几种材料对重金属Cu污染土壤的修复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染是土壤污染的主要类型之一,它们或者由植物吸收进入食物链,或者因渗漏作用而进入地下水,对人类和生态环境的健康发展造成了极大的威胁。因此,土壤重金属污染的修复治理是社会各界人士关心的热点和当今环境污染防治的重点问题,也是目前众多科学工作者关注的焦点,由于化学修复的操作较简单,效果明显,因此作为一种常见的修复方法得到了普遍应用。
     Cu既是环境污染的重金属元素,也是植物生长发育的必需微量营养元素之一,本课题以可变电荷红壤和恒电荷黄棕壤为供试土壤,以外源铜加入未污染红壤和黄棕壤中,在实验室人培污染红壤、黄棕壤和大冶自然污染红壤为供试土壤,选用了磷矿粉,高炉钢渣,高炉铁渣,Na-基膨润土,硅藻土以及各自的改性产物为钝化材料,以欧共体标准物质局(European Communities Bureau of Reference)提出了一种三步提取法(简称BCR法)为基础的改性BCR法对各形态Cu的变化进行综合分析,并从材料类型和用量、温度以及土壤的类型、pH值、介质浓度和淹水条件来分析对土壤重金属Cu形态转化的影响,旨在为土壤重金属Cu的修复提供理论和技术支持。试验结果表明:
     1.磷矿粉、膨润土、硅藻土对土壤重金属Cu有一定的钝化作用,但材料经不同的试剂改性后发现:改性磷矿粉在短期内对土壤Cu的吸附能力比原矿粉稍差,磷矿粉8%用量可溶态降幅为25.96%,残渣态增幅为82.55%,改性磷矿粉可溶态变化不显著,残渣态增幅达到77.07%。膨润土和硅藻土改性后对土壤Cu的钝化能力有了显著的提高,10%用量时可溶态降幅分别达到79.08%和47.52%,残渣态增幅为78.06%和72.85%。高炉钢渣比高炉铁渣对Cu的钝化能力有很大提高,钢渣10%用量时可溶态降幅为21.22%,残渣态增幅为29.67%。
     2.筛选后的改性磷矿粉A2、高炉钢渣B2、改性膨润土C2和改性硅藻土D2对土壤(R1、R2、R3)经过综合实验后发现,改性膨润土对三种土壤重金属Cu的钝化能力最好,在5%的处理下可溶态Cu降幅分别达到了84.47%、92.36%、91.02%,还原态降幅分别达到了93.24%、76.58%、91.57%,氧化态增幅分别为121.06%、299.19%、246.70%,残渣态增幅达到146.20%、140.72%、93.46%。极大程度降低了可溶态和还原态铜的含量,并增加了氧化态和残渣态铜的含量。
     3.土壤经外源铜人培30d后,恒电荷黄棕壤最接近自然污土中的Cu形态分布,但人培污土可溶态Cu含量偏高。四种材料对重金属Cu的钝化效果随着培养时间延长而增强。在5%改性膨润土的处理中可溶态含量是逐渐降低的,降幅为0.34%和16.16%,残渣态降幅和增幅分别为9.83%和38.96%,说明材料对Cu的吸附有一个缓冲和平衡过程。随着温度从室温增加到35℃,可溶态含量也呈现下降趋势,残渣态含量逐渐上升,0.1%用量时,土壤R1可溶态降幅为24.16%和3.02%;5%用量时残渣态Cu含量为45.95%、48.20%、49.86%,增幅为4.90%和3.44%。
     4.随着改性膨润土用量的增大,土壤的pH值都是逐渐升高的,而且在酸性土壤中,水分的添加,也会提高土壤的pH值。随着pH值的升高,三种土壤对重金属的吸附能力逐渐增强,可溶态Cu含量逐渐降低,残渣态Cu含量逐渐升高,变化幅度为R3>R2>R1,三种土壤在pH值达到6时,可溶态最大降幅分别为9.93%、17.69%、41.97%,残渣态最大增幅为11.49%、13.33%、15.76%,恒电荷土壤黄棕壤的变化幅度比可变电荷土壤大,说明在相同的条件下,恒电荷黄棕壤对Cu的吸附能力大于可变电荷红壤。在淹水后,土壤处于还原条件下,三种土壤的氧化态Cu含量较正常条件下升高,其他三个形态都呈现降低趋势,但变化幅度都较小
     5.随着NaCl离子浓度的增加,三种土壤中可溶态Cu含量逐渐增加,残渣态Cu含量逐渐降低,并且变化幅度为R3>R2>R1。在0.1mol·L-1时可溶态增幅达到最大,分别为6.31%、24.31%、34.55%,残渣态降幅达到最大,分别为3.47%、3.72%、4.84%。可见随着离子强度增大,Na+与Cu2+发生竞争吸附,恒电荷和可变电荷土壤对重金属Cu的吸附能力都减弱,但恒电荷土壤的降幅较大。而且发现随pH和离子浓度升高,人培污土变化幅度都较大,说明外源铜在土壤中的老化是一个漫长的阶段,在人培污土中各形态Cu都不稳定,容易随外界条件的变化而变化。
     综上而述,材料经过改性后,对土壤重金属Cu的钝化能力都一定的提高,在所选四种材料中,以DTC改性膨润土的钝化效果最好,室温下5%用量培养60d后,可溶态含量分别为2.52%、4.13%、2.55%,还原态含量为2.92%、3.49%、2.90%,氧化态含量为48.62%、44.26%、51.45%,残渣态含量分别为45.95%、48.12%、43.09%,很大程度固定了土壤中Cu。随着时间的延长、温度和pH值的升高,都可提高了材料对土壤中Cu的固定,而随着介质浓度的增加,则反之。
Heavy-metal pollution is a primary type of soil contamination. The heavy metals can enter into groundwater and food chain, or be absorbed by the plants directly, and lead a serious threat to ecological environment and people's health. Therefore, why to treat the soil heavy metal pollution becomes the focus of various scientific workers. Also, it is the hot topic of the community and the keypoint of environmental pollution control. Due to its obvious effect and simple operation, the chemical remediation technology has been widely used.
