线控四轮独立驱动轮毂电机电动汽车稳定性与节能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安全、节能与环保是汽车发展的方向和永恒主题,尤其在当今交通事故频发、世界能源紧张和环境日益恶化的今天尤为重要。特别是近些年来,迫于节能与环保压力,各种形式的电动汽车正在成为全球汽车工业研发的焦点,基于轮毂电机的四轮独立驱动电动汽车是其中较有前景的一种。基于轮毂电机的四轮独立驱动电动汽车,各轮的运动状态可以相互独立,之间并无硬性的机械连接,大大提高了传动效率,降低了整车整备质量,简化了汽车结构,有利于增加电动汽车续驶里程,因此轮毂电机被认为是电动汽车的最终驱动形式。四轮独立驱动轮毂电机电动汽车四轮驱动力矩独立可控,便于采用线控技术和线控转向等线控系统进行集成控制,相对于传统内燃机汽车具有更多的可控自由度,是研究新一代车辆控制技术、探索车辆最优动力学性能的理想载体。
     本文研究依托国家863计划项目(2012AA110904)“电动汽车底盘动力学控制系统开发”和国家自然科学基金资助项目(50775096)“线控汽车底盘控制方法和关键技术研究”、国家自然科学基金资助项目青年科学基金(51105165)“线控转向系统操纵杆及其双向控制方法研究”,在总结国内外相关研究成果基础上,利用四轮独立驱动轮毂电机电动汽车四轮独立驱动且易于和线控制动、线控转向等线控系统实现集成控制的优势,进行了线控四轮独立驱动轮毂电机电动汽车稳定性与节能控制方法的研究,从电动汽车仿真平台开发、基于模糊理论路面识别的驱动防滑控制、驱动转向集成控制、基于电机效率图的节能控制和驱动转向集成控制算法实车实验验证等方面开展了一系列研究工作,主要内容如下:
     (1)电动汽车仿真平台开发
     电动汽车仿真平台包括动力学模型建模和根据研究内容所确定的整车控制架构两部分。针对控制算法验证需要,采用模块化思想,应用MATLAB/Simulink软件建立了含有电机模型的能够基本反映四轮独立驱动轮毂电机电动汽车动态特性的动力学模型。模型具有车体6个自由度,四个车轮的转动和垂直跳动8个自由度,前轮转角1个自由度,共15自由度。应用商用软件CarSim对模型进行验证。根据所研究内容确定了整车控制架构,为在原有车辆仿真模型基础上搭建各种控制算法模块奠定了基础。电动汽车仿真平台可实现多种工况下的仿真与控制研究。
     (2)基于模糊理论路面识别的驱动防滑控制研究
     结合四轮独立驱动轮毂电机电动汽车四轮驱动力矩独立可控和转矩、转速易于测得的特点,应用无轨卡尔曼滤波UKF理论设计了车速估计算法,实现对电动车纵向车速、侧向车速及质心侧偏角的准确估计;研究了基于模糊理论路面识别的驱动防滑控制方法,实现电动汽车驱动轮在小滑转率、小附着系数区域路面行驶时的路面附着系数和最优滑转率的主动预估,从而实现驱动防滑系统ASR进行更为精确的控制,提高其行驶动力性和稳定性,并通过对接路面、对开路面仿真试验验证了所研究算法的有效性和准确性。
     (3)驱动转向集成控制研究
     利用四轮独立驱动轮毂电机电动汽车便于采用线控技术同线控转向系统进行集成控制的优势,基于模型预测控制理论研究了主动前轮转向与主动驱动横摆力矩集成控制算法,即驱动转向集成控制算法。确定了分层控制结构,设计了模型预测集成控制器,研究了规则驱动力分配方法和以总的轮胎负荷率最小化为目标的二次规划驱动力分配方法,并通过仿真试验对所研究算法进行了验证。仿真结果表明,集成控制算法能够实现电动汽车有效跟踪期望,提高其极限工况下行驶稳定性和主动安全性。
     (4)基于电机效率图的节能控制研究
     电动汽车主要在城市工况下安全行驶,频繁进行加速和减速,车速变化范围大,驱动和制动时电机效率变化范围大。结合四轮独立驱动电动汽车四轮驱动力矩独立可控的特点,基于电机效率图研究了通过驱动力矩合理分配和进行再生制动实现节能控制的方法。驱动节能控制通过建立节能目标函数和约束条件,并对约束条件进行适当简化,在线实时优化四轮驱动力矩,提高驱动效率。再生制动考虑理想制动力分配理论和ECE法规,研究了适于四轮轮毂电机的并行再生制动控制方法,通过在NEDC、UDDS、J1015三种典型城市循环工况下的仿真分析,合理确定前轴单独再生制动的制动强度,提高电动车低速、小制动力矩需求的制动能量回收率。最后在NEDC、UDDS、J1015三种典型城市工况下,对节能控制方法进行仿真试验验证。仿真结果表明,节能控制方法提高了节能效率,节能效果明显。
     (5)驱动转向集成控制算法实车实验
     为验证实验车的可靠性,通过直线加速功能实验、转向功能实验和四轮独立驱动功能实验对实验车进行了功能性实验验证。根据实车条件,选择方向盘角阶跃输入实验和方向盘角正弦输入实验工况对驱动转向集成控制算法的有效性进行了实验验证。实验结果表明,实验车满足集成控制算法验证功能需要,集成控制算法能够有效控制电动车运动跟踪期望,具有良好的控制效果。
     通过以上研究工作,论文在以下几个方面有所创新:
