基于风帽压力波动的流化床气固流态化特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床燃烧是一项成熟的清洁煤燃烧技术,已在电站锅炉得到广泛的应用。由于在运行过程中炉内存在复杂的气固两相流动,循环流化床锅炉的故障率通常高于普通的煤粉锅炉。针对这一问题,国内外普遍利用在流化床气固流态化区域内或炉膛壁面上布置的压力信号测点,测量床内的压力波动信号,来分析不同运行工况下床内的气固流态化特征,从而用于监测流化床的工作状态并及时诊断相关故障的发生。然而所用压力测点由于暴露于床内的气固流态化区域,存在被频繁堵塞、严重磨损的问题,一旦损坏,其监测参数即告失效。为此,本课题提出了基于风帽压力信号测量的流化床内气固流态化特征的分析方法,借助鼓泡流化床、循环流化床冷态试验台,模拟流化床内不同工况及典型故障下的气固两相流动状态,利用统计函数、功率谱密度估计、小波分析、能量加权平均频率、均匀指数等时频域分析方法对测量的布风板风帽压力波动信号进行分析,研究风帽压力波动特性与流化床内气固流态化特征的关系规律,验证所提方法的可行性,为基于风帽压力波动特性的循环流化床锅炉故障诊断建立理论基础。
     本文首先在鼓泡流化床冷态试验台上,模拟不同床层表观气速、床料颗粒粒径、静床高及加料、放料扰动条件下鼓泡流化床内的气固两相流动状态。测量布风板中心、边壁位置风帽入口处的压力波动信号,利用小波分析将信号分解为不同频率段的子信号,计算子信号的能量值及其占总能量的比值;利用Welch谱估计法得到信号的功率谱密度,用于分析信号的频率域特征。
     其次,在循环流化床冷态试验台上,模拟不同一次风表观气速、床料颗粒粒径分布、系统装料量、二次风量等条件下,循环流化床内的气固两相流动状态;模拟不同返料风表观气速、系统颗粒循环流率的条件下,循环流化床流动密封阀内的气固两相流动状态。测量循环流化床内及流动密封阀内不同位置风帽的入口压力波动信号,计算信号的统计平均值和标准差,用于分析风帽压力的总体变化趋势和波动幅度;利用小波分析将信号分解为不同频率段的子信号,计算子信号的能量值及其占总能量的比值,用于分析床内不同频段的压力波动特征;利用预白化-后着色谱估计法估计信号的功率谱密度,然后计算信号的能量加权平均频率,用于分析床内的整体压力波动频率;提出了均匀指数,用于分析循环流化床内的流化均匀性以及流态化流型的转变。
     之后,在循环流化床冷态试验台上,通过堵塞返料侧与加料口侧边壁风帽的部分出口小孔,模拟循环流化床内易发生堵塞区域的风帽局部堵塞故障;通过向床内添加不同质量、不同粒径的大颗粒床料,并同时取出相同质量的原床料,模拟循环流化床内不同程度的结块故障。在模拟故障工况下,测量床内相应位置风帽的入口压力波动信号,利用统计分析、小波分析、均匀指数等方法,分析风帽局部堵塞、结块故障对床内风帽压力波动特性和气固流态化特征的影响。
     上述实验研究发现,鼓泡流化床风帽压力波动特性能够反映鼓泡流化床内表观气速、床料颗粒粒径、静床高、横截面方向位置等变化时的气固流态化特征变化;循环流化床内风帽的压力波动特性能够反映循环流化床内一次风表观气速、床料颗粒粒径分布、系统装料量、二次风量、横截面方向位置等变化时的气固流态化特征变化;流动密封阀内风帽的压力波动特性则能够反映流动密封阀内返料风表观气速、颗粒循环流率等变化时的气固流态化特征变化;流化床内发生风帽局部堵塞或结块故障时的风帽压力波动特性可以反映床内相应故障的发生。
The circulating fluidized bed combustion is a mature clean-coal combustion technology that has been widely used in power plant boilers. Because of the complex gas-solid two-phase flow inside the furnace during the operation, a circulating fluidized bed boiler usually has a higher failure rate than an ordinary pulverized coal fired boiler. To solve this problem, the in-bed and wall pressure fluctuations are generally measured to be used for the analysis of gas-solid fluidization characteristics in fluidized beds under different operation conditions. Based on the analysis of gas-solid fluidization characteristics in fluidized beds, the operating state of fluidized beds can be monitored, and the corresponding faults that happen can be early diagnosed. However, these in-bed and wall pressure measuring points are exposed to the gas-solid flow, so that they are easily to be blocked and wore. Once the pressure measuring points have been destroyed, the monitoring parameters will lapse. For this reason, the analysis of pressure fluctuation signals measured from wind caps which was a new method was proposed to realize the analysis of gas-solid fluidization characteristics in fluidized beds. With the help of a cold bubbling fluidized bed and a cold circulating fluidized bed, the state of gas-solid flow under different operating conditions and the typical faults were simulated. To research the relationships between the characteristics of pressure fluctuations in wind caps and the gas-solid fluidization characteristics inside the fluidized bed, the pressure fluctuation signals measured from the inlets of wind caps were analyzed with the methods both in time and frequency domain, such as statistical functions, power spectrum density estimation, wavelet analysis, energy weighted average frequency, homogeneous index and so on. The purposes of the research also included attesting to the practicability of the proposed method in this paper and providing a theoretical basis for the failure diagnosis of circulating fluidized beds based on pressure fluctuations in wind caps.
