甘蔗渣吸附废水中Cd~(2+)和Cr~(3+)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属是对生态环境危害极大的一类污染物,废水中的可溶性重金属离子经过水生食物链的富集,最终由水产品进入人体,会给人类带来严重的毒害影响。目前,去除水中重金属离子的方法主要有化学沉淀法、氧化还原法、离子交换法、电解法和膜过滤法。但是,这些方法存在运行成本高、操作繁琐、易造成二次污染等缺点;另一方面,它们主要适用于处理金属离子浓度较高的废水。当重金属离子浓度低时,处理效率较低。近年来,生物吸附法以其高效、环境友好的特点引起了广大研究者的高度关注。
     本文利用甘蔗原渣(原渣)和微波作用下尿素改性甘蔗渣(改性渣)为吸附剂,采用静态摇瓶实验,吸附去除废水中低浓度的Cd~(2+)和Cr~(3+)。本研究对吸附条件进行了优化,探讨了NaCl、CaCl_2、KCl、MgCl_2四种无机盐对吸附的影响;获得了甘蔗渣吸附Cd~(2+)。和Cr~(3+)的动力学和热力学特征、两种重金属离子的竞争吸附特征;采用HNO_3、HCl为解吸剂,探讨了洗脱剂浓度对解吸能力的影响;并采用红外光谱分析法,对改性前后和吸附重金属离子前后的甘蔗渣进行了表征。获得了如下的研究成果:
     1.原渣和改性渣吸附Cd~(2+)的最佳pH为6,吸附Cr~(3+)的最佳pH为4。温度对吸附的影响不显著。两种吸附剂对重金属离子的吸附速率都较高,前5 min的吸附率已超过60%,原渣和改性渣吸附Cd~(2+)的平衡时间为2 h,吸附Cr~(3+)的平衡时间为12 h左右。Cd~(2+)浓度较低时,原渣对Cd~(2+)的吸附量随初始浓度的增加而较快增加;Cd~(2+)浓度为83 mg/L时,吸附量为4.79 mg·g~(-1)。在实验的浓度范围内,改性渣吸附Cd~(2+)、原渣和改性渣吸附Cr~(3+)的量均随初始浓度的增加而持续增大,吸附没有达到饱和。
     2.吸附热力学参数显示,两种吸附剂吸附Cd~(2+)的过程均为放热的物理过程;原渣吸附Cr~(3+)的过程为吸热的物理过程,改性渣吸附Cr~(3+)的过程为吸热过程,兼有物理吸附和化学吸附。本研究中的所有吸附过程均为自发过程。两种吸附剂吸附Cd~(2+)和Cr~(3+)的动力学过程均可用二级动力学模型描述,决定系数在0.99以上。两种吸附剂吸附Cd~(2+)和Cr~(3+)的等温吸附行为均可用Langmuir模型来描述,决定系数在0.99左右。原渣对Cd~(2+)、Cr~(3+)的最大吸附量分别为4.88 mg/g和6.33 mg/g:改性渣对Cd~(2+)、Cr~(3+)的最大吸附量分别为12.38 mg/g和23.92 mg/g。通过改性反应,甘蔗渣对这两种离子的吸附能力有了明显的提高。
     3.废水中Na~+、Ca~(2+)、K~+、Mg~(2+)的不同浓度组合对Cd~(2+)的吸附都有一定的促进作用。废水中Ca~(2+)的存在对Cr~(3+)的吸附有较大的抑制作用。废水中Cr~(3+)、Cd~(2+)共存时,原渣和改性渣都优先吸附Cr~(3+),对Cd~(2+)的吸附量明显降低;Cd~(2+)的存在对Cr~(3+)的吸附没有明显的影响。
     4.HCl、HNO_3都能较好地洗脱吸附在原渣上的Cd~(2+),洗脱率在98%以上;但对改性渣上的Cd~(2+)洗脱效果不好。HCl、HNO_3对两种吸附剂上的Cr~(3+)洗脱效果不好,洗脱率均在15%以下。
     5.通过对甘蔗渣改性前后、吸附重金属离子前后的红外光谱分析,推断出两种吸附剂吸附金属离子的机理不同:原渣吸附Cd~(2+)和Cr~(3+)起重要作用的基团是-OH,而改性渣为N-H、C-N和C=O等含氮、氧的官能团。
Heavy metal is a kind pollutant with high toxicity in ecological environment. Some dissolved heavy metal ions can be enriched in aquatic food chains, enter into human bodies through aquatic products, and thus brings about serious poisoning to human beings. Up to now, some methods including chemical precipitation, oxidation-reduction, ion exchange, electrolysis and membrane diltration, are used to remove heavy metal ions in water. However, these methods have some disadvantages, such as high running cost, cumbersome operation, and easy to cause secondary pollution. On ther other hand, they are mainly used to remove heavy metal ions with high concentration in waste water. The treatment efficiency is very low when these methos are used to remove heavy metal ions with low concentration in waste water. Recently, the biological adsorption method attracts many scientists' concern owing to its high efficiency and environmental-friendly.
