非致冷红外焦平面探测器系统中若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热成像技术又称红外夜视技术,是构成夜视技术的主要技术之一。这里指的是所谓被动红外夜视技术,主要借助于目标自身发射的红外辐射,通过将红外光谱区的信息转换为人眼可识别的可见光信号,实现黑暗条件下的观察与跟踪。热成像技术的核心器件是红外探测器,其中非致冷型的红外探测器以其价格、体积和重量方面的优势在民用、工业和军事领域中获得广泛的应用。
     本文针对红外焦平面探测器系统在包括夜间及野外环境下的实际应用的需要开展研究,给出一个非致冷红外焦平面探测器系统及其电源管理系统的设计。论文研究的内容包括非致冷型红外焦平面探测器的信号处理电路、红外焦平面非均匀性的校正方法、光伏电源管理系统最大功率点跟踪控制系统、光伏电池充电控制器系统、自适应伪连续导通模式控制的单电感多(双)输出Buck控制器系统等,在深入探讨和分析与之相关的原理和方法基础上,提出了该探测器系统的总体构成,确定了相应的控制策略,设计与研制了相应的电路芯片。测试与仿真的结果表明主要的设计目标均已实现。
     本文的主要研究工作和创新成果在于:(1)在深入研究电阻测辐射热计、热电探测器、铁电测辐射热计和温差电探测器等几种测辐射热计性能的基础上,针对采用热敏电阻测辐射热计方案,提出相应的版图工艺流程和探测器的主要性能指标。在此基础上,在Spectre环境下,对320×240像素单元面阵的信号处理电路进行设计和仿真验证,电路包括数字控制部分和像元电路、盲元电路、积分器及采样电路等模拟控制部分,特别对信号处理电路中的噪声问题进行了深入分析。系统仿真结果符合预期,芯片进行了流片试制和测试验证,并对结果进行了分析。
     (2)在总结两点温度定标法、恒定统计平均法、高通滤波校正算法、人工神经网络法、基于场景的代数算法和基于干扰抵消原理的自适应算法等红外焦平面探测器非均匀性校正算法的基础上,提出自适应定标非均匀性校正算法,该方法能根据环境温度的变化,实时调整非均匀性校正的增益系数和偏移系数,经matlab仿真验证表明所预期的目标均可实现。
     (3)针对其移动应用的特点,给出一个可用光伏电池供电的红外焦平面探测器系统电源管理系统(包括能量获取、充电控制和能量分配三个部分),重点解决了光伏电池的最大功率点跟踪和蓄电池组的充电控制。在分析研究固定电压法、干扰观测法和电导增量法等光伏电池最大功率点跟踪策略的基础上,提出集成固定电压法和干扰观测法两种最大功率点跟踪算法的光伏电池最大功率点跟踪策略;针对红外焦平面探测器系统实际工作条件和蓄电池充电控制的需要,提出四阶段充电方式的充电控制策略。上述控制芯片经流片试制和测试,结果符合预期。此外,针对系统需要多电源电压供电的实际情况,提出一种单电感多输出Buck控制器的电路结构,其中采用伪连续导通模式(PCCM)控制方案以防止交叉干扰并实现较大的驱动能力,且能根据输出负载变化实时调整充电电流等级,实现自适应控制。
     整篇论文对非致冷红外焦平面探测器系统及其电源管理系统中的若干关键技术进行深入研究和讨论,从系统构成、电路设计、控制策略与算法到后端实现等均进行了细致的工作。并取得了一些好的结果,为非致冷红外焦平面探测器系统的研究与实用化积累了有益的经验。
The thermal imaging technology, or infrared (IR) imaging technology, is one of the most important night vision technologies. By converting the information in infrared band into the naked eye recognizable one, or visible signal, it can realize observing and tracking in the dark conditions. The core device in the thermal imaging technology is the IR detectors. Among them, the uncooled infrared detector has got broad application in the civil, industrial and military areas due to its advantages in price, volume and weight.
     In the light of the night or outdoors application, this dissertation proposed an uncooled infrared focal plane detector system and its power management system. In this system, the following parts have been researched and discussed as the key techniques including the signal processing circuit of uncooled infrared focal plane detector, the non-uniformity correction method of infrared focal plane, the maximum power point tracking (MPPT) control system of photovoltaic cells, the battery charger control system of photovoltaic cells, and the single inductor multiple (dual) outputs (SIDO) Buck converter controller with self-adapted pseudo continuous conduction modes (PCCM). After comprehensive investigation and thorough analysis, the detector system's structure has been proposed, and the control scheme has been decided. Circuit chips have been designed, processed, and tested, and the test results agree with the expects.
