Metal Extraction fromMunicipal Incinerator Ashes[J]. International Journal of Environmental Analytical Chemistry,1982,11(3-4):227-239
    [84] Davison R.L., Natusch D.F.S., Wallace J.R., et al. Trace elements in fly ash. Dependenceof concentration on particle size[J]. Environmental Science&Technology,1974,8(13):1107-1113
    [85]陆胜勇,池涌,严建华,等.垃圾焚烧中重金属污染物的迁移和分布规律[J].热力发电,2003,2:24-28
    [86] Belevi H., Moench H. Factors Determining the Element Behavior in Municipal SolidWaste Incinerators.1. Field Studies[J]. Environmental Science&Technology,2000,34(12):2501-2506
    [87] Wang K.S., Chiang K.Y., Chu W.T. Fate and partitioning of heavy metals affected byorganic chloride content during a simulated municipal solid waste incineration process[J].Journal of Environmental Science and Health. Part A: Environmental Science andEngineering and Toxicology,1997,32(7):1877-1893
    [88]张衍国,武俊,李清海,等.垃圾焚烧重金属迁移特性及其影响因素[J].环境污染治理技术与设备,2005,6(12):6-12
    [89] Fernandez M.A., Martinez L., Segarra M., et al. Behavior of heavy metals in thecombustion gases of urban waste incinerators[J]. Environmental Science&Technology,1992,26(5):1040-1047
    [90] Verhulst D., Buekens A., Spencer P.J., et al. Thermodynamic Behavior of MetalChlorides and Sulfates under the Conditions of Incineration Furnaces[J]. EnvironmentalScience&Technology,1995,30(1):50-56
    [91] Linak W.P., Wendt J.O.L. Toxic metal emissions from incineration: Mechanisms andcontrol[J]. Progress in Energy and Combustion Science,1993,19(2):145-185
    [92] Klein D.H., Andren A.W., Carter J.A., et al. Pathways of thirty-seven trace elementsthrough coal-fired power plant[J]. Environmental Science&Technology,1975,9(10):973-979
    [93]曾东宏.橡胶类垃圾焚烧过程中典型重金属污染物的迁移特性研究[D].广州:华南理工大学,2012
    [94] Wang K.S., Chiang K.Y., Lin S.M., et al. Effects of chlorides on emissions of toxiccompounds in waste incineration: Study on partitioning characteristics of heavy metal[J].Chemosphere,1999,38(8):1833-1849
    [95] Wang K.S., Chiang K.Y., Tsai C.C., et al. The effects of FeCl3on the distribution of theheavy metals Cd, Cu, Cr, and Zn in a simulated multimetal incineration system[J].Environment International,2001,26(4):257-263
    [96]李建新,严建华,池涌,等.垃圾焚烧氯对重金属迁移特性的影响[J].燃料化学学报,2003,31(6):579-583
    [97] Wey M.Y., Su J.L., Yan M.H., et al. The concentration distribution of heavy metalsunder different incineration operation conditions[J]. Science of The Total Environment,1998,212(2–3):183-193
    [98] Barton R.G., Clark W.D., Seeker W.R. Fate of Metals in Waste Combustion Systems[J].Combustion Science and Technology,1990,74(1-6):327-342
    [99]孙路石,陆继东,李敏,等.垃圾焚烧中Cd、Pb、Zn挥发行为的研究[J].中国电机工程学报,2004,24(8):157-161
    [100] Morf L.S., Brunner P.H., Spaun S. Effect of operating conditions and input variationson the partitioning of metals in a municipal solid waste incinerator[J]. Waste Managementand Research,2000,18(1):4-15
    [101] Wey M.-Y., Hwang J.-H., Chen J.-C. Mass and Elemental Size Distribution ofChromium, Lead and Cadmium under Various Incineration Conditions[J]. JOURNAL OFCHEMICAL ENGINEERING OF JAPAN,1998,31(4):506-517
    [102] Chen J.-C., Wey M.-Y., Lin Y.-C. The adsorption of heavy metals by different sorbentsunder various incineration conditions[J]. Chemosphere,1998,37(13):2617-2625
    [103] Mendioroz S., Guijarro M.I., Bermejo P.J., et al. Mercury Retrieval from Flue Gas byMonolithic Adsorbents Based on Sulfurized Sepiolite[J]. Environmental Science&Technology,1999,33(10):1697-1702
    [104] Jurng J., Lee T.G., Lee G.W., et al. Mercury removal from incineration flue gas byorganic and inorganic adsorbents[J]. Chemosphere,2002,47(9):907-913
    [105] Lee M.-H., Cho K., Shah A.P., et al. Nanostructured Sorbents for Capture of CadmiumSpecies in Combustion Environments[J]. Environmental Science&Technology,2005,39(21):8481-8489
    [106] Wu J.M., Huang H.S., Livengood C.D. Development of a sorbent-based technology forcontrol of mercury in flue gas[R]. Conference: Air and Waste Management Association(AWMA) specialty conference on emerging solutions to VOC and air toxics control,Clearwater Beach, FL (United States),28Feb-1Mar1996; Other Information: PBD:[1996],1996, Medium: ED; Size:16p.
