金属切削中刀具月牙洼磨损和塑性变形的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属切削作为最基本的加工方式,被广泛应用在制造领域的各行各业。金属切削过程中,刀具和切屑交界面剧烈的摩擦、较高的温度和压力使刀具前刀面产生月牙洼磨损,它在一定程度上改变了切削参数,并降低了刀具的强度,最终导致刀具失效,因此月牙洼磨损机理和模型的研究是非常必要的。另外,切削过程中切削材料在第一变形区经历剧烈的塑性变形,对其研究能够进一步揭示切削过程中的变形机理,并为探索材料在高温高应变率条件下的本构方程提供一种新的研究方法。
     本文使用无涂层硬质合金刀具切削低碳钢工件材料,并依此建立了刀具前刀面月牙洼磨损模型,分析了切削材料在第一变形区的塑性变形以及切屑形态对刀屑接触长度的影响,论文的主要研究内容如下:
     (1)根据刀具月牙洼磨损实验,建立了一个适用于普通速度切削的月牙洼磨损经验模型,该模型表述了磨损率与切削过程变量之间的关系。利用切削有限元仿真计算了磨损模型中重要的参数——刀屑交界面上的温度分布。采用回归分析的方法拟合了磨损模型中的系数。该模型预测了相似切削条件下月牙洼的磨损轮廓,并分析了月牙洼磨损轮廓上不同磨损机理所占的比例。
     (2)依据高速切削实验,提出了针对高速切削加工的月牙洼磨损模型,它能够准确预测刀具失效前任意时刻的月牙洼磨损轮廓。使用气动弹道切削系统获得了高速切削过程中切削区的温度场,并依此提出了一个与月牙洼磨损轮廓相对应的刀屑交界面温度模型,为磨损模型中温度参数的确定提供了依据。采用回归分析的方法计算了磨损模型中的系数。
     (3)为了研究切削材料在第一变形区的塑性变形情况,基于气动弹道切削系统的高速正交切削实验,获得了切削材料上流线的变形轨迹;把一个通用的流线模型创新性地应用到金属切削中用来描述切削材料的塑性流动过程,并计算高速切削时切削材料在第一变形区的速度、应变率和应变分布。此外,使用相同的流线模型研究了普通速度切削中切削材料在第一变形区的塑性变形,并分析了两种切削条件下塑性变形的差异。
     (4)在月牙洼磨损的研究中发现,低进给的高速切削产生了较高的刀屑接触长度。针对这个问题,使用气动弹道切削系统,获得了高速切削时较大进给范围内的切屑形态和刀屑接触长度,并依据实验结果定性的分析了切屑形态对刀屑接触长度的影响。
Metal cutting, as the most basic manufacturing processes, are widely used in varieties of modern manufacturing enterprises. During the cutting process, severe friction, high temperature and pressure occurring in tool-chip interface cause crater wear on tool rake face. This leads to the change of cutting condition, decrease of the tool intensity, and finally tool failure. Therefore the investigation of crater wear mechanism and model is quite necessary. In addition, workpiece suffers severe plastic deformation in primary shear zone in machining. Research on the plastic deformation is significant for basic understanding of cutting process, and provides some insight for exploring material constitutive law at high temperature and high strain rate.
     This research focuses on crater wear modeling, evaluation of plastic deformation in primary shear zone and influences of chip morphology on tool-chip contact length when uncoated cemented carbide tool cutting low carbon steel. The dissertation includes the following aspects:
     (1) Based on crater wear experiments, an empirical crater wear model for conventional speed machining is established to describe the relationship between wear rate and process variables. Finite element simulation for machining process is used to obtain temperature distribution on tool-chip interface, which is the important parameter in wear model. Regression analysis can determine the coefficients in wear model. The proposed crater wear model gives good prediction to crater wear profile in similar cutting conditions, and also shows the contribution percentage of different wear mechanism along crater profile.