     Firstly, the state of gas-solid two phases flow in a bubbling fluidized bed was simulated at different superficial gas velocities, bed material particle sizes, static bed heights and the disturbance of feeding and discharging materials. The pressure fluctuation signals were measured from the central and side-wall wind caps at simultaneity. The signals were decomposed into sub-signals of different frequency bands with wavelet analysis, and then the energy of sub-signals and the ratios of energy at different levels to total energy were calculated. Besides, the power spectrum densities of signals were got with Welch spectrum estimation method in order to analyze the characteristics of signals in frequency domain.
     Secondly, the state of gas-solid flow inside a circulating fluidized bed was simulated at different primary air velocities, particle size distributions, solids inventories and secondary air flow rates. And the state of gas-solid flow inside a loop seal was also simulated at different recycling gas velocities and solid circulation rates. After measuring the pressure fluctuation signals from the wind caps located at the different cross-section positions of the circulating fluidized bed and the loop seal, the signals were analyzed with statistical average and standard deviation in order to get the general trends and fluctuation amplitudes of the pressures in wind caps. The signals were also decomposed into sub-signals of different frequency bands based on wavelet analysis, and the energy of sub-signals and the ratios of energy at different levels to total energy were calculated. Besides, the power spectrum densities of signals were got with Pre-whitening and Post-color spectrum estimation method for the analysis of signals in frequency domain and the homogeneous indexes of signals were calculated for the analysis of fluidization homogeneity and regimes.
     After the simulations of normal operating conditions of bubbling fluidized bed and circulating fluidized bed, the partial blockages of wind caps near the side walls, both the materials-returning side and the materials-feeding side, were simulated. By feeding bed materials of large particle size with different qualities and simultaneously removing some original bed materials of the same qualities, the agglomeration of different levels in a circulating fluidized bed was simulated. Under the failure operation conditions, the pressure fluctuation signals of the wind caps located at the corresponding positions of the distributor were measured to analyze the effect of wind cap partial blockage and agglomeration to the pressure fluctuations characteristics and gas-solid fluidization characteristics based on the methods of statistical functions, wavelet analysis and homogeneous index.
     The experimental results show that the pressure fluctuations characteristics of wind caps in a bubbling fluidized bed can reflect the gas-solid fluidization characteristics in the bubbling fluidized bed at different superficial gas velocities, bed material particle sizes, static bed heights, cross-section positions and the disturbance of feeding and discharging materials; the pressure fluctuations characteristics of wind caps in a circulating fluidized bed can reflect the gas-solid fluidization characteristics in the circulating fluidized bed at different primary air velocities, particle size distributions, solids inventories, secondary air flow rates and cross-section positions; the pressure fluctuations characteristics of wind caps in a loop seal can reflect the gas-solid fluidization characteristics in the loop seal at different recycling gas velocities and solid circulation rates; the pressure fluctuations characteristics of wind caps in a fault fluidized bed with wind cap partial blockage or agglomeration can reflect the corresponding fault that happens in the fluidized bed.