     (1)针对四轮独立驱动轮毂电机电动汽车驱动防滑控制问题,利用其四轮驱动力矩独立可控、转速和转矩易于测得的特点,基于模糊控制理论并结合驱动防滑控制策略,提出了基于模糊理论路面识别的驱动防滑控制方法,实现了汽车驱动轮在小滑转率、小附着系数区域路面行驶时的路面附着系数及最优滑转率的主动预估和更为准确的驱动防滑控制,从而达到充分利用路面附着条件、提高车辆行驶动力性和稳定性的目的。
     (2)针对四轮独立驱动轮毂电机电动汽车线控驱动系统和线控转向系统集成控制问题,基于模型预测控制理论,设计了主动前轮转向与主动驱动横摆力矩的集成控制算法,即驱动转向集成控制算法。确定了分层集成控制结构,选用不依赖于精确数学模型、可以实现闭环校正反馈的模型预测控制理论设计了模型预测集成控制器,研究了规则驱动力分配方法和以总的轮胎负荷率最小化为目标的二次规划驱动力分配方法,提高了电动汽车极限工况下的稳定性和主动安全性。
     (3)针对四轮独立驱动轮毂电机电动汽车城市工况下安全行驶时的节能控制问题,提出了基于电机效率图的驱/制动节能控制方法。驱动时,通过优化前后轮驱动力矩提高驱动效率,实现驱动节能控制;制动时,基于电机效率图,根据理想制动力分配理论和ECE法规设计了适合四轮独立驱动轮毂电机电动汽车的并行再生制动控制方法,通过典型工况仿真分析合理确定前轴单独工作制动强度,提高电动车低速、小制动力矩需求时的制动能量回收率。节能控制方法简单易行,节能效果明显。
Safety, energy saving and environmental protection are the direction of the vehicledevelopment and eternal theme,which is particularly important for today's world in whichthere are frequent traffic accidents,energy crisis and deteriorating environment.Especiallyin recent years, forced by the pressure of the energy saving and environmental protection,the various forms of electric vehicles are becoming the focus of research and developmentof the global automotive industry.The four-wheel independent drive electric vehicles basedon in-wheel motor is the more promising one.The state of motion of each wheel for thefour-wheel independent drive electric vehicle based on in-wheel motor are independentlyand there are no rigid mechanical connections between them which improve thetransmission efficiency greatly, simplify the car structure, reduce the weight and help toincrease the driving distance.So the in-wheel motor is called the final drive form of theelectric vehicles.The four-wheel drive torque is independently controllable for four-wheelindependent drive in-wheel motor electric vehicle and it is easy to make integrated controlwith steer-by-wire system and other X-by-wire systems using X-by-wire technology.Thereis more controllable degree of freedom compared with traditional internal combustionengine vehicles for the four-wheel independent drive electric vehicle.It is the ideal carrierfor studying the new generation of vehicle control technology and exploring the optimalvehicle dynamics performance.