     (2) With high speed machining experiments, crater wear model for high cutting speed is established. It can accurately predict crater wear profile with cutting time before tool fail. According to the temperature distribution on tool-chip interface observed by using ballistic set-up, a temperature model corresponding to crater profile is proposed to determine temperature parameter in wear model. Regression analysis can determine the coefficients in wear model.
     (3) In order to analyze plastic deformation in primary shear zone, deformed flow lines on cutting material are obtained from high speed orthogonal cutting experiments performed by ballistic set-up. A general streamline model is innovatively used to present plastic flow of cutting material in high speed machining. Accordingly velocity, strain rate and strain distribution of cutting material in primary shear zone are calculated based on the streamline model. Furthermore, this streamline model is also applied to determine the plastic deformation in conventional speed machining. The differences of plastic deformation between conventional and high speed machining are analyzed.
     (4) High tool-chip contact length with low feed is found in the investigation of crater wear in high speed machining. Therefore, a series of experiments with large range of feed are carried out in ballistic set-up to record chip morphology and tool-chip contact length. The influences of chip morphology on tool-chip contact length are quantitatively analyzed.
引文
1. 何宁.高速切削技术[J],工具技术,2003,37(11):8-11.
    2. Dawihl W. Properties of cemented carbide compositions and their relation to the wear resistance [J], Zeitschrift Metallkunde,1940,32:320-325.
    3. Trent E M. Some factors affecting wear on cemented carbide tools [J], Pro. I. Mech. E. Lond.,1952,166:64-74.
    4. Trigger K J, Chao B T, The Mechanism of Crater Wear of Cemented Carbide Tools [J], ASME,1956,78:1119-1126.
    5. Cook N H. Tool wear and tool life [J], ASME Journal of Engineering for industry, 1973,95B:931-938.
    6. Bhattacharyya A, Ghosh A. Diffusion wear of cutting tools [J], Annals of the CIRP,1968, ⅩⅥ:369-375.
    7. Molinari A, Nouari M. Modeling of tool wear by diffusion in metal cutting [J], Wear,2002,252:135-149.
    8. Usui E, Shirakashi T, Kitagawa T. Analytical prediction of three dimensional cutting process-Part 3 cutting temperature and crater wear of carbide tool [J], ASME Journal of Engineering for industry,1978,100:236-243.
    9. Huang Y, Liang S Y. Modeling of CBN tool flank wear progression in finish hard turning [J], ASME J. of Manufacturing Sci. and Eng.,2004,126(1):98-106.
    10. Huang Y. Dawson T G. Tool crater wear depth modeling in CBN hard turning [J], Wear,2005,258:1455-1461.
    11. Filice L, Micari F, Settineri L, Umbrello D. Wear modelling in mild steel orthogonal cutting when using uncoated carbide tools [J], Wear,2007,262: 545-554.
    12. Attanasio A, Ceretti E, Rizzuti S, Umbrello D, Micari F.3D finite element analysis of tool wear in machining [J], Annals of the CIRP Annals Manufacturing Technology,2008,57:61-64.
    13. Takeyama H, Murata R. Basic investigation of tool wear [J], ASME Journal of Engineering for Industry,1963,85:33-38.
    14. Lorentzon J, Jarvstra N. Modelling tool wear in cemented-carbide machining alloy 718 [J], International Journal of Machine Tools and Manufacture,2008,48: 1072-1080.
    15.艾兴,高速切削加工技术[M],北京:国防工业出版社,2003,3-4.
    16.刘战强,艾兴.高速切削刀具磨损表面形态研究[J],摩擦学学报,2002,22(6):468-471.
    17.邓建新,张希华,李剑峰,孙高祚,曹同坤.TiB2增强A1203陶瓷刀具高速干切削摩擦磨损性能[J],摩擦学学报,2004,24(3):197-201.
    18.耿国盛.钛合金高速铣削技术的基础研究[D],南京:南京航空航天大学,2006.
    19.刘海滨.镍基高温合金高速车削研究[D],南京:南京航空航天大学,2003.
    20.赵微.基于绿色切削的钛合金高速切削机理研究[D],南京:南京航空航天大学,2006.