    [107]邵坚,王中.阳离子壳聚糖对铅、汞、镉离子吸附的研究[J].华北水利水电学院学报,2007,28(5):65-67
    [108] Wu C.Y., Lee T.G., Tyree G., et al. Capture of Mercury in Combustion Systems by InSitu–Generated Titania Particles with UV Irradiation[J]. Environmental Engineering Science,1998,15(2):137-148
    [109] Lampris C., Stegemann J.A., Pellizon-Birelli M., et al. Metal leaching from monolithicstabilised/solidified air pollution control residues[J]. Journal of Hazardous Materials,2011,185(2–3):1115-1123
    [110]刘彦博,商平,刘汉桥,等.垃圾焚烧飞灰固化/稳定化实验研究[J].环境卫生工程,2010,18(2):15-18
    [111] Zhao P., Ni G., Jiang Y., et al. Destruction of inorganic municipal solid wasteincinerator fly ash in a DC arc plasma furnace[J]. Journal of Hazardous Materials,2010,181(1–3):580-585
    [112] Amutha Rani D., Gomez E., Boccaccini A.R., et al. Plasma treatment of air pollutioncontrol residues[J]. Waste Management,2008,28(7):1254-1262
    [113] Bontempi E., Zacco A., Borgese L., et al. A new method for municipal solid wasteincinerator (MSWI) fly ash inertization, based on colloidal silica[J]. Journal of EnvironmentalMonitoring,2010,12(11):2093-2099
    [114] Quina M.J., Bordado J.C.M., Quinta-Ferreira R.M. Chemical stabilization of airpollution control residues from municipal solid waste incineration[J]. Journal of HazardousMaterials,2010,179(1–3):382-392
    [115] Tian H.X., QU Y.N. Preliminary investigation on dioxins emission from MSWincinerators[J]. Environ. Chem.,2003,22:255-258
    [116] Bie R.S., Li S.Y., Wang H. Characterization of PCDD/Fs and heavy metals from MSWincineration plant in Harbin[J]. Waste Manage,2007,27:1860-1869
    [117] Chen T., Gu Y.L., Yan J.H., et al. Polychlorinated dibenzo-p-dioxins and dibenzofuransin flue gas emissions from municipal solid waste incinerators in China[J]. J Zhejiang Univ-ScA,2008,9(9):1296-1303
    [118] Ni Y.W., Zhang H.J., Fan S., et al. Emissions of PCDD/Fs from municipal solid wasteincinerators in China[J]. Chemosphere,2009,75(9):1153-1158
    [119] Fabrellas B., Sanz P., Abad E., et al. The Spanish dioxin inventory Part I: incinerationas municipal waste management system[J]. Chemosphere,2001,43(4–7):683-688
    [120] Lee S.J., Choi S.D., Jin G.Z., et al. Assessment of PCDD/F risk after implementation ofemission reduction at a MSWI[J]. Chemosphere,2007,6:856-863
    [121] Giugliano M., Cernuschi S., Grosso M., et al. The flux and mass balance of PCDD/F ina MSW incineration full scale plant [J]. Chemosphere,2001,43:743-750
    [122] Giugliano M., Cernuschi S., Grosso M., et al. PCDD/F mass balance in the flue gascleaning units of a MSW incineration plant[J]. Chemosphere,2002,46(9–10):1321-1328
    [123] Conesa J.A., Rey L., Egea S., et al. Pollutant Formation and Emissions from CementKiln Stack Using a Solid Recovered Fuel from Municipal Solid Waste[J]. Environ SciTechnol,2011,45(13):5878-5884
    [124] Altarawneh M., Dlugogorski B.Z., Kennedy E.M., et al. Mechanisms for formation,chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins anddibenzofurans (PCDD/Fs)[J]. Prog Energ Combust,2009,35(3):245-274
    [125] Bie R., Li S., Wang H. Characterization of PCDD/Fs and heavy metals from MSWincineration plant in Harbin[J]. Waste Management,2007,27(12):1860-1869
    [126] Buekens A., Huang H. Comparative evaluation of techniques for controlling theformation and emission of chlorinated dioxins/furans in municipal waste incineration[J].Journal of hazardous materials,1998,62:1-33
    [127] Abad E., Adrados M.A., Caixach J., et al. Dioxin abatement strategies and mass balanceat a municipal waste management plant[J]. Environ Sci Technol,2002,36(1):92-99
    [128] Lee S.J., Choi S.D., Jin G.Z., et al. Assessment of PCDD/F risk after implementation ofemission reduction at a MSWI[J]. Chemosphere,2007,68(5):856-863
    [129] Chang M.B., Lin J.J., Chang S.H. Characterization of dioxin emissions from twomunicipal solid waste incinerators in Taiwan[J]. Atmos Environ,2002,36(2):279-286