     Cu is one of the essential micronutrients of plants growth, and a kind of heavy metal elements of environmental pollution. The objective of this study is to explore Cu-contaminated-soil remediation with mineral materials. The variable charge soil-red soil and constant charge soil-yellow brown soil were selected, and were polluted with exogenous copper. The man-polluted soils and natural polluted soil were remediated with phosphate rock, blast furnace slag particles, blast furnace slag, Na-bentonite, diatomite and their modified products. The different forms of Cu were analyzed with the modified BCR extracting technology. The effects of materials type and dosage, temperature and soil type, pH, medium concentration and flooded condition on the form transformation of Cu in soil were discussed. The results show that:
     1. Phosphate rock, bentonite, diatomite had a certain passivation effects on Cu in soil. After modified by oxalic acid, the Cu adsorption ability of phosphate rock was poor than the original ore. When 8% dosage of phosphate rock was added into the polluted soils, content of soluble Cu decreased to 25.96%, residual Cu increased to 82.55%. However, comparing with the CK, the content of soluble Cu in soil did not vary, and the residual Cu increased to 77.07% with modified phosphate rock. The passivation effect of modified bentonite and diatomite on Cu in soil significantly increased. With 10% dosage of these materials, the soluble Cu decreased to 79.08% and 47.52%, residual Cu increased to 78.06% and 72.85%, respectively. The passivation ability of blast furnace slag was more than that of iron on Cu. When 10% dosage of steel slag applied, soluble state decreased to 21.22%, residual ones increased to 29.67%.
     2. Comprehensively comparing with the modified phosphate rock (A2), blast furnace slag particles (B2), modified bentonite (C2) and modified diatomite (D2), it was 3 best one. Application of 5% dosage of modified bentonite in soils, the soluble Cu reduced to 84.47%,92.36%,91.02%, reduced state to 93.24%,76.58%,91.57%, oxidation state to 121.06%,299.19%,246.70%, and residual stat to 146.20%,140.72%,93.46%, respectively. The content of soluble and reduced state copper greatly reduced, and the oxidation and residual state increased highly.
     3. When the exogenous copper was added into soil, after 30d, the Cu formation distribution of constant charge soil was close to that of natural soil, but in man-made Cu soil, the content of soluble Cu was higher. The Cu passivation ability of four materials increased as cultivating prolonged. Applied 5% modified bentonite, content of soluble modal was gradually decreasd to 0.34% and 16.16%, to 9.83% and 38.96% with residual state,respectively. It illustrated that Cu adsorption was a balanced process by materials. As the temperature increased from room temperature to 35℃, content of soluble Cu also declined, residual state rised gradually. With 0.1% dosage used, soluble state Cu decreased by 24.16% and 3.02%; when 5% dosage, residual Cu content was 45.95%,48.20%,49.86%, increased by 11.15% and 3.44%.