引文
[1]W. Nowak. Clean coal fluidized-bed technology in Poland[J]. Applied Energy, 2003,74(3-4):405-413.
    [2]R. Lundqvist, R. Kral, P. Kinnunen, et al. The advantages of a supercritical circulating fluidized bed boiler[A]. POWER-GEN Europe[C]. Dusseldorf, Germany,2003:19.
    [3]Stephen J. Goidich, Ragnar G. Lundqvist. The utility CFB boiler-present status, short and long term future with supercritical and ultra-supercritical steam parameters[A]. PowerGen Europe 2002[C]. Milan,2001.
    [4]Stephen J. Goidich, Song Wu, Zhen Fan, et al. Design aspects of the ultra-supercritical CFB boiler[A]. International Pittsburgh Coal Conference[C]. Pittsburgh, PA,2005.
    [5]辛建,吕俊复,岳光溪,等.发展超临界循环流化床的讨论[J].热能动力工程,2002,17(101):439-441.
    [6]I. Venalainen, R. Psik.460 MWe Supercritical CFB Boiler Design for Lagisza Power Plant[A]. POWER-GEN Europe[C]. Barcelona, Spain,2004.
    [7]Timo Eriksson, Ossi Sippu, Arto Hotta. Oxyfuel CFB boiler as a route to near zero CO2 emission coal firing[A]. POWER-GEN Europe[C]. Madrid, Spain, 2007.
    [8]刘晓东,胡志宏,徐钦田,等.大型CFB锅炉运行中磨损和排渣问题的解决[J].中国电力,2005,38(4):20-25.
    [9]黄洪波.循环流化床锅炉运行诊断专家系统研究[D].武汉:华中科技大学,2004.
    [10]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1997:66-93.
    [11]Hsiaotao T. Bi. A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds[J]. Chemical Engineering Science, 2007,62(13):3473-3493.
    [12]F.Johnsson, B. Leckner, G. Larsson. Pressure and flow fluctuations in a fluidized bed-interaction with the air-supply system[J]. Chemical Engineering Science,2002,57(8):1379-1392.
    [13]Influence of the nature of the Roots blower on pressure fluctuations in a fluidized bed[J]. Powder Technology,2002,127(1):19-31.
    [14]Davidson J.F.. Symposium on fluidization-discussion[J]. Transactions of the Institution of Chemical Engineering,1961,39:230-232.
    [15]Van der Schaaf J., Schouten I.C., Johnsson F., et al. Non-intrusive determination of bubble and slug length scales in fluidized beds by decomposition of the power spectral density of pressure time series[J]. International Journal of Multiphase Flow,2002,28(5):865-880.
    [16]Bi H.T., Chen A.H.. Pressure fluctuations in gas-solids fluidized beds[J]. China Particuology,2003,1(4):139-144.
    [17]Puncochar M., Drahos J.. Origin of pressure fluctuations in fluidized beds[J]. Chemical Engineering Science,2005,60(5):1193-1197.
    [18]Chen A.H., Bi H.T.. Pressure fluctuations and transition from bubbling to turbulent fluidization[J], Powder Technology,2003,133(1-3):237-246.
    [19]Roy R., Davidson J.F.. Similarity between gas-fluidized beds at elevated temperature and pressure[A]. Fluidization VI:Proceedings of the International Conference on Fluidization[C]. New York,1989:292.
    [20]Sun J.G., Chen M.M., Chao B.T.. Modeling of solids global fluctuations in bubbling fluidized beds by standing surface waves[J]. International Journal of Multiphase Flow,1994,20(2):315-338.
    [21]Van der Schaaf J., Schouten I.C., Johnsson F., et al. Multiple modes of bed mass oscillation in gas-solid fluidized bed[A]. Proceedings of the 15th International Conference on Fluidized Bed Combustion[C]. Savannah, USA, 1999.
    [22]Roy R., Davidson J.F., Tupogonov V.G.. The velocity of sound in fluidized beds[J]. Chemical Engineering Science,1990,45(11):3233-3245.
    [23]Hao B.G., Bi H.T.. Forced bed mass oscillations in gas-solid fluidized beds[J]. Powder Technology,2005,149(2-3):51-61.
    [24]Hiby J.W.. Periodic phenomena connected with gas-solid fluidization[A]. Proceedings of the International Symposium on Fluidization[C]. Amsterdam, 1967.