    [130] Lothgren C.J., Van Bavel B. Dioxin emissions after installation of a polishing wetscrubber in a hazardous waste incineration facility[J]. Chemosphere,2005,61:405-412
    [131] Gass H.C.,.Luder K., Wilken M. PCDD/F emissions during cold start-up andshut-down of a municipal waste incinerator[J]. Organohalogen compound,2002,56:193-196
    [132] Wang H.C., Hwang J.F., Chi K.H., et al. Formation and removal of PCDD/Fs in amunicipal waste incinerator during different operating periods[J]. Chemosphere,2007,67(9):S177-S184
    [133] Wyrzykowska-Ceradini B., Gullett B.K., Tabor D., et al. PBDDs/Fs and PCDDs/Fs inthe Raw and Clean Flue Gas during Steady State and Transient Operation of a MunicipalWaste Combustor[J]. Environ Sci Technol,2011,45(13):5853-5860
    [134] Lenoir D., Kaune A., Hutzinger O., et al. Influence of operating parameters and fueltype on PCDD/F emissions from a fluidized bed incinerator[J]. Chemosphere,1991,23(8-10):1491-1500
    [135] Ishikawa R., Buekens A., Huang H., et al. Influence of combustion conditions on dioxinin an industrial-scale fluidized-bed incinerator: experimental study and statistical modelling[J].Chemosphere,1997,35(3):465-477
    [136] Zhang H.J., Ni Y.W., Chen J.P., et al. Influence of variation in the operating conditionson PCDD/F distribustion in a full-scale MSW incinerator[J]. Chemosphere,2008,70:721-730
    [137] Hell K., Stieglitz L., Dinjus E. Mechanistic aspects of the de-novo sythesis ofPCDD/PCDF on model mixtures and MSWI fly ashes using amorphous12C-and13C-labeledcarbon[J]. Environmental sciences&technology,2001,35:3892-3898
    [138] Xhrouet C., Pirard C., De Pauw E. De novo sythesis of polychlorinateddibenzo-p-dioxins and dibenzofurans on fly ash from a sintering process[J]. Environmentalsciences&technology,2001,35:1616-1623
    [139] Hasselriis F. Optimization of combustion conditions to minimize dioxin emissions[J].Waste Manag. Res.,1987,5:311-326
    [140] Gullet B.K., Lemisux P.M., Dunn J.E. Environmental sciences&technology,1994,28:107-118
    [141] Shin D.H., Yang W., Choi J.W., et al. The effects of operation conditions on PCDD/Fsemisssion in municipal solid waste incinerators: stack gas measurement and evaluation ofoperating conditions[J]. Organohalogen compound,1998,36:143-146
    [142] Oh J.E., Lee K.T., Lee J.W., et al. The evaluation of PCDD/Fs from various koreanincinerators[J]. Chemosphere,1998,38(9):2097-2108
    [143] Stieglitz L., Zwick G., Beck J. The role of particle carbon in the de novo synthesis ofpolychlorinated dibenzo-p-dioxins and-furans in fly ash[J]. Chemosphere,1990,20(10-12):1953-1958
    [144] Wikstrom E., Marklund S. A two step procedure to investigate the importance ofcombustion parameters in the formation of products of incomplete combustion[J].Organohalogen compound,1997,31:532-537
    [145] Yan J.H., Chen T., Li X.D., et al. Evaluation of PCDD/Fs emission from fluidized bedincinerators co-firing MSW with coal in China[J]. Journal of hazardous materials,2006,135(1–3):47-51
    [146] Gulyurtlu I., Crujeira A.T., Abelha P., et al. Measurements of dioxin emissions duringco-firing in a fluidised bed[J]. Fuel,2007,86:2090-2100
    [147] Takeshia R., Akimoto Y., Nito S. Relationship between the formation ofpolychlorinated diben-p-dioxins and dibenzofurans and the control of combustion, hydrogenchloride level in flue gas and gas temperature in a municipal waste incinerator[J].Chemosphere,1992,24:589-598
    [148] Rigo H.G., Chandler A.J. Is there a strong dioxin: chlorine link in commercial scalesystems?[J]. Chemosphere,1998,37:2031-2046
    [149] Kaune A., Lenoir D., Hutzinger O., et al. Chemosphere,1994,29:2083-2096
    [150] Weber R., Sakurai T., Ueno S., et al. Correlation of PCDD/F and CO values in a MSWincinerator-indication of memory effects in the high temperature/cooling section[J].Chemosphere,2002,49:127-134
    [151] Ni Y., Zhang H., Fan S., et al. Emissions of PCDD/Fs from municipal solid wasteincinerators in China[J]. Chemosphere,2009,75(9):1153-1158