     4. With the increase of modified bentonite dosage, the pH three kinds soil increased gradually, and in acidic soils, water added also could improve the soil pH. As pH increased, heavy metal adsorption ability of three soils strengthened gradually. The content of soluble Cu gradually reduced, residual Cu increased gradually, as followed R3>R1>R2. When the pH of soils reached 6, soluble Cu droped to 9.93%,17.69%, 41.97%, residual Cu fell to 11.49%,13.33%,15.76%, respectively. But the variation of constant charge soilI was more than that of the variable charge soil, It could mean that under the same conditions, Cu adsorption ability of constant charge soil was stronger than that of variable charge soil. After flooded, in reductive condition, oxidation state Cu increased relatively to the normal conditions and the other three forms lessened, but all the amplitude change was small.
     5. When the medium concentrations of NaCl increased, content of soluble Cu increased gradually, and content of residual Cu gradually reduced, and the order is as follows:R1>R3>R2. When the NaCl concentration was 0.1mol·L-1, content of soluble Cu in three soils increased to the maximum,6.31%,24.31%,34.55%, respectively. The content of residual Cu reduced to the maximum 3.72%,3.47%, and 4.84%, respectively. It is clear that with ionic strength increase, Na+ could compete with Cu2+, the capabilities of Cu adsorption in constant and variable charge soil lowered, but the decline in constant charge soil was more than that of variable charge soil. And it was found that with pH and concentration of the NaCl increased, all the man-made polluted soil's variation amplitude were bigger. It could explain that the ageing process of exogenous copper in the soil was a long stage, and different forms Cu were unstable in the man-made polluted soil, easy to change with external conditions.
     To sum up, the materials modified are more powerful than the original materials on Cu in soil. The effect of modified bentonite with DTC on Cu passivation is the best one of the selected four kinds of materials. After 60d, at room temperature, when 5% dosage was added, content of soluble Cu is from2.52% to 4.13%, reduction state Cu is from 2.90% to 3.49%,2.90%, oxidation state Cu is from 44.26% to 51.45%, residual Cu content is from 43.09% to 48.12%. It stated that Cu can largely been fixed in soil. With extension of time, rise of temperature and pH, the content of Cu fixed in soil will increase, but with the increases of electrolyte concentration, the effect is just the opposite.
引文
1. 蔡志坚.γ-聚谷氨酸活化磷矿粉对Pb污染土壤铅形态及小白菜生长的影响.[硕士学位论文].武汉:华中农业大学图书馆,2010
    2. 陈怀满,郑春荣,涂从等.中国土壤重金属污染现状与防治对策.人类环境杂志,1999,28(2):130-134
    3. 陈杰华,王玉军,王汉卫,等.基于TCLP法研究纳米羟基磷灰石对污染土壤重金属的固定.农业环境科学学报,2009,28(4):645-648..
    4. 常红岩,孙百晔,刘春生.植物铜素毒害研究进展.山东农业大学学报,2000,31(2):227-230
    5. 陈世宝,朱永官.不同含磷化合物对中国芥菜(Brassica oleracea)铅吸收特性的影响.环境科学学报,2004,24(4):707-712
    6. 陈同斌.重金属在土壤中的污染.金属世界,1999,3:10-11.