    [25]Verloop J., Heertjes P.M.. Periodic pressure fluctuations in fluidized beds[J]. Chemical Engineering Science,1974,29(4):1035-1042.
    [26]Alzahrani A.A., Noor Wali M.M.. A study of pressure drop fluctuations in a gas-solids fluidized bed[J]. Powder Technol.,1993,76(2),185-189.
    [27]V.A. Borodulya, V. Zavyalov. Fluidized bed self-oscillations[J]. Chemical Engineering Science,1985,40(3):353-364.
    [28]H. Moritomi, S. Mori, K. Araki, A. Moriyama. Periodic pressure fluctuations in a gaseous fluidized bed[J]. Kagaku Kogaku Ronbunshu,1980,6(4): 392-396. (in Japanese)
    [29]L.T. Fan, S. Hiraoka, S.H. Shin. Analysis of pressure fluctuations in a gas-solid fluidized bed[J]. AIChE Journal,1984,30(2):346-349.
    [30]J.F. Davidson. First session-introduction by rapporteur[J]. Institution of Chemical Engineers Symposium Series,1968,30:3-11.
    [31]Srdjan Sasic, Bo Leckner, Filip Johnsson. Fluctuations and waves in fluidized bed systems:The influence of the air-supply system[J]. Powder Technology, 2005,153 (3):176-195.
    [32]C. Sobrino, S. Sanchez-Delgado, N. Garcia-Hernando, et al. Standard deviation of absolute and differential pressure fluctuations in fluidized beds of group B particles[J], Chemical Engineering Research and Design,2008, 86(11):1236-1242.
    [33]David Thomas Falkowski. The analysis and modeling of pressure fluctuations in a fluidized bed[D]. Ames:Iowa State University,2003.
    [34]Srdjan Sasic, Bo Leckner, Filip Johnsson. Parametric modelling of time series of pressure fluctuations in gas-solid fluidized beds[J], Chemical Engineering Science,2005,60(18):5069-5077.
    [35]段文锋.混沌分析方法及其在气-固流化床中的应用[D].成都:四川大学,2001.
    [36]王晓萍.基于现代非线性信息处理技术的气固流化床流型识别方法与实验研究[D].杭州:浙江大学,2004.
    [37]王晓萍.气固流化床压力脉动信号的Hilbert-Huang变换与流型识别[J].高校化学工程学报,2005,19(4):474-479.
    [38]李强伟,冀海峰,黄志尧,等.基于分形和模糊技术的气固流化床流型辨识[J].检测与控制装置,2004,31(1):48-49,59.
    [39]何强勇.流化床压力信号的混沌特性分析及流型识别方法[D].吉林:东北电力大学,2010.
    [40]王春华,仲兆平,李睿,等.气-固流化床压力脉动递归图分析[J].化工学报,2010,61(3):557-564.
    [41]王春华,仲兆平,鄂加强.气-固流化床压力脉动信号分形标度分析[J].中国电机工程学报,2010,30(8):45-49.
    [42]王春华,仲兆平,李睿,等.气固流化床混沌动力结构突变分析[J].化工学报,2010,61(1):43-48.
    [43]D. Bai, Y. Jin, Z. Yu. Flow regimes in circulating fluidized beds[J]. Chemical Engineering Technology,1993,16(5):307-313.
    [44]A. Svensson, F. Johnsson, B. Leckner. Fluidization regimes in non-slugging fluidized beds:the influence of pressure drop across the air distributor[J]. Powder Technology,1996,86(3):299-312.
    [45]Robert C. Brown, Ethan Brue. Resolving dynamical features of fluidized beds from pressure fluctuations[J]. Powder Technology,2001,119(2-3):68-80.
    [46]Pallares D., Johansson A., Johnsson F.. Interpretation of dynamics of pressure measurements in CFB boilers[A].19th International Conference on Fluidized Bed Combustion[C]. New York,2006.
    [47]F. Johnsson, R.C. Zijerveld, J.C. Schouten, et al. Characterization of fluidization regimes by time-series analysis of pressure fluctuations[J]. International Journal of Multiphase Flow,2000,26(4):663-715.