     In this thesis, the bagasse and modified bagasse which was modified with urea under the microwave irradiation were used to adsorbents to adsorb Cd~(2+) and Cr~(3+) with low concentration in wate water by using static shaking experiment. The adsorption conditions were optimized, and the effects of four inorganic salts including NaCl,CaCl_2,KC1 and MgCl_2 on adsorption were also examined. Adsorption thermodynamics and kinetics characteristics of bagasses to Cd~(2+) and Cr~(3+) and competitive adsorption initial pH, initial metal ion concentration, the adsorbing time, solid/liquid ratio and desorption characteristic were obtained. Effect of the concentration of eluants (HNO_3 and HC1) on desorption capability. The bagasses before and after modification and before and after adsorption were characterised by using infrared spectrophotometnc analysis. The achievements were obtained as follows.
     1.The optimal pH was 6 when the original bagasse and the modified bagasse were used to adsorb Cd~(2+),and the optimal pH was 4 when they were used to adsorb Cr~(3+).Effect of temperatire on adsorption was not prominent. The adsorption rates were both high when the two adsorbents were used to adsorb the two heavy metal ions. The adsorption ratio exceeded 60% at 5 min, the adsorption equilibrium time of the two adsorbents to Cd~(2+) was 2 h, while ca. 12 h to Cr~(3+).When the concentration of Cd~(2+) was low, the adsorption amount of the original bagasse to Cd~(2+) increased with the initial concentration. When the concentration of Cd~(2+) was 83 mg/L, the adsorption amount was 4.79 mg·g~(-1).In the range of the original concentration of the two heavy metal ions, the adsorption amounts of the modified bagasse to Cd~(2+) and the original and modified bagasse to Cr~(3+) both increased with increasing the original concentration of the two heavy metal ions, the adsorptions didn't reach saturation.
     2.Thermodynamic parameters showed that the adsorption processes of the two adsorbents to Cd~(2+) were both exothermic physical adsorption processes. The adsorption process of the original bagasse to Cr~(3+) was an endothermic physical adsorption process; the adsorption process of the modified bagasse to Cr~(3+) was an endothermic adsorption process with the physical and chemical adsorption simultaneously. All of the adsorption processes were spontaneous processes in this study. Both of the adsorption processes of the two adsorbents to Cd~(2+) and Cr~(3+) can be described by the second kinetic equation, and the coefficient of determination were over 0.99. The isothermal adsorption behaviors of these processes can be described by Langmuir model, and the coefficient of determination were about 0.99. The maximum adsorption amounts of Cd~(2+) and Cr~(3+) by the original bagasse were 4.88 mg·g~(-1) and 6.33 mg·g~(-1),while 12.38 mg·g~(-1) and 23.92 mg·g~(-1) by the modified bagasse, respectively. It can be seen that the adsorption capacity of the modified bagasse to the two heavy metal ions can be improved significantly.
     3.The combination of Na~+,Ca~(2+),K~+ and Mg~(2+) in waste water can improve the adsorption of Cd~(2+). Calcium ion in waste water can inhibit the adsorption of Cr~(3+).When Cd~(2+) and Cr~(3+) coexist in waste water, both of the tow adsorbents adsorb Cr~(3+) first, and the adsorption amount of Cd~(2+) decreases significantly. No obvious influence on the adsorption amount of Cd~(2+) can be found in the presence of Cr~(3+).
     4.Both of HC1 and HNO_3 can well elute the adorbed Cd~(2+) on the original bagasse, and the desorption ratio was more than 98%. However, the elution ratio was very low for the adsorbed Cd~(2+) on the modified bagasse, and the desorption ratio was less than 15%.