    7. 陈晓婷,王果,张海潮.石灰泥炭对镉铅锌污染土壤上小白菜生长和元素吸收的影响.土壤与环境,2001,11(1):17-21
    8. 成杰民,俞协治.蚯蚓在植物修复铜、镉污染土壤中的作用.应用与环境生物学报,2006,12(3):352-35
    9. 杜彩艳,祖艳群,李元.pH和有机质对土壤中镉和锌生物有效性影响研究.云南农业大学学报,2005,20(4),539-543
    10.房世波,潘剑君,成杰民,等.南京市郊蔬菜地土壤中重金属含量的时空变化规律.土壤与环境,2002,11(4):339-342
    11.傅杨武,陈明君,潘杰,等.三峡库区消落带淹水后土壤性质变化的动态模拟.安徽农业科学,2010,38(20):10783-10784
    12.耿春女.菌根生物修复技术在沈抚污水灌区的应用前景.环境污染治理技术与设备,2002,3(7):51-55
    13.郭晓芳,刘云国,樊霆,等.改性新型Mn-硅藻土吸附电镀废水中铅锌的研究.非金属矿,2006,29(6):42-45
    14.郭观林,周启星,李秀颖.重金属污染土壤原位化学固定修复研究进展.应用生态学报,2005,16(10):1990-1996
    15.何宏平,郭九皋,谢先德,等.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究.矿物学报,1999,19(2):231-235
    16.何益波,李立清,曾清如.重金属污染土壤修复技术的进展.广州环境科学,2006,21(4):26-31
    17.胡春华,邓先珍,汪茜.土壤污染修复技术研究综述.湖北林业科技,2005,5(135):44-47
    18.姜理英,杨肖娥,石伟勇,等.植物修复技术中有关土壤重金属活化机制的研究进展.土壤 通报,2003,34(27):154-157
    19.姜晓刚,银州.Cu污染土壤化学修复的研究和展望.环境科学,2010,1(30):100-101
    20.蒋先军,骆永明,赵其国,等.重金属污染土壤的植物修复研究.土壤,2000,32(2):71-74.
    21.荆林晓,成杰民,于光金,等.土壤铜污染的影响因素及其修复技术研究.环境科学与管理,2008,10(33):47-49
    22.李福燕.剑麻与石灰对铜、镉污染土壤修复的研究.[硕士学位论文].海南:华南热带农业大学图书馆,2007
    23.李志博,骆永明,宋静,等.土壤环境质量指导值与标准研究Ⅱ.污染土壤的健康风险评估.土壤学报,2006,43:142-151
    24.林爱军,张旭红,苏玉红,等.骨炭修复重金属污染土壤和降低基因毒性的研究.环境科学,2007,28(2):232-237
    25.刘军,谢吉民,初亚飞,等.土壤中铜污染研究进展.安徽农业科学,2008,36(17):7423-7424,7470
    26.刘甜田,何滨,王亚韩,等.改进BCR法在活性污泥样品重金属形态分析中的应用.分析试验室,2007,26(1):17-20
    27.刘永红,姜冠杰,蔡志坚,等.低分子量有机酸对三种中低品位磷矿粉的活化.土壤资源持续利用和生态环境安全——中国土壤学会第十一届二次理事扩大会议暨学术会议论文集,2009,11:477-485
    28.林云青,章钢娅,龚华,等.添加钠基蒙脱石对重金属污染红壤的影响.安徽农业科学,2009,37(21):10090-10092
    29.娄燕宏,诸葛玉平,刘长庆,等.蘑菇渣和鸡粪对土壤外源铜形态变化的影响.水土保持学报,2009,23(2):179-182
    30.罗成玉,司友斌,刘小红.改性膨润土对废水中Cu2+、Zn2+去除效果的研究.安徽农业大学学报,2007,34(1):34-39
    31.骆永明.金属污染土壤的植物修复.土壤,1999,5:261-265
    32.马勇,王恩德,邵红.膨润土负载壳聚糖对Cu2+的吸附作用.安全与环境学报,2005,1(5):41-43
    33.倪才英,陈英旭,骆永明.土壤-植物系统铜污染与修复的研究进展.浙江大学学报:农业与生命科学版,2003,29(3):237-243
    34.彭红云,杨肖娥.矿产与粮食复合主产区土壤污染的生物修复与生态重建.园艺学报,2005,32(2):278-285
    35.彭珊茁,胡元,张杰,等.职业接触汞工人肾脏早期损害指标的探讨.新世纪预防医学面临的挑战——中华预防医学会首届学术年会论文摘要集;2002,2:428
    36.宋静,钟继承,吴龙华,等.EDTA与EDDS螯合诱导印度芥菜吸取修复重金属复合污染 土壤研究.土壤,2006,38(5):619-625
    37.宋玉芳,周启星宋雪英,等.土壤环境污染的生态毒理学诊断方法研究进展.生态科学,2002,21(2):182-189
    38.孙卫玲,倪晋仁.泥沙吸附重金属研究中的若干关键问题.泥沙研究,2002,6:53-59
    39.唐翔宇,朱永官,陈世宝Invitro法评估铅污染土壤对人体的生物有效性.环境化学,2003,22(5):503-506
    40.滕云,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展.土壤与环境,2002,11(1):85-89
    41.王汉卫,王玉军,陈杰华,等.改性纳米碳黑用于重金属污染土壤改良的研究.中国环境科学,2009,29(4):431-436
    42.王焕校.污染生态学.北京:高等教育出版社,2000:188-213.