     The main works and innovation achievements are shown as follows.
     (1) Based on the research of infrared detect resistor, pyroelectric bolometer, ferroelectric bolometer, and temperature differential electric detector, the scheme of using infrared sensitivity resistor has been proposed, and the correspondent floorplan process and specification of detector have also been proposed. Then the 320X240 pixels array signal processing circuit has been designed and simulated, the circuit of which including digital control part and active pixel signal process circuit, blind pixel signal process circuit, integrator circuit, sampling circuit and etc. The noise issue has been discussed deeply. The simulation results agree with what has been expected for. The chip has been processed in HHNEC 0.5um process, the test result has been analyzed.
     (2) Based on the summary of the two points temperature correction method, the constant statistic average method, the high pass filter correction method, the artificial neural network method, the algebra algorithm based on scene, and the self-adapted algorithm based on the interference cancelled principle, a new self-adapted correction algorithm of non-uniformity has been proposed. This method can adjust the gain factor and offset factor of the non-uniformity correction according with the variation of temperature. The test results have been verified by simulation results in Matlab.
     (3) In the light of mobile application of this system, the power management system of infrared focal plane detector has been proposed which can utilize the photovoltaic energy. The power management system includes three parts:energy acquisition part, charging control part and energy assignment part. The maximum power point tracking of photovoltaic cells and charging control of batteries have been solved as important issues. Based on the analysis of three MPPT control policy, which are constant voltage method, interference observation method, and the conductance increment method, a new MPPT control policy which integrates the two methods of constant voltage method and interference observation method, has been proposed. This chip has been processed and tested, the function has been achieved. In the light of the working condition of infrared focal plane detector and the battery charge control, a new battery charge control circuit has been brought up, which utilizes four phases charge method. The chip has also been processed and tested, the test results verifies the design idea. Besides, in the light of multiple power supplies of the infrared focal plane detector, a new Buck converter controller with single inductor multiple (dual) outputs (SIDO) structure has been proposed. To prevent the crosstalk and realize large drive ability, the pseudo continuous conduction mode scheme has been proposed. And the load current level can be adjusted according with the load conditions, therefore the self-adapted control has been realized.
     This dissertation has given a deep research and analysis of the important technology of the uncooled infrared focal plane detector system and its power management. The research work includes system constituted, circuit designed, control scheme with algorithm and back-end realization. The good results have been achieved. The accumulated experience will give positive impetus to the research and realization of uncooled infrared focal plane detector system.
引文
[1]常本康,蔡毅.红外成像阵列与系统[M].北京:科学出版社,2006.
    [2]江勤,姜胜林,张海波,et al.非致冷红外探测器用热释点电材料的研究和进展[J].红外与激光工程.2006,35:127-132.
    [3]吴永生.非致冷红外焦平面研制现状和开发前景[C].第十五届全国红外科学技术交流会全国光电技术学术交流会论文集(上).2001:63-69.
    [4]雷亚贵,王戎瑞,陈苗海.国外非致冷红外焦平面阵列探测器进展[J].激光与红外.2007,37(9):801-805.
    [5]刘世建,徐重阳,曾祥斌.非致冷红外焦平面阵列用探测材料[J].电子元件与材料.2002,21(10):22-24.
    [6]Masafumi K. MEMS-based uncooled infrared focal plane arrays [C]. The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANDUCERS & EUROSENSORS'07.2007:1357-1360.
    [7]徐峥谊.微机械热电堆红外探测器[D].博士学位论文.上海:中国科学院上海微系统与信息技术研究所,2002.
    [8]Masashi U., Yasuhiro K., Takaki S., et al.640×480 pixel uncooled infrared FPA with SOI diode detectors [C]. Infrared Technology and Applications ⅩⅩⅪ, Proc, SPIE, Vol.5783. 2005,53(8):2683-2686.
    [9]Selim E., M. Yusuf T., Deniz S., et al. A low-cost small pixel uncooled infrared detectors for large focal plane arrays using a standard CNOS process [C]. Infrared Detectors and Focal Plane Arrays Ⅶ, Proc, SPIE, Vol.4721.2002:111-121.