     Summarize the domestic and foreign correlation research results, and make use of theadvantages of four-wheel independent drive and integrated control with the brake-by-wiresystem, steer-by-wire and other X-by-wire systems, a series of study work is done as forsimulation platform developed for the electric, acceleration slip regulation control based onfuzzy theory road identification, drive and steer integrated control algorithm, the energy saving control based on the motor efficiency map and the real vehicle experiments forintegrated control algorithm.The study is based on the National863Project(2012AA110904)“Electric vehicle chassis dynamics control system development” andNational Natural Science Fund Project (50775096)“Drive-by-wire chassis control methodsand key technology research”, the National Natural Science Fund Project Youth ScienceFund (51105165)“Research steer-by-wire system joystick and bidirectional controlmethod”.The main contents are as follows:
     (1)Simulation platform developed for electric vehicle
     For the requirement of the control algorithm validation, establish the kinetic modelcontaining motor model by MATLAB/Simulink software with modular thinking.The modelcan basically reflect the four independent in-wheel motor electric vehicle dynamiccharacteristics.The model included15degrees of freedom: six degrees of freedom of thevehicle body, eight degrees of freedom of the rotation and the vertical jump of the fourwheels, one front wheel angle.The model was verified by commercial softwareCarSim.According to the study contents,determine the vehicle control architecture,whichwas easy to build the control algorithm module. The electric vehicle simulation platformcan achieve the study of simulation and control in a variety of operating conditions.
     (2)Study on acceleration slip regulation control based on fuzzy theory roadidentification
     Combine with the characteristics of four-wheel drive torque independently andmeasuring speed and torque easily, the vehicle velocity estimation algorithm was designedbased on the Unscented Kalman Filter (UKF) theory and estimate electric vehiclelongitudinal speed, lateral speed and sideslip angle accurately. The road adhesioncoefficient was estimated proactively when the electric vehicle drive wheels drive in thesmall slip rate and the small adhesion coefficient region road and make the ASR system formore precise control.The methods were verified by the simulation in the docking road andsplit road.
     (3) Study on drive and steer integrated control
     Make use of the advantages of integrated control with the steer-by-wire system for theelectric vehicle with four-wheel independent drive in-wheel motors, the active frontsteering and the active drive yaw control integrated control algorithm that drive and steerintegrated control algorithm based on model predictive control theory wasstudied.Determine the hierarchical control structure, design the model predictive controlintegrated controller, study the rules driving force and the quadratic programming drivingforce distribution method which makes the the total tire load rate minimum.The integratedcontrol algorithm was verified by simulation experiments.The simulation results showedthat the integrated control algorithm enables electric vehicles track the expectationeffectively and enhance the vehicle stability and active safety in extreme conditions.
     (4) Study on the energy saving control based on the motor efficiency map
     Electric vehicle mainly work in urban conditions. Because of the frequent accelerationand deceleration, the vehicle speed changes in a large range and the motors’driving/braking efficiency varies a lot.Combine with the character of the four-wheelindependent drive independently, energy saving control methods including drive energyconservation and regenerative braking were studied based on the efficiency map of themotor. Establish the energy saving target function and constraints, online real-timeoptimize the four-wheel drive torque, enhance the drive efficiency in drive energy saving.Based on the ideal braking force distribution theory and ECE regulations, parallelregenerative braking control method was studied to suit for four-wheel independent drivein-wheel motor electric vehicle. The braking intensity when the front axle separateregenerative braking was determined reasonably through simulation analysis of NEDC,UDDS and J1015typical urban cycle conditions and improve electric vehicle brakingenergy recovery rate in the low speed and low braking torque. Finally, the energy savingcontrol methods were verified in the NEDC, UDDS and J1015urban conditions’ simulationexperiments.The simulation results showed that energy-saving control methods improvethe energy efficiency and the energy saving effect was obvious.
     (5) Real vehicle experiment for drive and steer integrated control algorithm
     The straight line acceleration test, the steering function test and four-wheelindependent drive test were used to verify the functions and reliability of the electricvehicle. According to the conditions of the real vehicle, the step steering wheel angle inputand the sinusoidal steering wheel angle input experiments were used to validate theeffectiveness of the integrated control algorithm.