    21.黄树涛,许立福,姚英学,袁哲俊.金刚石薄膜涂层刀具的破损机理研究[J],人工晶体学报,2004,33(2):278-281.
    22.杨凯.微细铣削刀具磨损机理及工件毛刺影响因素的研究[D],哈尔滨:哈尔滨工业大学,2007.
    23.韩荣第,刘杰.水蒸汽二次加热装置的研制及切削45钢的刀具磨损试验[J],2007,41(12):14-16.
    24.陈明,刘钢,张晓辉,沈中,杨贵军.新型低碳硫系易切削钢切削性能试验[J],机械工程学报,2007,43(9):161-166.
    25.王潇屹,张晓辉,安庆龙,陈明,许辉,刘钢.新型涂层刀具干式铣削加工SKD11切削性能研究[J],工具技术,2009,43(2):8-11.
    26.韩雪松.纳米切削工艺中刀具原子尺度磨损机理的分子动力学分析[J],机械工程学报2007,43(9):107-112.
    27.龙震海,王西彬,刘志兵.高速铣削难加工材料时硬质合金刀具前刀面磨损机理及切削性能研究[J],摩擦学学报,2005,25(1):47-48.
    28.张保国,陈志同,熊曦耀,黎旭东,蒋理科.涂层刀具铣削加工300M钢的刀具磨损试验研究[J],航空精密制造技术,2008,44(2):41-44.
    29.李一楠,孙凤莲.硬质合金刀具切削过程中扩散磨损的数值模拟[J],哈尔滨理工大学学报,2006,11(1):146-149.
    30.高宏力.切削加工过程中刀具磨损的智能监测技术研究[D],成都:西南交通 大学,2006.
    31. Piispanen V. Theory of Formation of Metal Chips [J], Journal of Applied Physics, 1948,19:876-881.
    32. Drucker D C. An analysis of the mechanics of metal cutting [J], J. Appl. Phys, 1949,20:1013-1021.
    33. Chao B T, Bisacre G H. The effect of speed and feed on the mechanics of metal cutting [J], Proc. Inst. Mech. Eng.,1951,165:1-13.
    34. Kececioglu D. Shear strain rate in metal cutting and its effect on shear flow stress [J], ASME,1958,80:158-168.
    35. Goriani V L, Kobayashi S. Strain and strain-rate distribution in orthogonal metal cutting [J], Annals of the CIRP,1967, XV:425-431.
    36. Stevenson M G, Oxley P L B. An experimental investigation of the influence of speed and scale on the strain-rate in a zone of intense plastic deformation [J], Proceedings of the Institution of Mechanical Engineers,1969-70,185:561-569.
    37. Pujana J, Arrazola P J, Villar J A. In-process high-speed photography applied to orthogonal turning [J], Journal of Materials Processing Technology,2008,202: 475-485.
    38. Ghadbeigi H, Bradbury S R, Pinna C, Yates J R. Determination of micro-scale plastic strain caused by orthogonal cutting [J], International Journal of Machine Tools and Manufacture,2008,48:228-235.
    39. Spaans C. The fundamentals of three-dimensional chip curl, chip breaking and chip control [D], Netherlands:TH Delft,1971.
    40. Tay A O, Stevenson M G, Davis G V, Oxley P L B. A numerical method for calculating temperature distributions in machining from force and shear angle measurements [J], Int. J. Mach. Tool Des. Res,1976,16:335-449.
    41. Zheng Y L, Sutherland W, Olson W W. A predictive heat generation model in orthogonal cutting visco-plastic metarial [J], Journal of the Mechanical Behavior of Materials,1996,6(3):245-261.
    42. Stephen A B. An analytical and experimental investigation into chip morphology in orthogonal machining [D], USA:Michigan technological university,1998.
    43.邓文君,夏伟,周照耀,邵明,李元元.正交切削高强耐磨铝青铜的有限元 分析[J],机械工程学报,2004,40(3):71-75.
    44.李诚,邓文君,魏兴钊.切削加工中的大塑性变形与超细晶形成研究[J],金属热处理,2008,33(8):133-137.