    43.王秀丽,徐建民,谢正苗,等.重金属铜和锌污染对土壤环境质量生物学指标的影响.浙江大学报,2002,28(5):190-194
    44.王秀丽,徐建民,姚槐应,等.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响.环境科学学报;2003,l(23):22-27
    45.王亚雄,郭瑾珑,刘瑞霞.微生物吸附剂对重金属的吸附特性.环境科学,2001,22(6):72-75
    46.韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001,21(7):1197-1203
    47.吴龙华,骆永明,黄焕忠.铜污染土壤修复的有机调控研究Ⅰ.可溶性有机物和EDTA对污染土壤的释放作用.土壤,2000,32(2):62-70.
    48.吴平霄.黏土矿物材料与环境修复.北京:化学工业出版社,2004:8-23
    49.熊建军,董长勋.pH值对水稻土Cu2+静电吸附与专性吸附的影响.哈尔滨贸易大学学报(自然科学版)2008,3(24):309-312
    50.徐明岗,李菊梅,张青.pH对黄棕壤重金属解吸特征的影响.生态环境,2004,13(3):312-315
    51.徐明岗,曾希柏,李菊梅.pH对砖红壤和黄棕壤Cu2+吸附与解吸的影响.土壤通报,2005,3(21):161-164
    52.徐明岗,张青,李菊梅.土壤锌自然消减的研究进展.生态环境,2004,13(2):268-270
    53.杨维,张宏波,郭海霞,等.一种修复Cd、Cu污染土壤的复合淋洗剂的应用研究.沈阳建筑大学学报(自然科学版),2008,24(5):840-844
    54.杨霞.有机-无机复合体对土壤中Cu固定能力的研究.[硕士学位论文].济南:山东师范大学图书馆,2008
    55.杨元根,Peterson E, Campbell C. Biolog方法在区分城市土壤与农村土壤微生物特性上的应用.土壤学报,2002,39(4):582-589
    56.叶孟杰.土壤中重金属污染的修复技术.黑龙江环境通报,2006,30(3):83-84.
    57.余贵芬,蒋新,吴汉涛,等.镉、铅在粘土上的吸附及受腐殖酸的影响.环境科学,2002,22(5):109-112
    58.于红艳,奚立民,王仙菊.腐植酸对固废拆解地重金属污染土壤修复效果的研究.安徽农业科学,2008,36(23):10154-10155
    59.张从,夏立江.污染土壤生物修复技术.北京:中国环境科学出版社,2000:50-59
    60.张茜,徐明岗,张文菊,等.磷酸盐和石灰对污染红壤与黄泥土中重金属铜锌的钝化作用.生态环境,2008,18(3):1037-1041
    61.张从军,甘义群,蔡鹤生.利用钢渣处理含铜废水的试验研究.环境科学与技术,2005,28(1):85-86
    62.张福锁.环境胁迫与植物根际营养.北京:中国农业大学出版社,1997:210-244
    63.张汉波,施文,于春蓓,等.水分和氧气对铅锌矿渣中重金属耐受细菌活性的影响.农业环境科学学报,2004,23(1):90-93
    64.张会民,吕家珑,徐明岗,等.土壤性质对锌吸附影响的研究进展.西北农林科技大学学报(自然科学版),2006,34(5):114-118
    65.张金洋,王定勇,石孝洪.三峡水库消落区淹水后土壤性质变化的模拟研究.水土保持学报,2004,18(6):120-123
    66.张青,李菊梅,徐明岗,等.改良剂对复合污染红壤中锅锌有效性的影响及机理.农业环境科学学报,2006,25(4):861-865;
    67.张淑香,姚宇卿,周勇,等.干旱条件下氮、磷水平对土壤锌、铜、锰、铁有效的影响.植物营养与肥料学报,2001,7(4):391-396;
    68.张晓熹,罗泉达,郑瑞生,等.石灰对重金属污染土壤上镉形态及芥菜镉吸收的影响.福建农业学报,2003,18(3):151-154
    69.周宇.冶金钢渣在废水处理中的研究进展及应用.现代矿业,2009,25(9):11-14
    70.周启星,宋玉芳.污染土壤修复原理与方法.北京:科学出版社,2004:32-34
    71.朱一民,魏德洲Mycobacterium phlei菌对重金属Pb2+, Zn2+, Ni2+, Cu2+的吸附规律.东北大学学报(自然科学版),2003,24(1):91-93
    72.邹献中,徐建民,赵安珍,等.离子强度和pH对可变电荷土壤与铜离子相互作用的影响.土壤学报,2003,40(6):845-851
    73. Abollinea O, Acetob M, Malandlrion M, et al. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res,2003,37:1619-1627
    74. Agbenin J O, Atin A M. Copper sorption characteristics and activity in a savanna acid soil from Nigeria. Water, Air, Soil Pollut,2003,150:43-58
    75. Al-degs Y, Khraisheh M A, Tutunji M F. Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Res,2001,35(15):3724-3728
    76. Arias M, Barral M T, Mejuto J C. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere,2002,48(10):1081-1088
    77. Basta N, Gradwohl R, Snethen K, et al. Chemical immobilization of lead, zinc and cadmium in smelter-contaminated soils using biosolids and rock phosphate. J Environ Qual,2003, 30:1222-1230
    78. Besnord E, Chenu C, Robert M. Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils. Environ Pollut,2001,112: 329-227
    79. Bolan N S, Adriano D C, Natesan R et al. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J Environ Qual,2003,32:120-138
    80. Bowman R S, O'Connor G A. Control of nickel and strontium sorption by free metal ion activity. Soil Sci Soc A J,1982,46:933-936