     Through the above study, the paper innovations are in the following aspects:
     (1)For the ASR control problem of the electric vehicle with the four-wheelindependent in-wheel motors, combine with the characteristics of four-wheel drive torqueindependently and measuring speed and torque easily, the acceleration slip regulationcontrol method based on fuzzy theory road identification was put forward. The roadadhesion coefficient was estimated proactively when the electric vehicle drive wheels drivein the small slip rate, the small adhesion coefficient region road,which makes the ASRsystem more precise control and make full use of the road adhesion coefficient to improvevehicle power performance and stability.
     (2)For the problem of four-wheel independent drive in-wheel motor electric vehicleintegrated with steer-by-wire system, the active drive yaw control and the active frontsteering integrated control algorithm that drive and steer integrated control algorithm basedon model predictive control theory was designed. Determine the hierarchical controlstructure, design the model predictive control integrated controller based on the modelpredictive control theory which doesn’t depend on the precise mathematics model and canrealize the closed loop correction feedback. The rules driving force method and quadraticprogramming driving force distribution method which makes the the total tire load rateminimum were studied.The integrated control algorithm can effectively improve thevehicle stability and active safety of the electric vehicle in extreme conditions.
     (3)For the problem energy saving control in urban conditions of t the electric vehiclewith the four-wheel independent in-wheel motors, the energy saving control method basedon the motor efficiency map driving/braking was put forward.Achieve drive energy savingcontrol by optimizing the driving moment of front and rear wheels and improve the drive efficiency.According to the ideal braking force distribution theory and ECE regulations,parallel regenerative braking control method was studied to suit for four-wheel independentdrive in-wheel motors electric vehicle based on the motor efficiency map.The brakingintensity when the front axle separate regenerative braking was determined reasonablythrough typical urban cycle conditions simulation and improve electric vehicle brakingenergy recovery rate in the low-speed low and low braking torque.The energy-savingcontrol method was simple and the energy saving effect was obvious.
引文
[1] Satoshi Murata. Innovation by In-Wheel-Motor Drive Unit. Keynote Presentation[C].AVEC10,2010.
    [2] Satoshi Murata. Vehicle Dynamics Innovation with In-Wheel Motor[C]. SAE Paper,2011-39-7204.
    [3] Jochen Rauh and Dieter Ammon. System dynamics of electrified vehicles: some facts, thoughts,and challenges. Vehicle System Dynamics,2011,49(7):1005–1020.
    [4] Makoto K., Kevin W., Hiroaki Y.. Improvement of Vehicle Dynamic Performance by Means ofIn-Wheel Electric Motors. Mitsubishi Motor Technical Review,2006.
    [5] C. Geng, Lotfi M., Mouloud D., Hori Y.. Direct yaw-moment control of an in-wheel-motoredelectric vehicle based on body slip angle fuzzy observer[C]. IEEE Trans. on Indusrial Electronics,2009.
    [6] Kawashima K., Uchida T, Hori Y.. Rolling stability control utilizing rollover index for in-wheel-motor electric vehicle[C]. IEEJ Trans. on IndustryApplications,2010.
    [7] Y. Wang, K. Nam, H. Fujimoto, Y. Hori. Robust roll and yaw integrated control using4wheelsteering based on yaw moment and lateral force observers[J].電気学会研究会資料. IIC,産業計測制御研究会,2011(134):25-30.
    [8] Nagai, Masao. The Perspective of Research for Enhancing Active Safety Based on AdvancedControl Technology[J]. J Automotive safety and Energy,2010,1(1):14-22.
    [9] Dejun YIN, Manabu OMAE, Hiroshi SHIMIZU, Yoichi HORI. Active Stability Control StrategyBased on Maximum Transmissible Torque Estimation[J]. J Automotive Safety and Energy,2011,2(1):34-38.
    [10] Naoki Ando and Hiroshi F.. Yaw-rate Control for Electric Vehicle with Active Front/RearSteering and Driving/Braking Force Distribution of Rear Wheels[C]. The11th IEEEInternational Workshop onAdvanced Motion Control,2010.
    [11] Rahman, K.M., Patel, N.R., etc. Application of Direct-Drive Wheel Motor for Fuel Cell Electricand Hybrid Electric Vehicle Propulsion System[C].IEEE Tran. On IndustryApplications,2006.
    [12] Rongrong Wang, Yan Chen, Daiwei Feng. Development and performance characterization of anelectric ground vehicle with independently actuated in-wheel motors[J]. Journal of PowerSources2011,196:3962–3971.