    45.王素玉,艾兴,赵军,彭朋.正交切削区应力应变场的数值模拟[J],工具技术,2005,39(11):25-28.
    46.谢峰,吉文,刘正士,崇高.二维金属切削过程的数值模拟[J],系统仿真学报,2004,16(7):1412-1416.
    47. Xie L J. Estimation of two-dimension tool wear based on finite element method [D], Karlsruhe:University of Karlsruhe,2004.
    48. Yen Y C, Sohner J, Lilly B, Altan T. Estimation of tool wear in orthogonal cutting using the finite element analysis [J], Journal of Materials Processing Technology,2004,146:82-91.
    49.华南工学院,甘肃工业大学.金属切削原理及刀具设计(上册)[M],上海:上海科学技术出版社,1979,82-96
    50. Kannatey-Asibu E. A Transport-diffusion equation in metal cutting and Its application to analysis of the rate of flank wear [J], ASME Journal of Engineering for Industry,1985,107:81-89.
    51. Childs T, Maekawa K, Obikawa T, Yamane Y. Metal Machining Theory and Applications [M], New York:John Wiley and Sons Inc.,2000,118-135.
    52. Loladze T N. Adhesion and diffusion wear in metal cutting, At the symposium on 'Machine tool and metal cutting'in the mechanical engineering division, The 42nd Annual convention, Calcutta,1962
    53. Opitz H, Konig W. On the wear of cutting tools, Proceedings of the 8th International MTDR Conference,1967,173-190.
    54. Naerheim Y, Trent E M. Diffusion wear of cemented carbide tools when cutting steel at high speeds [J], Metals Technology,1977,4:548-556.
    55. Akasawa T, Hashiguti Y, Suzuki K. Crater wear mechanism of WC-Co tools at high cutting speeds [J],1980,65:141-150.
    56. Rabinowicz E, Dunn L A, Russell P G. A study of abrasive wear under three-body conditions [J], Wear,1961,4:345-355.
    57. Rabinowicz E. Friction and Wear of Materials [M], New York:John Wiley,1965.
    58. Holm R. Electric contacts [M], Stockholm:Hugo Gebers Forlag,1946
    59. Bruwell J T, Strang C D. On the empirical law of adhesive wear [J], Journal of applied physics,1952,23:18-28.
    60. Archard J F. Contact and rubbing of flat surfaces, Journal of Applied Physics [J], 1953,8:981-988.
    61. Archard J F, Hirst W. The wear of metals under unlubricated conditions, Proceedings of the royal society [J],1956,236A:397-410.
    62. Shaw M C, Dirke S O. On the wear of cutting tools [J], Microtechnic,1956,10(4): 187-193.
    63. Luo X, Cheng K, Holt R, Liu X. Modeling flank wear of carbide tool insert in metal cutting [J], Wear,2005,259:1235-1240.
    64. Kitagawa T, Maekawa K, Shirakashi T, Usui E. Analytical prediction of flank wear of carbide tools in turning plain carbon steels. Part 1. Characteristic equation of flank wear [J], Bull. Jpn. Soc. Precis. Eng.,1988,22(4):263-269.
    65. Kitagawa T, Maekawa K, Shirakashi T, Usui E. Analytical prediction of flank wear of carbide tools in turning plain carbon steels. Part 2. Prediction of flank wear [J], Bull. Jpn. Soc. Precis. Eng.,1989,23(2):126-134.
    66. Moufki A, Molinari A, Dudzinski D. Modelling of orthogonal cutting with a temperature dependent friciton law [J], J. Mech. Phys. Solids,1998,46(10): 2103-2138.
    67. Jaspers S P F C. Metal cutting mechanics and material behaviour [D], Netherlands:Technische Universiteit Eindhoven,1999.
    68. Mathew P, Oxley P L B. Predicting the effects of very high cutting speeds on cutting forces, etc. [J], Annals of the CIRP,1982,31(1):49-52.