    [48]J. Ruud van Ommen, Srdjan Sasic, John van der Schaaf, et al. Time-series analysis of pressure fluctuations in gas-solid fluidized beds-A review[J]. International Journal of Multiphase Flow,2011,37(5):403-428.
    [49]蔡平,金涌,俞芷青.操作温度对鼓泡流化向湍动流化转变的影响[J].化学工程,1991,19(3):62-66.
    [50]Cai Ping, Jin Yong, Yu Zhiqing, et al. A criterion for transition from bubbling to turbulent fluidization[J]. Chinese Journal of Chemical Engineering,1987, 2(2):234-244.
    [51]Ellis N., Bi H.T., Lim C.J., et al. Hydrodynamics of turbulent fluidized beds of different diameters[J]. Powder Technology,2004,141(1-2):124-136.
    [52]曾涛,柳忠彬,黄卫星,等.方形气固流化床从鼓泡到湍动流态化转变速度预测模型[J].过程工程学报,2011,11(3):376-379.
    [53]段锋,黄亚继,李斌,等.基于小波模极大值的湍动流态化流型转变特性研究[J].中国电机工程学报,2011,31(26):71-75.
    [54]Shou M.C., Leu L.P.. Energy of power spectral density function and wavelet analysis of absolute pressure fluctuation measurements in fluidized beds[J]. Chemical Engineering Research and Design,2005,83(A5):478-491.
    [55]Yang T.Y., Leu L.P.. Study of transition velocities from bubbling to turbulent fluidization by statistic and wavelet multi-resolution analysis on absolute pressure fluctuations[J]. Chemical Engineering Science,2008,63(7): 1950-1970.
    [56]Ma Liping, Huang Weixing, Shi Yanfu, et al. Multifractal analysis of particle-fluid system in a circulating fluidized bed[J]. China Particuology, 2005,3(1-2):80-83.
    [57]王小芳,金保升,钟文琪.高通量循环流化床上升管气固流动特性实验研究[J].中国电机工程学报,2009,29(17):27-31.
    [58]胡南,王巍,姚宣,等.38m/54m高循环流化床床内流体动力特性研究[J].中国电机工程学报,2009,29(26):7-12.
    [59]张永民,卢春喜,时铭显.湍动流化床中气泡行为和压力脉动特性的研究[J].石油学报(石油化工),2008,24(3):263-268.
    [60]Mitali Das, Amrita Bandyopadhyay, B.C. Meikap, et al. Axial voidage profiles and identification of flow regimes in the riser of a circulating fluidized bed[J]. Chemical Engineering Journal,2008,145(2):249-258.
    [61]顾锋.循环流化床物料循环冷态实验研究[D].北京:中国科学院研究生院,2002.
    [62]胡小康,刘小成,徐俊,等.循环流化床提升管内压力脉动特性[J].化工学报,2010,61(4):825-831.
    [63]Arun K. Sharma, Kemal Tuzla, John Matsen, et al. Parametric effects of particle size and gas velocity on cluster characteristics in fast fluidized beds[J]. Powder Technology,2000,111(1-2):114-122.
    [64]姚宣,杨石,晃俊楠,等.循环流率对循环流化床回路压降影响的实验研究[J].中国电机工程学报,2010,30(20):1-6.
    [65]Esmail R. Monazam, Lawrence J. Shadle, Joseph S. Mei. Impact of circulating fluidized bed riser on the performance of a loopseal nonmechanical valve[J]. Ind. Eng. Chem. Res.,2007,46(6):1843-1850.
    [66]马丽萍.循环流化床波动信号的非线性分析[D].成都:四川大学,2002.
    [67]陈永国,田子平,缪正清.循环流化床压力波动信号的局部奇异性检测[J].中国电机工程学报,2004,24(8):185-189.
    [68]陈永国.基于先进技术方法的循环流化床流动特性研究[D].上海:上海交通大学,2004.
    [69]Chen Yongguo, Tian Ziping, Miao Zhengqing. Detection of singularities in the pressure fluctuations of circulating fluidized beds based on wavelet modulus maximum method[J], Chemical Engineering Science,2004,59(17): 3569-3575.
    [70]Chen Yongguo, Tian Ziping, Miao Zhengqing. Analysis of the pressure fluctuations in binary solids circulating fluidized bed[J]. Energy Conversion and Management,2006,47(5):611-623.