    [13] Sigvard, Z.. Electromechanical Steering, Suspension, Drive and Brake Modules[C]. IEEEVehicular Technology Conference,2002.
    [14] Go Nagaya. In-Wheel Motor System. US Patent, Patent No.:US7,287,611B2,2007.
    [15] Andy Watts, Andrew Valance, Andrew Whitehead, etc. The Technology and Economics ofIn-wheel-Motors[C]. SAE Paper,2010-01-2307.
    [16] http://www.greencar.com/articles/michelin-hub-electric-drive.php
    [17] Huihuan QIAN,Tin Lun LAM,Weimin LI,Chenggang XIA,and Yangshen XU.System andDesign of an Omini-drectional Vehicle[C].International Conference on Robotics andBiomimetics,2009.
    [18] Huihuan Qian, Guoqing Xu, Jingyu Yan, etc. Enenrgy Management for Four-WheelIndependent Driving Vehicle[C]. IEEE/RSJ International Confernce. on Intelligent Robots andSystem,2010.
    [19] Lu Xiong, Zhuping Yu and Yufeng Meng. Vehicle Dynamic Control for a4In-Wheel-MotoredEV based on Identification of Tire Cornering Stiffness[C].AVEC10,2010.
    [20]余卓平,姜炜,张立军.四轮轮毂电机驱动电动汽车扭矩分配控制[J].同济大学学报(自然科学版),2008,36(8):1115-1119.
    [21]熊璐,余卓平.轮毂电机驱动电动汽车轮毂电机扭矩分配算法的仿真和评价[J].计算机辅助工程,2010,19(1):27-31,39.
    [22]邹广才,罗禹贡,李克强.四轮独立电驱动车辆全轮纵向力优化分配方法.清华大学学报(自然科学版),2009,49(5):719-722,727.
    [23]王博,罗禹贡等.基于控制分配的四轮独立电驱动车辆驱动力分配算法[J].汽车工程,2010,32(2):128-132.
    [24]范晶晶,罗禹贡,张海林等.全轮独立电驱动车辆双重转向控制策略的研究[J].汽车工程,2011,33(5):369-372.
    [25]王庆年,张缓缓,靳立强.四轮独立驱动电动车转向驱动的转矩协调控制[J].吉林大学学报(工学版),2007,37(5):985-989.
    [26]王庆年等.用于电动轮驱动汽车的差动助力转向[J].吉林大学学报(工学版),2009,39(1):1-6.
    [27]李刚,宗长富,陈国迎等.线控四轮独立驱动轮毂电机电动车集成控制[J].吉林大学学报(工学版),2012,42(4):796-802.
    [28]陈国迎.四轮独立线控电动汽车试验平台搭建与集成控制策略研究[D].吉林大学,2012.
    [29]赵艳娥,张建武.基于滑模控制的四轮驱动电动汽车稳定性控制[J].上海交通大学学报,2009,43(10):1526-1530.
    [30]杨福广.4WID/4WIS电动车辆防滑与横摆稳定性控制研究[D].山东大学,2010.
    [31]马雷,刘晶等.四轮独立驱动电动汽车驱动力最优控制方法[J].汽车工程,2010,32(12):1507-1062.
    [32]明守政,田浩.电动轮独立驱动的汽车的R-v控制策略[J].系统仿真学报,2009,21(24):7883-7890.
    [33]周勇,李声晋,田海波等.四轮独立驱动电动车的ABS控制方法[J].汽车工程,2007,29(12):1046-1050.
    [34]李信梅.基于磁阻转矩的高功率密度永磁轮毂电机的设计研究[D].哈尔滨:哈尔滨工业大学,2008.
    [35] http://www.chinaedrive.com/product_list.asp?id=28
    [36]齐志权.汽车ABS/ASR/ACC集成系统中ABS控制技术的研究.北京:北京理工大学,2004
    [37]余卓平,高晓杰.车辆行驶过程中的状态估计问题综述[J].机械工程学报,2009,5(49):20-33.
    [38] Zhang J. Robust sliding mode observer for automatic steering vehicles[C]. IEEE IntelligentTransportation Systems Conference,2000:85-90.
    [39]赵林辉,刘志远,陈虹.一种车辆状态滑模观测器的设计方法[J].电机与控制学报,2009,13(4):565-570.