    69. Astakhov V P. Metal Cutting Mechanics [M], Boca Raton:CRC Press,1998, 95-116
    70. Fang X D. Experimental investigation of overall machining performance with overall progressive tool wear at different tool faces [J], Wear,1994,173:171-178.
    71. Shaw M C. Metal cutting principles [M], Oxford:Claredon Press,1984,28-30.
    72. Oxley P L B. The Mechanics of Machining [M], Chichester:Ellis Horwood Limited,1989.
    73. Fang N. Slip-line modeling of machining with a rounded-edge tool-Part Ⅰ:new model and theory [J], Journal of the Mechanics and Physics of Solids,2003,51: 715-742.
    74. Fang N. Slip-line modeling of machining with a rounded-edge tool-Part Ⅱ: analysis of the size effect and the shear strain-rate [J], Journal of the Mechanics and Physics of Solids,2003,51:743-762.
    75. Jaspers S P F C, Dautzenherg J H. Material behaviour in metal cutting:strains, strain rates and temperatures in chip formation [J], Journal of materials professing technology,2002,121:123-135.
    76. Lei S, Shin Y C, Incropera F P. Material constitutive modeling under high strain rates and temperatures through orthogonal machining tests [J]. ASME,1999,121: 577-585.
    77. Kurt L. Handbook of Metal Forming, Society of Manufacturing Engineers [M], Dearborn:McGraw-Hill,1985.
    78. Leopold J. The application of visioplasticity in predictive modelling the chip flow, tool loading and surface integrity in turning operations, Proceedings of Third CIRP International Workshop on Modelling of Machining Operations, University of New South Wales, Australia,2000.
    79. Oxley P L B, Hastings W F. Predicting the strain rate in the zone of intense shear in which the chip is formed in machining from the dynamic flow stress properties of the work material and the cutting conditions [J], Proc. R. Soc. Lond. A.1977, 356:395-410.
    80. Komanduri R, Hou Z B. A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology [J], Tribology International,2001,34:653-682.
    81. Filice L, Micari F, Rizzuti S, Umbrello D. A critical analysis on the friction modelling in orthogonal machining [J], International Journal of Machine Tools and Manufacture,2007,47:709-714.
    82. Umbrello D, Filice L, Rizzuti S, Micari F. On the evaluation of the global heat transfer coefficient in cutting [J], International Journal of Machine Tools and Manufacture,2007,47:1738-1743.
    83. Iqbal S A, Mativenga P T, Sheikh M A. Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 2:evaluation of flow stress models and interface friction distribution schemes [J], Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture, 2007,221(B5):917-926.
    84. Mackerle J. Finite element analysis and simulation of machining:an addendum a bibliography (1996-2002) [J], International Journal of Machine Tools and Manufacture,2003,43:103-114.
    85. Lee E H, Shaffer B W. The theory of plasticity applied to a problem of machining [J], Journal of Applied Mechanics,1951,18(4):405-413.
    86. Merchant M E. Mechanics of the cutting process [J], Journal of Applied Physics, 1945,18(4):405.
    87. Iqbal S A, Mativenga P T, Sheikh M A. Contact length prediction:mathematical models and effect of friction schemes on FEM simulation for conventional to HSM of AISI 1045 steel [J], Int. J. Machining and Machinability of Materials, 2008,3(1/2):18-33.
    88. Shi J, Liu C R. The influence of material models on finite element simulation of machining [J]. ASME J. of Manufacturing Sci. and Eng.,2004,126(4):849-857.
    89. Childs T. Material porperties requirement in modelling metal machining [J], Machining Science and Technology,1998,2(2):303-306.
    90. Ozel T. The influence of friction models on finite element simulations of machining [J], International Journal of Machine Tools and Manufacture,2006, 46(5):518-530.
    91. Wanheim T, Bay N. A model for friction in metal forming processes [J], Annals of the CIRP,1978,27(1):189-194.
    92. Fleischer J, Schmidt J, Xie L J, Schmidt C, Biesinger F.2D tool wear estimation using finite element method, Proceedings of the Seventh CIRP International Workshop on Modeling of Machining Operations, Cluny, France,2004,82-91.