    [10]Scott R. H., Gregory M., Jiang L. J., et al. High sensitivity uncooled microcantilever infrared imaging arrays [C]. Infrared Technology and Application ⅩⅩⅫ, Proc, SPIE, Vol.6206. 2006.
    [11]董凤良,焦斌斌,张青川,et al.光学读出非致冷红外成像的最新进展[J].实验力学.2007,22(3-4):401-406.
    [12]Li C. B., Jiao B. B., Shi S. L., et al.IR imaging at room-temperature using substrate-free micro-can tilever array [C]. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems.2006:422-425.
    [13]冯飞.微机械法布里-珀罗干涉型光学读出非致冷热成像技术研究[D].博士学位论文.上海:中国科学院上海微系统与信息技术研究所,2004.
    [14]冯飞,焦继伟,熊斌,et al.一种新颖的基于MEMS技术的光读出热成像系统性能分析与制作[J].红外与毫米波学报.2004,23(2):125-130.
    [15]郭方敏,et a1.双材料微悬臂梁非致冷红外探测器成像系统[J].红外.2004,11:14-20.
    [16]Hunter S. R., et al. High-sensitivity uncooled microcantilever infrared imaging arrays [J]. SPIE.2003,5074:469-480.
    [17]Lavrik N. V., et al. Uncooled infrared imaging using bi-material microcantilever arrays [J]. SPIE.2006,6206.
    [18]Wu M., et al. Novel low-cost uncooled infrared camera [J]. SPIE.2005,5783:496-505.
    [19]A. M. Filachev, et al. Infrared focal plane arrays:state of the art and development trends [J]. SPIE.2003,5126:52-85.
    [20]曹治国,魏洛刚,张天序,et al.基于神经网络法的焦平面器件非均匀性校正技术研究[J].红外与激光工程.2000,29(1):65-68.
    [21]胡晓梅.红外焦平面探测器的非均匀性与校准方法研究[J].红外与激光工程.1999,28(3):9-12.
    [22]Olivier R., Stephane B., Pierre B.. N on uniformity correction and thermal drift compensation of thermal infrared camera [J]. SPIE.5405:294-302.
    [23]胡晓梅.红外焦平面探测器的非均匀性与校准方法研究[J].红外与激光工程.2000,29(2):19-21.
    [24]Volodymyr N. B., Valery V. F.. Nonuniformity correction in infrared imaging systems [J]. SPIE.4148:273-278.
    [25]李颖文.320×240凝视型非制冷红外热像仪研究[J].华中理工大学学报.2000,28(11):8-50.
    [26]Hayat M. M., Torres S., Armstrong E. E., et al. Statistical algorithm for non-uniformity correction in focal plane arrays [J]. Applied Optics.38:772-780.
    [27]张小军,赵亦工.基于神经网络的红外焦平面非均匀性校正的新算法[J].红外技术.2004,26(2):44-47.
    [28]Torres S., Hayat M. M., Armstrong E. E., et al. A Kalman-filtering approach for nonuniformity correction in focal plane array sensors. SPIE.4030:196-203.
    [29]Torres S. N., Esteban M. V, Rodrigo A. R., et al. Adaptive scene-based nonuniformity correction method for infrared focal plane arrays [J]. SPIE.5076:130-139.
    [30]电源管理产品呈现五大发展趋势[J].电源技术应用.2008,11(6):10.
    [31]胡兴军.电源管理的发展趋势[J].大众用电.2005,(11):19-20.
    [32]电源和电源管理技术发展趋势访谈录[J].电子产品世界.2005,(6):2-5.
    [33]电源和电源管理技术发展趋势[J].电子产品世界.2009,(7):15-21.
    [34]石定寰,赵玉文,吴达成.大力发展太阳能光伏发电关键材料力促我国实现节能减排目标[J].新材料产业.2010,(3):3-10.
    [35]太阳能光伏产业发展专题研究[J].电子工业专用设备.2008,159(4):19-27.
    [36]李忠贤,李蓉萍,初玉玲.我国光伏产业发展概况及思考[J].赤峰学院学报.2009,25(5):63-64.
    [37]Abu T., Jamil M. S.. Development of an analog maximum power point tracker for photovoltaic pane [C]. IEEE Power Electronics and Drivers Systems 2005 International Conference. PEDS 2005.2006,1:251-255.