    [40] Kiencke U, Daiss A. Observation of lateral vehicle dynamics[J]. Control Engineering Practice,1997,5(8):1145-1150.
    [41] Daiss A, Kiencke U. Estimation of vehicle speed fuzzy-estimation in comparison withKalman-filtering[C]. Proceedings of the4th IEEE Conference on Control Application,1995.
    [42] Matthew C Best and Timothy J Gordon. Combined state and parameter estimation of vehiclehandling dynamics[C]. AVEC2000,2000.
    [43] Song K, Uchanski M., Hedrick K. Vehicle Speed Estimation Using Accelerometer and WheelSpeed Measurements[C].SAE Paper,2002-01-2229.
    [44] T A Wenzel, K J Burnham, M V Blundell and R A Williams. Dual extended Kalman filter forvehicle state and parameter estimation[J]. Vehicle System Dynamics,2006,2(24):153-171.
    [45] S.Antonov, A.Fehn, A.Kugi. Unscented Kalman filter for vehicle state estimation[J]. VehicleSystem Dynamics,2011,9(49):1497-1520.
    [46]高镇海,郑南宁,程洪.基于车辆动力学和Kalman滤波的汽车状态软测量[J].系统仿真学报,2004,16(1):22-24.
    [47]王仁广,刘昭度,齐志权,马岳峰.基于自适应卡尔曼滤波算法确定汽车参考车速[J].农业机械学报,2006,37(4):9-11,41.
    [48]宗长富,胡丹,杨肖,潘钊.基于扩展卡尔曼滤波的汽车行驶状态估计[J].吉林大学学报工学版,2009,39(1):7-11.
    [49]胡丹.基于双扩展卡尔曼滤波的汽车的状态与路面附着系数估计算法研究[D].长春:吉林大学,2009.
    [50]林棻,赵又群.基于双重扩展自适应卡尔曼滤波的汽车状态和参数估计[J].中国机械工程学报,2009,6(20):750-755.
    [51]时艳茹.基于UKF滤波的汽车纵向和侧向速度估计算法研究[D].吉林:吉林大学,2011.
    [52]余卓平,左建令,张立军.路面附着系数估算技术发展现状综述[J].汽车工程,2006,28(6):546-549.
    [53] Hideo Sado, Shin-ichiro Sakai, Yoichi Hori. Road Conditon Estimation for Traction Control inElectric Vehicle[C]. ISIE99Proceedings of the IEEE International Symposium on IndustrialElectronics,1999.
    [54] Hiroaki Kataoka, Hideo Sado, Shin-ichiro Askai, Yoichi Hori. Optimal Slip Ratio Estimator forTraction Control System of Electric Vehicle Based on Fuzzy Inference[J]. The Transactions ofThe Institute of Electrical Engineers of Japan,2000,120(4):581-586.
    [55] Kimihisa Furukawa, Yoichi Hori. Recent Development of Road Condition EstimationTechniques for Electric Vehicle and their Experimental Evaluation using the Test EV"UOTMarch I and II"[C]. IEEE Industrial Electronics Society,2003,1(2):925-930.
    [56]杜志强.基于模糊控制的四轮驱动电动汽车防滑控制技术[D].上海:同济大学汽车学院,2006.
    [57]王菊.基于四轮轮边驱动电动车的路面识别方法研究[D].上海:同济大学,2006.
    [58]左建令.基于四轮驱动电动车的路面识别及驱动防滑研究[D].上海.同济大学,2006.
    [59]余卓平,左建令,陈慧.基于四轮轮边驱动电动车的路面附着系数估算方法[J].汽车工程,2007,29(2):141-145.
    [60]张乐祎.基于四驱电动汽车的路面附着系数估计方法研究[D].上海.同济大学,2008.
    [61]刘力,罗禹贡,李克强.基于归一化轮胎模型的路面附着系数观测[J].清华大学学报(自然科学版),2009,49(5):116-120.
    [62]吴利军,王跃建,李克强.面向汽车纵向安全辅助系统的路面附着系数估计方法[J].汽车工程,2009,31(3):239-243.
    [63]张弦,罗禹贡,范晶晶等.电动车辆驱动防滑控制方法的研究[J].车辆与动力技术,2007,(3):13-19.
    [64]赵林辉.车辆状态和路面附着系数的非线性估计方法研究[D].哈尔滨:哈尔滨工业大学,2009.