    [71]W. Y. Wu, S. C. Saxena. Mixing characteristics of light paper pellets in a sand fluidized bed[J]. Energy,1997,22(6):615-619.
    [72]Hyun Tae Jang, Sang Bum Kim, Wang Seog Cha, et al. Pressure Fluctuation Properties in Combustion of Mixture of Anthracite and Bituminous Coal in a Fluidized Bed[J]. Korean J. Chem. Eng.,2003,20(1):138-144.
    [73]郭庆杰,张锴,张济宇,等.生物质和惰性颗粒二组分混合物的最小流化速度[J].煤炭转化,1999,22(1):92-96.
    [74]Yong Zhang, Baosheng Jin, Wenqi Zhong. Experimental investigation on mixing and segregation behavior of biomass particle in fluidized bed[J]. Chemical Engineering and Processing,2009,48(3):745-754.
    [75]王听.流化床的流动模拟及结渣现象的探讨[D].北京:清华大学,2004.
    [76]Mahfam Ghods. Effect of pressure and temperature on the hydrodynamics of a polyethylene fluidized bed[D]. Calgary:University of Calgary,2011.
    [77]冀海峰,黄志尧,吴贤国,等.基于小波变换的气固流化床压力波动信号的分析[J].高校化学工程学报,2000,14(6):553-557.
    [78]C.A.S. Felipe, S.C.S. Rocha. Prediction of minimum fluidization velocity of gas-solid fluidized beds by pressure fluctuation measurements-Analysis of the standard deviation methodology[J]. Powder Technology,2007,174(3): 104-113.
    [79]Davies C.E., Fenton K.. Pressure fluctuations in a fluidized bed:a potential route to the continuous estimation of particle size[J]. IPENZ Trans,1997, 24(1):12-20.
    [80]Weinstein H., Shabaker R.H., Tiller M.L., et al. Process for detecting, monitoring changes in property of particulate to produce synthesis gas involves sensing pressure in fluidized bed, processing collected pressure fluctuation data and comparing it over time[P]. Patent WO:00/43118-A, 2000.
    [81]Clive E. Davies, Alison Carroll, Rory Flemmer. Particle size monitoring in a fluidized bed using pressure fluctuations[J]. Powder Technology,2008, 180(3):307-311.
    [82]Al-Otoom A Y, Byant G W, Elliott L K. Experimental options for determining the temperature for the onset of sintering of coal ash[J]. Energy & Fuel,2000, 14(1):227-233.
    [83]郭庆杰,王启民,徐孟,等.一种混合物料初始粘结温度的测试方法及装置[P].中国专利:01118468.X,2003-12-17.
    [84]郭庆杰,王昕,吕俊复,等.流化床内颗粒最小粘结温度的测试装置及方法[P].中国专利:00124606.2,2004-06-02.
    [85]Chiang P.C., You J.H., Chang S.C., et al. Identification of toxic PAH compounds in emitted particulates from incineration of urban solid wastes[J]. Journal of Hazardous Materials,1992,31(1):29-37.
    [86]Zhang X.J.. The effect of the oxygen fraction on volatile organic-compound emissions from waste combustion[J]. Journal of Environmental Science and Health A,1998,33(1):147-163.
    [87]Kai T., Furusaki S.. Methanation of carbon dioxide and fluidization quality in a fluid bed reactor-the influence of a decrease in gas volume[J]. Chemical Engineering Science,1987,42(2):335-339.
    [88]Chiou-Liang Lin, Ming-Yen Wey, Han-Tsung Cheng. Relationship between pressure fluctuations and generation of organic pollutants with different particle size distributions in a fluidized bed incinerator[J]. Chemosphere, 2004,56(10):911-922.
    [89]F. Scala, P. Salatino. Modelling fluidized bed combustion of high-volatile solid fuels[J]. Chemical Engineering Science,2002,57(7):1175-1196.
    [90]R. Chirone, F. Miccio, F. Scala. On the relevance of axial and transversal fuel segregation during the FB combustion of a biomass[J]. Energy Fuels,2004, 18(4):1108-1117.
    [91]A.A. Khan, W. de Jong, P.J. Jansens, et al. Biomass combustion in fluidized bed boilers:Potential problems and remedies[J]. Fuel Processing Technology, 2009,90(1):21-50.