    [38]陈维,沈辉,邓幼俊.太阳能光伏应用中的储能系统研究[J].蓄电池.2006,(1):21-27.
    [39]赵异波,何湘宁,丁劲松.蓄电池充电技术研究[J].电源技术应用.2001,(11):572-574.
    [40]朱小同,赵桂先.蓄电池快速充电的原理与实践[M].北京:煤炭工业出版社,1996.
    [41]Edwards D. B., Dayton T. C. Improving the performance of a high power lead-acid battery with paste additives [C]. International Conference on Lead-acid Batteries.1999:208-226.
    [42]王恩,杨海柱,陈广华.独立光伏发电系统中蓄电池充电方法探究[J].电子质量.2010:(6):21-23.
    [43]Barrado A., Olias E.. Types of PWM-PD multiple output DC/DC converters [C]. Proceedings of the 2002 IEEE International Symposium.2002,3:26-29.
    [44]Barrado A., Olias E.. Multiple output DC/DC converters based on PWM-pulse delay control (PWM-PD) [C]. Power Electronics Specialists Conference, PESC'99,30th Annual IEEE. 1999.
    [45]Barrado A., Olias E.. Control-loop modeling of the PWM-PD multiple output DC/DC converters [C]. Power Electronics Specialists Conference, PESC'00,31st Annual IEEE. 2000,1:18-23.
    [46]Li T. Single inductor multiple output boost regulator [P]. U. S. Patent 6075295,2000.
    [47]Johan Huijsing. Operational Amplifiers Theory and Design [M]. Boston:Kluwer Academic Publishers,2001.
    [48]Michelle Y.运算放大器的发展体现了电子技术的进步[J].电子产品世界.2008,(8):52-54.
    [49]Erroll D..运算放大器技术几大趋势[J].电子设计技术.2006,(2):84-86.
    [50]黎昕,郑宏军.集成运算放大器的选择策略与应用技术[J].仪表技术.2005,(3):67-68.
    [51]Tseng Y. K., Liu K. S., Jiang J. D., et al. Influence of buffer materials on the pyroelectric properties of (Pb0.19La0.01) TiO3 thin films [J]. Jpn J appl Phys.1998,37:6552-6555.
    [52]Tseng Y. K., Liu K. S., Jiang J. D., et al. Pyroelectric properties of (Pbl-xLax) TiO3 thin films deposited using SrRuO3 as a buffer layer [J]. Appl Phys Lett.1998,72(25):3285-3287.
    [53]刘梅冬,陈实,曾亦可,et al.铅基钙钛矿结构铁电薄膜的介电及热释电性能研究[J].功能材料.2000,31(1):100-101.
    [54]Batra A. K., Aggarwal M. D., Lal R. B.. Growth and characterization of doped DTGS crystals for infrared sensing devices [J]. Materials Letters.2003,57(24):3934-3948.
    [55]Mcewen R. K., Manning P. A.. European uncooled thermal imaging sensors [J]. Proceedings of SPIE.1999,698(3):322-337.
    [56]江勤,姜胜林,张海波,et al.非致冷红外探测器用热释电材料的研究进展[J].红外与激光工程.2006,35:127-132.
    [57]ODA N., Tanaka Y., Sasaki T., et al. Performance of 320×240 bolometer-type uncooled infrared detector [J]. NEC Res & Develop.2003.44(2):170-174.
    [58]Rogalski A. Review infrared detectors:status and trends [J]. Progress in Quantum Electronics. 2003,27(2):59-210.
    [59]石岩,张天序,王岳环,et al.红外焦平面非均匀性两点校正法分析及FPGA实现[J].激光与红外.2005,35(2):100-103.
    [60]Perry D. L..2-D:a new focal plane array figure of merit [C]. SPIE.1992,1762:308-312.
    [61]Dawson J. A., Borg E. J., Duykers G. L.. Proposed standard for IRFPA non-uniformity measurements [C]. SPIE.1994,2224:62-71.
    [62]Mooney J. M., Shepherd F. D.. Characterizing IRFPA nonuniformity and IR camera spatial noise [J]. Infrared Physics & Technology,1996,37:595-606.
    [63]陈锐,谈新权.红外图像非均匀性校正方法综述[J].红外技术.2002,24(1):1-3.
    [64]甄德根,蒋亚东,吴志明,et al.基于Wiener滤波理论的非致冷红外焦平面非均匀校正新算法[J].红外技术.2005,27(4):311-313.