    [65]约尔根.汽车电子手册[M].北京:电子工业出版社,2010.
    [66]任少卿,陈慧岩,黄江波,宋士伟.汽车防滑控制系统(ABS/ASR)及其发展趋势[J].上海汽车,2005,11:37-41.
    [67]周勇.四电动轮独立驱动电动车ABS_ASR控制策略研究[D].西安:西北工业大学,2006.
    [68]王博.四轮独立电驱动车辆实验平台及驱动力控制系统研究[D].清华大学:北京,2009.
    [69] Hori Y. Future Vehicle Driven by Electricity and Control—Research onFour-Wheel-Motored“UOTElectric March II”[C]. IEEE Transactions on Industrial Electronics,2004.
    [70] HanShun Tan, YuenKwok Chin. Vehicle antilock braking and traction control:a theoreticalstudy[J]. International Journal of Systems Science,2007,23(3):351-365.
    [71]葛英辉,倪光正.采用滑模变结构的电动车最佳滑移率控制的研究[J].江南大学学报(自然科学版),2004,3(5):454-459,481.
    [72] P.Khatun, C.M. Bingham, P.H.Mellor. Comparison of Control Methods for Electric VehicleAntilock Braking/Traction Control Systems[C]. SAE paper,2001-01-0596.
    [73]周斯加,罗玉涛,黄向东等.4WD电动车的滑转率识别及防滑控制[J].华南理工大学学报(自然科学版),2008,36(6):95-100,107.
    [74] Masao Nagai, Sachiko Yamanaka, Yutaka Hirano. Integrated Control of Active Rear WheelSteering and Yaw Moment Control Using Braking Force[J]. JSME International Journal. SeriesC,1999,42(2):301-308.
    [75] Nagai M, Shino M, Gao F. Study on integrated control of active front steer angle and directyawmoment[J]. JSAE Review.2002,23(3):309-315.
    [76] Prter E. Rieth and Ralf Schwarz. ESCⅡ-ESC With Active Steering Intervention[C]. SAEPaper,2004-01-0260.
    [77] Junmin Wang, Raul G.Longoria. Coordinated Vehicle Dynamics Control with ControlDistribution[C].2006American Control Conference, Minneapolis, Minnesota,2006.
    [78] Junjie He,D A Crolla,M C Levesley,and W J Manning. Coordination of active steering,driveline and braking for integrated vehicle dynamics control[J]. Proc.IMechE,2006,220:1401-1421.
    [79]沈晓鸣.基于广义执行器-受控对象的车辆底盘集成控制的研究[D].上海:上海交通大学,2006.
    [80]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[D].上海:上海交通大学,2008.
    [81]武建勇,唐厚君,欧阳涛,许香秀,刘伟.基于AFS与DYC集成控制提高车辆操纵稳定性的研究[J].系统仿真学报,2009,21(5):1227-1232.
    [82]杨秀建,王增才,路玉峰等.极限工况下汽车稳定性的最优保性能控制[J].农业机械学报,2008,39(6):38-41.
    [83]刘力,罗禹贡,江青云,李克强.基于广义预测理论的AFS/DYC底盘一体化控制[J].汽车工程,2011,33(1):52-55.
    [84]朱冰,李幼德,赵健,李静.基于多变量频域控制方法的车辆底盘集成控制[J].农业机械学报,2010,41(1):13-17.
    [85]李刚,宗长富,姜立勇,梁赫奇,洪伟.主动前轮转向与直接横摆力矩集成控制算法[J].吉林大学学报(工学版),2011,41(2):54-58.
    [86] Gao Y M, Chen L H and Ehsani M. Investigation of the Effectiveness of Regenerative Brakingfor EV and HEV[C]. SAE Paper,1999-01-2910.
    [87] Y.Gao, L.Chu, and M.Ehsani. Design and control principle of hybrid braking system forEV,HEV and FCV[C]. IEEE VPPC,2007.
    [88] Lee J. Rotating Inertia Impact on Propulsion and Regenerative Braking for Electric MotorDriven Vehicles[D]. Blacksburg: Mechanical Engineering of Virginia Polytechnic Institute andState University,2007.
    [89]王鹏宇.混合动力轿车再生制动系统研究[D].长春:吉林大学,2008.