    [92]E. Natarajan, M. Ohman, M. Gabra, et al. Experimental determination of bed agglomeration tendencies of some common agricultural residues in fluidized bed combustion and gasification[J]. Biomass Bioenergy,1998,15(2): 163-169.
    [93]B.M. Jenkins, L.L. Baxter, T.R. Miles Jr., et al. Combustion properties of biomass[J]. Fuel Processing Technology,1998,54 (1-3):17-46.
    [94]B. Skrifvars, R. Backman, M. Hupa, et al. Ash behaviour in a CFB boiler during combustion of coal, peat or wood[J]. Fuel,1998,77(1-2):65-70.
    [95]B.D. Grubor, S.N. Oka, M.S. Ilic, et al. Biomass FBC combustion-bed agglomeration problems[A]. Proceedings of 13th International Conference on Fluidized Bed Combustion[C]. Orlando, Florida,1995:515-522.
    [96]R.C. Brown, M.B. Dowson, J.L. Smoenk. Bed material agglomeration during fluidized bed combustion[R]. Pittsburgh:U.S. Department of Energy,1996.
    [97]F. Scala, R. Chirone. Characterization and early detection of bed agglomeration during the fluidized bed combustion of olive husk[J]. Energy & Fuels,2006,20(1):120-132.
    [98]Riccardo Chirone, Francesco Miccio, Fabrizio Scala. Mechanism and prediction of bed agglomeration during fluidized bed combustion of a biomass fuel:Effect of the reactor scale[J]. Chemical Engineering Journal, 2006,123(3):71-80.
    [99]郑燕萍,黄轶伦,陈伯川,等.利用压力脉动信号特征预测流化床结块故障[J],高校化学工程学报,2000,14(2):128-133.
    [100]Zhang Jiansheng, Lii Junfu, Wang Xin, et al. Characterization of pressure signals in fluidized beds loaded with large particles using Wigner distribution analysis:feasibility of diagnosis of agglomeration[J]. Chinese Journal of Chemical Engineering,2007,15(1):24-29.
    [101]M.R. Parise, O.P. Taranto, P.R.G. Kurka, et al. Detection of the minimum gas velocity region using Gaussian spectral pressure distribution in a gas-solid fluidized bed[J]. Powder Technology,2008,182(3):453-458.
    [102]M.R. Parise, P.R.G. Kurka, O.P. Taranto. The Gaussian spectral pressure distribution applied to a fluidized bed[J]. Chemical Engineering and Processing,2009,48(1):120-125.
    [103]M.R. Parise, C.A.M. Silva, M.J. Ramazini, et al. Identification of defluidization in fluidized bed coating using the Gaussian spectral pressure distribution[J]. Powder Technology,2011,206(1-2):149-153.
    [104]C.A.M. Silva, M.R. Parise, F.V. Silva, et al. Control of fluidized bed coating particles using Gaussian spectral pressure distribution[J]. Powder Technology, 2011,212(3):445-458.
    [105]Fuller T.A., Flynn T.J., Daw C.S., et al. Interpretation of pilot-scale, fluidized bed behavior using chaotic time series analysis[A]. Proceedings of the 12th international FBC conference[C]. United States,1993:141-155.
    [106]Wang Xiaoliang, He Rong, Toshiyuki Suda, et al. Phase-plane invariant analysis of pressure fluctuations in fluidized beds[J]. Tsinghua Science and Technology,2007,12(3):284-289.
    [107]Schouten J.C., van den Bleek C.M.. Monitoring the quality of fluidization using the short-term predictability of pressure fluctuations[J]. AIChE Journal, 1998,44(1):48-60.
    [108]Van Ommen J.R., Schouten J.C., van den Bleek C.M.. An early warning method for detecting bed agglomeration in fluidized bed combustors[A]. Proceedings of the 15th International Conference on Fluidized Bed Combustion[C]. New York, USA,1999.
    [109]Van Ommen J.R., Schouten J.C., Coppens M.O, et al. Monitoring fluidized bed hydrodynamics to detect changes in particle size distribution[A]. Proceedings of the 10th Engineering Foundation Conference on Fluidization[C]. New York:United Engineering Foundation,2001.
    [110]Van Ommen J.R., Coppens M.O., van den Bleek C.M., et al. Early warning of agglomeration in fluidized beds by attractor comparison[J]. AIChE Journal, 2000,46(11):2183-2197.