    93. Yvonnet J, Umbrello D, Chinesta F, Micari F. A simple inverse procedure to determine heat flux on the tool in orthogonal cutting [J], International Journal of Machine Tools and Manufacture,2006,46 (7-8):820-827.
    94. Usui E, Takeyama H. A photoelastic analysis of machining stresses [J], J. Eng. Ind.,1960,82:303-308.
    95. Zorev N N. Interrelationship between shear processes occurring along tool face and on shear plane in metal cutting, International Research in Production Engineering ASME, New York,1963,42-49.
    96. Yamaguchi S K, Yamada M. Stress distribution at the interface between tool chip in machining [J], ASME Journal of Engineering for Industry,1972,94:683-689.
    97. Buryta D, Sowerby R, Yellowley I. Stress distributions on the rake face during orthogonal machining [J], Int. J. Mach. Tools Manufact,1994,34:721-739.
    98. Trent E M. Conditions of seizure at the chip-tool interface [J], Special report, Machinability, Iron and Steel Institute,1967,94:11-18.
    99. Bailey J A. Friction in Metal Machining-Mechanical Aspects [J], Wear,1975,31: 243-275.
    100. Tay A O, Stevenson M G, Davis G V. Using the finite element method to determine temperature distributions in orthogonal machining [J]. Proc. Inst. Mech. Eng.,1974,188:627-638.
    101.Kahles J F, Field M, Harvey S M. High speed machining possibilities and needs [J], Annals of the CIRP,1978,27(2):551-558.
    102. Gekonde H O, Subramanian S V. Tribology of tool-chip interface and tool wear mechanisms [J], Surface and coating technology,2002,149:151-160.
    103. Devillez A., Lesko S., Mozer W. Cutting tool crater wear measurement with white light interferometry [J], Wear,2004,256:56-65.
    104. Sutter G, Ranc N. Temperature fields in a chip during high-speed orthogonal cutting-An experimental investigation [J], International Journal of Machine Tools and Manufacture,2007,47:1507-1517.
    105. Ranc N, Pina V, Sutter G, Philippon S. Temperature measurement by visible pyrometry:orthogonal cutting application [J], ASME Journal of Heat transfer 2004,126:931-936.
    106. Sutter G. Chip geometries during high speed machining for orthogonal cutting conditions [J], International Journal of Machine Tools and Manufacture,2005,45: 719-726.
    107. Prins O D. The influence of wear on the temperature distribution at the rake face [J], Annals of the CIRP,1971, XVIV:579-584.
    108. Takayama H, Usui E. The effect of tool-chip contact area in metal machining [J], ASME,1958,80:1089-1096.
    109. Sadik M L, Lindstrom B. The role of tool-chip contact length in metal cutting [J], Journal of Materials Processing Technology,1993,37:613-627.
    110.Abukhshim N A, Mativenga P T, Sheikh M A. An investigation of the tool-chip contact length and wear in high-speed turning of EN19 steel [J], Journal of Engineering Manufacture,2004,218:889-903.
    111.Toropov A, Ko S L. Prediction of tool-chip contact length using a new slip-line solution for orthogonal cutting [J], International Journal of Machine Tools and Manufacture,2003,43:209-1215.
    112. Skrotzki W, Scheerbaum N, Oertel C, Massion R A, Suwas S, Toth L S. Microstructure and texture gradient in copper deformed by equal channel angular pressing [J], Acta Materialia,2007,55:2013-2024.
    113. Toth L S, Massion R A, Germain L, Baik S C, Suwas S. Analysis of texture evolution in equal channel angular extrusion of copper using a new flow field [J], Acta Materialia,2004,52:1885-1898.
    114. Massion R A, Toth L S, Mathieu J P. Modeling of deformation and texture development of copper in a 120°ECAE die, Scripta Materialia[J],2006,54: 1667-1672.
    115. Hasani A, lapovok R, Toth L S, Molinari A. Deformation field variations in equal channel angular extrusion due to back pressure [J], Scripta Materialia,2008,58: 771-774.