    81. Brun L A, Maillet J. Hinsinger P et al. Evaluation of cupper availability to plants in copper-contaminanted vineyard soils.Environ Pollut,2001,111:293-302
    82. Cao R X, Lena Q M. Chen M et al. Phosphate-induced metal immobilization in a contaminate site. Environ Pollut,2003(122):19-28
    83. Chatterjee A K, Biswapatimandal, Mandal L N, Interaction of nitrogen and potassium with zinc in submerged soil and lowland rice. Indian Soc Soil Sci,1996,44(4):792-794
    84. Choudhary M, Jetley U K, Khan M A, et al. Effect of heavy metal stress on praline,malondialdehyde,and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Safety,2007,66:204-209
    85. Ciccu R, Ghiani A,Sercl A et al. Heavy metal immobilization in the mining-contaminted soil using various industrial wastes, Miner Eng,2003,16(3):187-192
    86. Cunningham S D, Berti W R, Huang J W. Phytoremediation of contaminated soils. Trends Biotechnol,13:393-397
    87. Dho NY, Raelee S. Effect of Temperature on Single and Competitive Adsorptions of Cu (Ⅱ) and Zn (Ⅱ) onto Natural Clay. Environ Monit Assess,2003,83(2):177-203
    88. El-Batouti M, Sadek O M, Assaad F F. Kinetics and thermodynamics studies of copper exchange on Na-montmorillonite clay mineral. J Colloid Interface Sci,2003,259(2):223-227
    89. Garcia S, Alastuey A, Querol X. Heavy metal adsorption by different minerals:application to the remediation of Polluted soil. Sci Total Environ,1999,242(3):179-188
    90. Garcia, Misagaga J, Page A L. Influence of ionic strength and inorganic complex formation on the sorption of trace amounts of Cd by montmorillonite. Soil Sci Soc A J,1976,40:658-663
    91. Harter RD, Naidu R. An assessment of environmental and solution paramrter impact on trace-metal sorption by soils. Soil Sci. Soc. A. J,2001,65(3):597-612
    92. Hu H Q, Tan C Y, Cai C F,et al. Availability and residual effects of phosphate rocks and inorganic P fractionation in a red soil of Central China. Nutr Cycling Agroec,2001,59(3):251-258
    93. Imura, K. Heavy metal problems in paddy soils:in "Heavy metal pollution in soils of Japan".eds. Kitagishi, K. and I. Yamane. Jap Sci Soc Press, Tokyo,1981:37-50
    94. Keren R, O'Connor G A. Strontium adsorption by non-calcareous soils-exchangeable ions and solution composition effects. Soi Sci.1983,135:308-315
    95. Khraisheh M A, Al-degs Y S, Mcminn W A. Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem Eng J,2004,99(2):177-184
    96. Kim K Y, McDonald G A and Jordan D. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fert Soils,1997,24:347-52
    97. Kllox A S, Seaman J C, Meneh M J, et al. Remediation of metal-and radionuclides-contaminated soils by in-situ stabilization techniques. In:Iskandar I K(Ed). Environ Res Metals-Contaminated soils,2000, PP.21-60. Lewis Publishers:New York
    98. Krishna G B, Susmita S G. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite:A review. Adv Colloid Interface Sci,2008,140:114-131
    99. Kucharskil R, Sas N, MaI S K et al. The use of indigenous plant species and calcium PhosPhate for the stabilization of highly metal-Polluted sites in southern Poland. Pla Soi,2005,273:291-305