    [65]Scrilbner D. A., Sarkady K. A., et al. Nonuniformity correction for staring IR focal plane array using seen based techniques [C]. SPIE.1990,1308:224-235.
    [66]徐田华,赵亦工.红外焦平面阵列非均匀校正算法的研究[J].遥测遥控.2004,25:44-47.
    [67]Scribner D. A., Sarkady K. A., Kruer M. R., et al. Adaptive retina-like preprocessing for imaging detector arrays [C]. IEEE International Conference on Neural Networks.1993: 1955-1960.
    [68]张小军,赵亦工.基于神经网络的红外焦平面非均匀校正的新算法[J].红外技术.2004,26(2):44-47.
    [69]Russel C. H., Majeed M. H., Earnest A., et al. Scene-based nonuniformity correction with video sequences and registration [J]. Applied Optics.2000,39:1241-1250.
    [70]Havat M M., Torres S. N., Armstrong E. E., et al. Statistical algorithm for nonuniformity correction in focal-plane arrays [J]. Applied Optics.1999,38:772-780.
    [71]赵争鸣,刘建政,孙晓瑛,袁立强.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [72]Enslin J. H. R., Wolf M. S., Snyman D. B., et al. Integrated photovoltaic maximum power point tracking converter [J]. IEEE Transactions on Industrial Electronics.1997,44(6): 769-773.
    [73]D'Souza N. S., Lopes L. A. C, Liu X.. An intelligent maximum power point tracker using peak current control [C]. The 36th Annual IEEE Power Electron. Specialist Conference.2005; 172-177.
    [74]Hohm D. P., Ropp M. E.. Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed [C]. Photovoltaic Specialists Conference.2000:1699-1702.
    [75]Femia N., Petrone G., Spagnuolo G., et al. Optimizing sampling rate of P&O MPPT technique [C]. Power Electronics Specialists Conference,2004.2004:1945-1949.
    [76]Femia N., Petrone G., Spagnuolo G., et al. Optimizing of perturb and observe maximum power point tracking method [J]. IEEE Transaction on Power Electronics.2005,20:963-973.
    [77]张超.光伏并网发电系统MPPT及孤岛检测新技术的研究[D].博士学位论文.杭州:浙江大学,2006.
    [78]Trishan E., Patrick L. C.. Comparison of photovoltaic array maximum power point tracking techniques [J]. IEEE Energy Conversion.2007,22(2):439-449.
    [79]陈维,沈辉.太阳能光伏应用中的蓄电池研究[J].电池.2006,36(1):67-68.
    [80]包有富.充电模式对阀控铅酸蓄电池循环寿命的影响[J].电池工业.2005,10(5):278-281.
    [81]田黎明,王连军,宋凌志.基于UC3909的UPS蓄电池充电器[J].计算机工程与设计.2007,28(13):32-43.
    [82]伊晓波.电动自行车用铅酸蓄电池质量分析及标准的制定与研究[J].蓄电池.2001,(4):30-33.
    [83]Ma D. S., K.i W. H., Tsui C. Y., et al. Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode [J]. IEEE Journal of Solid-State Circuits.2003,38(1):89-100.
    [84]Ma D. S., Ki W. H., Tsui C. Y. A pseudo-CCM/DCM SIMO switching converter with freewheel switching [C]. IEEE Int. Solid-State Circuits Conference Dig. Tech.. 2002,2:390-391.
    [85]Erickson R. W., Maksimovic D.. Fundamentals of Power Electronics 2nd edition [M]. Norwell: Kluwer Academic Publishers,2001.
    [86]Lee, C. F., Mok. P. K. T.. A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique [J]. IEEE Journal of Solid-State Circuits.2004.39(1):3-14.
    [87]Paul R. G.. Analysis and design of analog integrated circuits [M]. John Wiley&Sons,2001.
    [88]Boscaino V., Livreri P., Marino F., et al. Current-sensing technique for current-mode controlled voltage regulator modules [J]. Microelectronics Journal.2008,39(12): 1852-1859.
    [89]Hassan P. F., Gabriel A.. Current Sensing Techniques for DC-DC Converters [J]. Circuits and Systems.2002,2: 577-580.
    [90]Behzad R.. Design of analog CMOS integrated circuits [M]. McGraw-Hill,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700