    116. Shankar M R, Chandrasekar S, Compton W D, King A H. Characteristics of aluminum 6061-T6 deformed to large plastic strains by machining [J], Materials Science and Engineering A,2005,410-411:364-368.
    117. Home J G, Doyle E D, Tabor D. Direct observation of chip-tool interface in metal cutting [J]. Proceedings of the 5th NAMRC,1977,237-240.
    118. Doyle E D, Home J G, Tabor D. Frictional Interactions Between Chip and Rake Face in Continuous Chip Formation [J], Proc. R. Soc. London,1979, A366: 173-187.
    119. Enahoro H E, Oxley P L B. Flow Along Tool-Chip Interface in Orthogonal Metal Cutting [J], J. Mech. Eng. Sci.,1966,8:36-41.
    120. Ackroyd B, Chandrasekar S, Compton W D. A model for the contact conditions at the chip-tool interface in machining [J], ASME J. Tribology,2003,125:649-660.
    121. Hastings W F, Mathew P, Oxley P L B. A machining theory for predicting chip geometry, cutting forces etc. from work material properties and cutting conditions [J], Proceedings of the Royal Society of London,1980, A371:569-587.
    122. Ramanujachar K, Subramanian S V. Micromechanisms tool wear in machining free cutting steels [J], wear,1996,197:45-55.
    123. Abuladze N G. Character and the length of tool-chip contact (in Russian) [J], Proceedings Machinability of Heat-resistant and Titanium Alloys, Kuibyshev, 1962:68-78.
    124.Poletika M F. Contact loads on tool faces (in Russian) [M], Moscow: Machinostronie,1969.
    125. Zhang H T, Liu P D, Hu R S. A three-zone model and solution of shear angle in orthogonal machining [J], Wear,1991,143:29-43.
    126. Stephenson D A, Jen T C, Lavine A S. Cutting tool temperature in contour turning: transient analysis and experimental verification [J], ASME J. of Manufacturing Sci. and Eng.,1997,119(4):494-501.
    127. Marinov V R. Hybrid analytical-numerical solution for the shear angle in orthogonal metal cutting. Part II. Experimental verification [J], International Journal of Mechanical Sciences,2001,43:415-426.
    128. Li Z. Machining chip-breaking prediction with grooved inserts in steel turning [D], USA:Worcester Polytechnic Institute,2001.
    129.Henriksen E K. Stress distribution in the continuous chip [J], ASME,1951,1(B): 461-466
    130. Hahn R S, Some observation on chip curl in the metal cutting process under orthogonal cutting conditions [J], ASME,1953,3(B):581-590.
    131. Palmer W B, Oxley P L B. Mechanics orthogonal machining [J], Pro. Ins. Mech. Eng.,1959,173(24):623-654.
    132.Albrecht P. New development in the theory of the metal cutting process-Part II The theory of chip formation [J], ASME Journal of Engineering for industry,1961, 93:557-571.
    133.Findley W N, Reed R M. The influence of extreme speeds and rake angles in metal cutting [J], ASME Journal of Engineering for industry,1963,85(B):49-67.
    134. Dawe C C, Rubenstein C. Analysis of chip curvature, Proc. of the 10th int. MTDR conf., Manchester, Britain,1969,283-298.
    135. Lenz E, Tool-chip contact length as a parameter in metal cutting, ASME meeting, Sept,1968.
    136. Ponkshe G R. A new explanation of the phenomenon of chip curl during machining [J], ASME Journal of Engineering for Industry,1967,89(B):376-379.
    137. Cook N H, Jhaveri P, Nayak N. The mechanism of chip curl and its importance in metal cutting [J], ASME Journal of Engineering for industry,1963,85(B): 374-380.
    138. Earst H, Merchant M E. Chip formation, friction and high quality machined surface [J], ASME,1941,29:299-378
    139.Nakayama K, Chip curl in metal cutting process [J], Bulletin of the faculty of Engineering,1962b,11:1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700