     5.It can be concluded that the adsorption mechanisms of the two adsobents to the two metal ions are quite different by analyzing the IR spetra of the bagasses before and after modification and before and after adsorption. Hydroxy group plays an important role in the adsorption of the original bagasse to Cd~(2+) and Cr~(3+),while N-H, C-N,C=O for the modified bagasse.
引文
[1] 陈炳卿主编.营养与食品卫生学(第四版).[M].北京:人民卫生出版社,2000,pp213-214
    [2] C.L. Rollinson. Chromium, molybdenum and tungsten. In: Trotman-Dickenson,Comprehensive Inorganic Chemistry (3~(rd) Ed.) [M]. Pergamon Press, Oxford, 1973,pp691-694.
    [3] 天津大学无机化学教研室编.无机化学[M].北京:高等教育出版社,2000,pp573-581.
    [4] 陈英旭,朱祖祥,何增耀.环境中氧化锰对Cr(Ⅲ)氧化机理的研究[J]-环境科学学报.1993,13(1):45-50.
    [5] A.Ruiz-Manriquez, P.I. Magana, V. Lopez, et al.Biosorption of Cu(Ⅱ) by Thiobacillus ferrooxidans [J]. Bioprocess Engineering, 1997, (18): 113-118
    [6] 逯兆庆,寻知磊.活性炭处理含铬废水的方法[J].电镀与涂饰,2002,21(5):42-44.
    [7] 黄炳辉.用液膜技术处理含铬废水的研究[J].环境开发,1999,14(2):31-32.
    [8] 赵振业,傅家谟.离子交换处理电镀废水[J].水处理技术,2001,27(6):341.
    [9] 刘俊.化学法处理含铬含锌废水[J].电镀与精饰,1998,18(9):37.
    [10] 宋马胜,张迎新.铁屑活性炭综合处理电镀废水[J].电镀与环保,1998,18(6):31-32.
    [11] 魏振枢.铁氧体法处理含铬废水工艺条件探讨[J].化工环保,1998,18(1):3
    [12] 黄力群,石国乐.电解法处理含铬废水的改进[J].电镀与环保,1994,14(5):20-23.
    [13] 罗耀宗.电镀含铬废水处理[M].上海科学出版社,1981,3.
    [14] 姜述芹,周保学.氢氧化镁处理含锡废水的研究[J].环境化学,2003,22(6):601-604
    [15] 张玉梅.含镉废水处理的试验研究[J].环境工程,1995,13(1):15-21.
    [16] 来风习,王九思,杨玉华.铁氧体法处理重金属废水研究[J].甘肃联合大学学报(自然科学版),2006,20(3):64-66.
    [17] 杨秀红,胡振琪,高爱林,等.钠化改性膨润土对Cd2+的吸附研究[J].环境化学,2004,23(5):506-509.
    [18] Oral. Lacin, Bahar. Bayrak, Ozlem.Korkut, et al. Modeling of adsorption and ultrasonie desorption of cadmium(Ⅱ) and zine(Ⅱ) on local bentonite [J]. Journal of Colloid and Interface Science, 2005, 29(2): 330-335.
    [19] B. Volesky, Z.R. Holan.Biosorption of heavy metal [J]. Biotech. Prog., 1995,11:235-250.
    [20] 尹平河,赵玲.海藻生物吸附废水中铅、铜和锡的研究[J].海洋环境科学,2000, 19(3):11-15.