    [152] Fabrellas B., Sanz P., Abad E., et al. The Spanish dioxin inventory Part I: incinerationas municipal waste management system[J]. Chemosphere,2001,434-7):683-688
    [153] Thomas V.M., Spiro T.G. Peer Reviewed: The U.S. Dioxin Inventory: Are ThereMissing Sources?[J]. Environmental Science&Technology,1996,30(2):82A-85A
    [154] Choi K.-I., Lee S.-H., Lee D.-H. Emissions of PCDDs/DFs and dioxin-like PCBs fromsmall waste incinerators in Korea[J]. Atmospheric Environment,2008,42(5):940-948
    [155] Chen C.-M. The emission inventory of PCDD/PCDF in Taiwan[J]. Chemosphere,2004,54(10):1413-1420
    [156] Wang L.C., Hsi H.C., Wang Y.F., et al. Distribution of polybrominated diphenyl ethers(PBDEs) and polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in municipalsolid waste incinerators[J]. Environ Pollut,2010,158(5):1595-1602
    [157] Huang H., Buekens A. on the mechanisms of dioxin formation in combustionprocesses [J]. Ckmosphere,1995,31(9):4099-4117
    [158] Everaert K., Baeyens J. The formation and emission of dioxins in large scale thermalprocesses[J]. Chemosphere,2002,46(3):439-448
    [159] Deng W., Yan J., Li X., et al. Emission characteristics of dioxins, furans and polycyclicaromatic hydrocarbons during fluidized-bed combustion of sewage sludge[J]. Journal ofEnvironmental Sciences-China,2009,21(12):1747-1752
    [160] Samaras P., Blumenstock M., Schramm K.W., et al. Emissions of chlorinated aromaticsduring sludge combustion[J]. Water science and technology,2000,42(9):251-258
    [161] Gálvez A., Conesa J.A., Martín-Gullón I., et al. Interaction between pollutants producedin sewage sludge combustion and cement raw material[J]. Chemosphere,2007,69(3):387-394
    [162] Fullana A., Conesa J.A., Font R., et al. Formation and destruction of chlorinatedpollutants during sewage sludge incineration[J]. Environ Sci Technol,2004,38(10):2953-2958
    [163] Conesa J.A., Galvez A., Font R., et al. Formation of pollutants at intermediate oxygenlevel in sewage sludge combustion[J]. Organohalogen Compounds,2007,69:1317-1320
    [164] Mininni G., Sbrilli A., Guerriero E., et al. Dioxins and furans formation in pilotincineration tests of sewage sludge spiked with organic chlorine[J]. Chemosphere,2004,54(9):1337-1350
    [165] Mininni G., Lotito V., Spinosa L., et al. Influence of organic chlorine on emissions fromsludge incineration by a pilot fluidised bed furnace[J]. Water science and technology,2000,42(9):243-250
    [166] Zabaniotou A., Theofilou C. Green energy at cement kiln in Cyprus-Use of sewagesludge as a conventional fuel substitute[J]. Renew Sust Energ Rev,2008,12(2):531-541
    [167] Yan J.H., Chen T., Li X.D., et al. Evaluation of PCDD/Fs emission from fluidized bedincinerators co-firing MSW with coal in China[J]. J Hazard Mater,2006,135(1-3):47-51
    [168] Brzuzy L.P., Hites R.A. Global Mass Balance for Polychlorinated Dibenzo-p-dioxinsand Dibenzofurans[J]. Environmental Science&Technology,1996,30(6):1797-1804
    [169] Abad E., Adrados M.A., Caixach J., et al. Dioxin mass balance in a municipal wasteincinerator[J]. Chemosphere,2000,40(9–11):1143-1147
    [170] Liu K., Pan W.P., Riley J.T. A study of chlorine behavior in a simulated fluidized bedcombustion system[J]. Fuel,2000,79(9):1115-1124
    [171] Shin D.H., Choi S.M., Oh J.E., et al. Evaluation of polychlorinateddibenzo-p-dioxin/dibenzofuran (PCDD/F) emission in municipal solid waste incinerators[J].Environ Sci Technol,1999,33(15):2657-2666
    [172] Pedersen A.J., Frandsen F.J., Riber C., et al. A Full-scale Study on the Partitioning ofTrace Elements in Municipal Solid Waste Incineration—Effects of Firing Different WasteTypes [J]. Energy&Fuels,2009,23(7):3475-3489
    [173] Chiang K.-Y., Wang K.-S., Lin F.-L., et al. Chloride effects on the speciation andpartitioning of heavy metal during the municipal solid waste incineration process[J]. Scienceof The Total Environment,1997,203(2):129-140

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700