    [111]Van Ommen J.R., Schouten J.C., Coppens M.O, et al. Timely detection of agglomeration in biomass fired fluidized beds[A]. Proceedings of the 16th International Conference on Fluidized Bed Combustion[C]. New York: ASME,2001:131.
    [112]Van Ommen R.. Monitoring fluidized bed hydrodynamics[D]. Delft, The Netherlands:Technical University of Delft,2001.
    [113]R. Korbee, J.R. van Ommen, J. Lensselink, et al. Early agglomeration recognition system (EARS)[A].17th International Fluidized Bed Combustion Conference[C]. New York:ASME,2003:1-7.
    [114]Korbee R., Lensselink J., van Ommen J.R., et al. Early agglomeration recognition system-EARS:From bench-scale testing to industrial prototype[R]. Petten:ECN (Energy Research Centre of the Netherlands), 2004.
    [115]Malte Bartels, John Nijenhuis, Willem van de Kamp, et al. Early agglomeration recognition system (EARS) for industrial circulating fluidized bed conversion[A].19th International Conference on Fluidized Bed Combustion[C]. Greece:INSIDE POReS,2006:1-9.
    [116]J. Nijenhuis, R. Korbee, J. Lensselink, et al. A method for agglomeration detection and control in full-scale biomass fired fluidized beds[J]. Chemical Engineering Science,2007,62(1-2):644-654.
    [117]Malte Bartels, Bart Vermeer, John Nijenhuis, et al. Towards selective agglomeration detection in fluidized beds using advanced signal analysis methods[A]. The 12th International Conference on Fluidization-New Horizons in Fluidization Engineering[C]. New York:ECI Digital Archives, 2007:441-448.
    [118]Malte Bartels, Weigang Lin, John Nijenhuis, et al. Agglomeration in fluidized beds at high temperatures:Mechanisms, detection and prevention[J]. Progress in Energy and Combustion Science,2008,34(5):633-666.
    [119]Malte Bartels. Agglomeration in fluidized beds:detection and counteraction[D]. Flensburg:Cleveland State University,2008.
    [120]Malte Bartels, John Nijenhuis, Jasper Lensselink, et al. Detecting and counteracting agglomeration in fluidized bed biomass combustion[J]. Energy & Fuels,2009,23(1):157-169.
    [121]Malte Bartels, Bart Vermeer, Peter J.T. Verheijen, et al. Methodology for the screening of signal analysis methods for selective detection of hydrodynamic changes in fluidized bed systems[J]. Industrial & Engineering Chemistry Research,2009,48(6):3158-3166.
    [122]Malte Bartels, John Nijenhuis, Freek Kapteijn, et al. Detecting of agglomeration and gradual particle size changes in circulating fluidized beds[J]. Powder Technology,2010,202(1-3):24-38.
    [123]Malte Bartels, John Nijenhuis, Freek Kapteijn, et al. Case studies for selective agglomeration detection in fluidized beds:Application of a new screening methodology[J]. Powder Technology,2010,203(2):148-166.
    [124]Gheorghiu S., van Ommen J.R., Coppens M.O.. Monitoring fluidized bed hydrodynamics using power law statistics of pressure fluctuations[A]. Fluidization XI, Engineering Conferences International[C]. New York,2004.
    [125]McDougall S., Saberian M., Briens C., et al. Using dynamic pressure signals to assess the effects of injected liquid on fluidized bed properties[J]. Chemical Engineering and Processing,2005,44(7):701-708.
    [126]Bai B, Gheorghiu S, van Ommen JR., et al. Characterization of the void size distribution in fluidized beds using statistics of pressure fluctuations[J]. Powder Technology,2005,160(2):81-92.
    [127]余训锋,马大玮,魏琳.改进周期图法功率谱估计中的窗函数仿真分析[J].计算机仿真,2008,25(3):111-114.
    [128]王嘉骏,张文峰,冯连芳,等.气固搅拌流化床压力脉动的小波分析[J].化工学报,2006,57(12):2854-2859.
    [129]Kim S. W., Kirbas G., Bi H., et al. Flow behavior and regime transition in a high-density circulating fluidized bed riser[J]. Chemical Engineering Science, 2004,59(18):3955-3963.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700