    [21] T.J. Butter. The removal and recovery of cadmium from dilute aqueous solutions by biosorption and eleetrolysis at laboratory scale [M]. Water Res., 1998, 32(2): 400
    [22] 陈山,王弘,卢家炯.甘蔗制糖业副产物的综合利用[J].食品与发酵工业,2005,(1):104-108
    [23] U. Garg, M.P. Kaur, G.K. Jawa, et al.Removal of cadmium (Ⅱ) from aqueous solutions by adsorption on agricultural waste biomass [J]. Journal of Hazardous Materials, 2008,154(1-3):1149-1157
    [24] U.K. Garg, M.P. Kaur, V.K. Garg, et al. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass [J]. Journal of Hazardous Materials, 2007,140(1-2):60-68
    [25] U.K. Garg, M.P. Kaur, V.K. Garg. Removal of Nickel (Ⅱ) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach [J]. Bioresource Technology, 2008, 99(5): 1325-1331
    [26] M. Raoa, A.V. Parwatea, A.G. Bhole.Removal of Cr~(6+) and Ni~(2+) from aqueous solution using bagasse and fly ash [J]. Waste Management, 2002, 22: 821-830
    [27] C.F. Liu, R.C. Sun, M.H. Qin. Succinoylation of sugarcane bagasse under ultrasound irradiation [J]. Bioresource Technology, 2008, 99(5): 1465-1473
    [28] C.-F. Liu, R.-C. Sun, M.-H. Qin. Chemical modification of ultrasound-pretreated sugarcane bagasse with maleic anhydride [J]. Industrial Crops and Products, 2007, 26( 2 ):212-219
    [29] U.S. Orlando, A.U. Baes, W. Nishijima.Comparative effectivity of different types of neutral chelating agents for preparing chelated bagasse in solvent-free conditions [J].Journal of Cleaner Production, 2004, 12(7): 753-757
    [30] U.S. Orlando, A.U. Baes, W. Nishijima. Preparation of chelating agents from sugarcane bagasse by microwave radiation as an alternative ecologically benign procedure [J].Green Chemistry, 2002, 4(6): 555-557
    [31] L.H. Wartelle, W.E. Marshall. Chromate ion adsorption by agricultural by-products modified with dimethyloldihy droxyethylene urea and choline chloride [J].Water Research, 2005, 39(13): 2869-2876
    [32] W.S. Peternele, A.A. Winkler-Hechenleitner, E.A.G. Pineda. Adsorption of Cd(Ⅱ) and Pb(Ⅱ) onto functionalized formic lignin from sugar cane bagasse [J]. Bioresource Technology, 1999, 68(1): 95-100
    [33] O.K. Jr., L.V.A. Gurgel, J.C.P. de Melo.Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse [J]. Bioresource Technology, 2007, 98(6): 1291-1297
    [34] V.C.Srivastava, ID. Mall, I.M. Mishra. Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA) [J].Chemical Engineering Journal, 2007',132(1-3): 267-278
    [35] V.K. Gupta, I. Ali.Utilization of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater [J]. Separation and Purification Technology, 2000,18(2): 131-140
    [36] V.K. Gupta, I. Ali. Removal of lead and chromium from wastewater using bagasse fly ash-a sugar industry waste [J]. Journal of Colloid and Interface Science, 2004, 271(2):321-328
    [37] V.K. Guptaa, C.K. Jainb, I. Ali. Removal of cadmium and nickel from wastewater using bagasse fly ash-a sugar industry waste [J]. Water Research, 2003, 37(16): 4038-4044
    [38] R. Ayyappana, A.C.Sophiab, K. Swaminathan, et al.Removal of Pb (Ⅱ) from aqueous solution using carbon derived from agricultural wastes [J]. Process Biochemistry, 2005,40(3-4):1293-1299
    [39] D. Mohan, K.P. Singh. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste [J]. Water Research,2002, 36(9): 2304-2318
    [40] K.A. Krishnan,T.S. Anirudhan. Removal of mercury (Ⅱ) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies [J]. Journal of Hazardous Materials, 2002, 92(2): 161-183
    [41] K.A. Krishnan, T.S. Anirudhan. Kinetic and equilibrium modelling of cobalt (Ⅱ) adsorption onto bagasse pith based sulphurised activated carbon [J].Chemical Engineering Journal, 2008, 137(2): 257-264
    [42] N. Syna, M. Valix.Modelling of gold (Ⅰ) cyanide adsorption based on the properties of activated bagasse [J]. Minerals Engineering, 2003, 16(5): 421-427
    [43] N. Syna, M. Valix. Assessing the potential of activated bagasse as gold adsorbent for gold-thiourea [J]. Minerals Engineering, 2003, 16(6): 511-518
    [44] U.S. Orlando, A.U. Baes, W. Nishijima,M.Okada. Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity [J]. Chemosphere, 2002,48(10): 1041-1046
    [45] U.S. Orlando, A.U. Baes, W. Nishijima, M. Okada. A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials [J]. Bioresource Technology, 2002, 83(3): 195-198
    [46] V. Strezov, M. Patterson, V. Zymla. Fundamental aspects of biomass carbonization [J]. J Anal.Appl.Pyrol,2007, 79(1-2): 91-100
    [47] M. Valix,W.H. Cheung, K. Zhang. Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters [J]. Journal of Hazardous Materials, 2006,135(1-3): 395-405
    [48] Y. Kacar, C. Arpa, S. Tan, et al.Entrapment of Lentinus sajor-caju into Ca-alginate gel beads for removal of Cd(Ⅱ) ions from aqueous solution: preparation and biosorption kinetics analysis [J]. Microchemical Journal, 2002, 72: 63-76.