    100. Kumar N P B A, Dushenkov V, Motto H and Raskin I. Phytoextraction:the use of plants to remove heavy metalsfrom soils. Environ Sci Technol.1995,29,1232-1238
    101. Lin Q. Rhizospheric Medhanism of Phytore-mediation in Heavy Metals Polluted Soil. Z J U, 2002 (in Chinese)
    102. Luo Y M, Yan W D. Influence of Cu-Zn complex contamination and y-irradiation on barley and rye growth. Soil,2000,2:95-98.(in Chinese)
    103. Ma L Q, Rao G N. Effeets of PhosPhate rock on sequential chemical extraction of lead in contaminate soils. J Environ Qual,1997,26:788-794
    104. Mattigod SV, Gibali AS, Page AL Effect of ionic strength and ion pair formation on the adsorption of nickel by kaolinit. Clays Clay Miner.,1979,27:411-416
    105. Padmanabham M. Adsorption-desorption behavior of Cu2+ at the goethite-solution interface. Aust J Soi Res,1983,4(21):309-320
    106. Qi Y M, Logan T J, Traina S J. Lead immobilization of from aqueous solutions and contaminated soils using phosphate rocks. Environ Sci Technol.1995,29:1118-1126
    107. Rauret G, Lopez-Sanchez J, Sauquillo A et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new soil and sediment and soils reference materials. Environ Monit,1999,1:57-60
    108. Sebastien S, Mcbride M B, Norvell W A. Copper solubility and speciation of in situ contaminated soils:Effects of copper level, pH and organic matter. Water, Air, Soil Pollut,1997 (100):133-149
    109. Shuman L M. Effect of ionic strength and anions on zinc adsorption by two soils. Soi Sci Soc A J, 1986,50:1438-1442
    110. Sims J L, Patrick W H.the distribution of micronutrients cations in soils under conditions of varying of redox potential and pH. Soi Sci Soc A J,1978,42:258-262
    111. Stathi P, Litina K, Gournis D, et al. Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. Colloid Interface Sci,2007,316(2):298-309
    112. Strawn D G, Palmer N E, Furnare L J et al. Copper sorption mechanisms on smectites. Clays Clay Miner,2004,52:321-323
    113. Swallow KC, Hume D N, Morel F M M. Sorption of copper and lead by hydrous ferric oxide. Environ Sci Technol.1980,14:1326-1334
    114. Wei C Y, Chen T B. Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad. Acta Ecol Sin,2001,21(7):1196-1203.(in Chinese).
    115. Wu Z H, Gu Z M et al. Effects of organic acids on adsorption of lead onto montmorillonite, goethite and humic acid. Environ Pollut,2003,112:469-475
    116. Xu Y, Schwartz F W, Trainas J. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sci Technol,1994,28:1472-1480
    117. Yang M J. Mechanisms of copper hyperaccumulation in Elsholtzia splendensNaki. Z J U,2001. (in Chinese)
    118. Yruela I. Copper in plants. Br J Pla Phys,2005,17:145-156
    119. Zheng J W. Effect of Simuiated Acid rain on Adsorption and Desorptinn of copper by Paddy Soils in Taibu Lake region. Acta Ped Sin,2001,38(3):333-340. (in Chinese).
    120. Zorpas A A, constantinides T, Vlyssides A G. Heavy metal uptake by natural zeolite and metal partitioning in sewage sludge compost. Bioresour Technol,2002,72:113-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700