    [49] 孟令芝.网状聚合物冠醚对重金属离子的吸附性能[J].环境科学与技术,1999,88(1):10-12
    [50] A. Ozer, D. Ozer. Comparative study of the biosorption of Pb(Ⅱ),Ni(Ⅱ) and Cr(Ⅵ) ions onto S. cerevisiae:determination of biosorption heats [J]. Journal of Hazardous Materials,2003, 100: 219-229.
    [51] D. Brady, J.R. Duncan. Bioaccumulation of metal cations by Saccharomyces cerevis eae [J]. Appl.Microbial. Biotechnol,1994, 41(1): 149-154
    [52] L. Philip, L. Lyengar, C. Venkobachar. Biosorption of Cu~(2+) by Pseudomonas aeruginosa.[J]. Environ. Pollution, 1995, 5(1): 92-99
    [53] R. Raokama,L.S. Sajani, P.M. Mohan. Bioaccumulation and biosorption of Co~(2+) by neurospsra crassa [J]. Biotechnol. Letter, 1996, 18(10): 1205-1208
    [54] J.Z. Xie, H.L. Chang, J.J. Kibane. Removal and recovery of metal ions from waste water using biosorbent [J]. Bioresource Technology, 1996, 57(2): 127-136 师范学院学报(自然科学版),2004,15(2):186-194
    [62] 郜瑞莹,王建龙.Zn~(2+)和Cd~(2+)在酿酒酵母上的生物吸附平衡[J].水处理技术,2007,33(10):35-37
    [63] 钱国勇,侯明,汪菊玲.绿茶对水溶液中pb~(2+)和Cd~(2+)吸附性能初步研究[J].分析试验室,2008,27(1):63-66
    [64] 郑慧,王敏,孙新涛.苦荞麸皮微粉对pb~(2+)、Cd~(2+)、Hg~(2+)的吸附特性研究[J].中国粮油学报,2008,23(1):44-47
    [65] 孙伟若,叶炳基,郑晖.海带颗粒去除水中汞、镉、铅的实验研究[J].环境与职业医学,2005,(1):24-27
    [66] 高树芳,李斌,洪礼坤.热带假丝酵母与深红酵母对Cd的吸附效果[J].福建农林大学学报(自然科学版),2004,33(1):100-103
    [67] 余少英.交联淀粉对Cr~(3+)离子的吸附研究[J].云南化工,2006,33(4):11-25
    [68] 张建梅.东京根霉对重金属Cr~(3+)、Mn~(2+)和Zn~(2+)的吸附研究[J].环境污染治理技术与设备,2006,7(8):64-68
    [69] 苏海佳,邓新华,郑娜.交联菌丝体吸附剂的制备及其对Cr~(3+)的吸附特性[J].环境污染治理技术与设备,2005,6(8):10-13
    [70] 阳奇,邓新华,郑娜,等.菌丝体表面分子印迹壳聚糖吸附剂对Cr~(3+)的吸附性能研究[J].环境污染治理技术与设备,2006,8(1):14-27
    [71] 刘明华,刘卫国,张宏,等.球形纤维素吸附剂对Cr~(3+)吸附和解吸的研究[J].化工环保,2001,21(1):1-5
    [72] 沈生荣,杨贤强,区尹正.绿茶颗粒对水中Cr~(3+)吸附行为的研究[J].茶叶,1991,17(1):42-44
    [73] G.Bayramoglu,A.Denizli, S. Bektas, et al.Entrapment of Lentinus sajor-caju into Ca-alginategel beads for removal of Cd(Ⅱ) ions from aqueous solution: preparation and biosorption kinetics analysis [J]. Microchemical Journal, 2002,72:63-76.
    [74] R.Say,A.Denizli, M. Y. Arica. Biosorption of cadmium(Ⅱ),lead(Ⅱ) and copper(Ⅱ) with the filamentous fungus Phanerochaete chrysosporium [J]. Biorescource Technology,2001, 76(1):67-70.
    [75] Y. Ka(?)ar,(?).Arpa, S. Tan, et al. Biosorption of Hg(Ⅱ) and Cd(Ⅱ) from aqueous solutions:comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium [J]. Process Biochemistry, 2002, 37(6): 601-610.
    [76] 李军.天热水体中优势游离细菌对低浓度铅和福吸附规律的研究[D].长春:吉林大学硕士学位论文,2004.6
    [77] 朱思佳,吕秀阳,何世伟,等.大孔树脂对甘油的静态吸附及其热力学研究[J].化 工时刊,2006,20(11):5-7
    [78] S.E. Herbes. Partitioning of polycyclic aromatic hydrocarbons between dissolved and particulate phases in natural waters [J]. Water Research, 1977, 11(6): 493-496
    [79] 陈苏,孙铁珩,孙丽娜.Cd~(2+)、Pb~(2+)在根际和非根际土壤中的吸附-解吸行为[J].环境科学,2007,28(4):843-851
    [80] Y.S. Ho, G. Mckay, D. Wase, et al.Study of the sorption of divalent metal ions on to peat [J]. Adsorp. Sci. Technol.,2000,18:639-650.
    [81] S.H Chien, W.R. Clayton. Application of Elovich equation to kinetics of phosphate release and sorptipn on soils [J]. Soil Sci. Soc.Am. J., 1980, 44: 265-268.
    [82] 刘福强,陈金龙,费正皓.复合功能超高交联吸附树脂对氨基萘酚磺酸的静态吸附热力学及动力学特征[J].应用化学,2003,20(12):1123-1128
    [83] S.K. Srivastava, R. Tyagi, N. Pant. Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants [J]. Water Res., 1989,23: 1161-1165.
    [84] U.P.L. Lgengar, A.V.S.P. Rao. Hexavalent chromium interaction with chitosan [J].J.Appl.Polym.Sci.,1990, 39: 739.
    [85] 全桂香,严金龙.壳聚糖吸附铬(Ⅵ)的动力学模型研究[J].皮革与化工,2008,25(4):5-8
    [86] F.J. Hingston. A review of anion adsorption. In: M.A. Anderson (Eds), Adsorption of Inorganics at Soild-Liquid Surface [M].Ann Arbor: Ann. Arbor Sci., 1981: 51-90
    [87] D.L. Spark. Kinetics of soil Chemical processed [M]. San Diego: Academic Press Inc.,1989
    [88] A.C.Vig, C.R. Biswas, M.K. Sinha. Kinetics of phosphorus desorption and diffusion in defferentally fertilized soils [J]. Bull. Indian Soc. Soil Sci., 1979, 12: 279-286
    [89] G. Bayramoglu, M.Y. A(?)ca. Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu (Ⅱ), Zn (Ⅱ) and Ni (Ⅱ): Kinetics and equilibrium studies [J]. Bioresonrce Technology, 2009, 100(1):186-193
    [90] 雷超,孙小梅,余军霞,等.戊二醛交联酵母菌对Zn~(2+),Cd~(2+)和Hg~(2+)的吸附行为[J].环境科学研究,2008,21(6):206-210
    [91] 姜玉,庞浩,廖兵.甘蔗渣吸附剂的制备及其对Pb~(2+)、Cu~(2+)、Cr~(3+)的吸附动力学研究[J].中山大学学报(自然科学版),2008,47(6):32-37
    [92] R.G. Pearson. Hard and soft acids and bases [J]. J. Am. Chem.Soc, 1963. 85: 3533-3539
    [93] E. Nieboer, D.H.S. Richardson. The replacement of the no descript term "heavy metals" by a biologically and chemically significant classification ofmetal ions [J].Environ. Pollut.Ser B,1980,1:3-26
    [94] M.Tsezos. Biosorption of metals: The experience accumulated and the outlook for technology development [J]. Hydrometallurgy, 2001, 59(3): 241-243
    [95] 黄民生,郑乐平,朱莉.微生物对重金属的吸附与解吸[J].化工装备技术,2000,21(2):12-15
    [96] 文群,徐尔尼,李曼,等.真菌对微量元素铁、锌、硒生物富集作用的研究[J].环境与开发,2000,15(3):3-4
    [97] 容,汤岳琴,王建华,等.固定化产黄青霉废菌体吸附铅与脱附平衡[J].环境科学,1998,19(4):72-75
    [98] 涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989,pp21-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700