    [90]周磊,罗禹贡等.电动汽车回馈制动与防抱死制动集成控制[J].清华大学学报,2009,5(49):728-732.
    [91]刘宠誉,周荣,乔维高.电动汽车再生制动特点及控制策略[J].汽车工程师,2009,10:38-40.
    [92]陈庆樟,何仁,赵连生.汽车能量再生制动防抱死集成控制方法研究[J].中国机械工程,2009,20(2):245-248.
    [93]王军,熊冉,杨振迁.纯电动大客车制动能量回收系统控制策略研究[J].汽车工程,2009,10(31):932-937.
    [94]刘涛,姜继海.静液传动混合动力车辆再生制动研究[J].哈尔滨工业大学学报,2010,9(42):1449-1453.
    [95] Yan Chen, Junmin Wang. A Global Optimization Algorthm for Energy-Efficient ControlAllocation of Over-Actuated Systems[C].2011American control conference on O’Fareell street,2011.
    [96] Xiaoyu Huang, Junmin Wang. Nonlinear Model Predictive Control for Improving EnergyRecovery for Electric Vehicles during Regenerate Braking[C].201150th IEEE conference onDesicion and Control and European Control conference,2011.
    [97]余卓平等.四驱电动车经济性改善的最优转矩分配控[J].同济大学学报,2005,33(10):1355-1361.
    [98]张继红.纯电动汽车电液制动系统再生制动控制策略研究[D].吉林大学硕士,2011.
    [99] Sakai SHin-Ichiro, Sado Hideo, Hori Yoichi. Dynamic driving/braking force distribution inelectric vehicles with independently driven four wheels[J]. Electrical Engineering in Japan,2002,138(1):79-89.
    [100] Motoki Shino, Masao Nagai. Motion control of micro-scale electric vehicle by DYCconsidering lane marker information[C].Proceedings of the8th IEEE International Workshop onAdvanced Motion Control, Kawasaki,2004.
    [101]靳立强.基于四轮独立驱动电动汽车的动力学仿真模型[J].系统仿真学报,2005,17(12):3053-3066.
    [102]宗长富,刘经文,郑宏宇,等.4WID/4WIS电动车建模和特殊工况仿真[J].汽车工程,2011,33(10):829-833.
    [103]管欣,郭孔辉.实时仿真的29自由度车辆动力学模型[R].汽车动态模拟国家重点实验室技术报告,2001.
    [104] E.Silani, S.M.Savaresi, S.Bittanti, A.Visconti and F.Farachi. The Concept ofPerformance-Oriented Yaw-Control System: Vehicle Model and Analysis[C]. SAE Paper2002-01-1585.
    [105]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [106] Chinar Ghike, Taehyun Shim.14Degree-of-Freedom Vehicle Model for Roll DynamicsStudy[C]. SAE paper,2006-01-1277.
    [107]郭孔辉.汽车操纵动力学原理[M].南京:江苏科学技术出版社,2011.
    [108] Thomas D.Gillespie.车辆动力学基础[M].清华大学出版社,2006.
    [109]余志生.汽车理论(第5版)[M].机械工业出版社,2010.
    [110]丁海涛,郭孔辉,李飞,等.基于加速度反馈的任意道路和车速跟随控制驾驶员模型[J].机械工程学报,2010,5(10):116-120.
    [111] Guo K and Ren L. A non-steady and non-linear tire model under large lateral slip condition[J].SAE Technical Paper,2000-01-0358.
    [112]郭孔辉.用于汽车全工况动力学分析的非稳态轮胎六分力模型[R].汽车动态模拟国家重点实验室内部报告.长春:吉林工业大学,1997.
    [113]郭孔辉.各向摩擦系数不同条件下轮胎力学特性的统一理论模型[J].中国机械工程,1996,7(4):90-93.
    [114]李宁.复杂工况下轮胎侧偏特性仿真模型研究[D].长春:吉林大学汽车工程学院,2007.
    [115] Pacejka H B and Bakker E. The magic formula tyre model [J]. Vehicle System Dynamics,1991,21.
    [116] Pacejka H B and Besselink I J M. Magic Formula tyre model with transient properties [J].Vehicle System Dynamics,1997,27:65-79.
    [117] Hans B, Pacejka. Tyre and Vehicle Dynamics [M]. Elsevier, UK,2006.
    [118] Josko Deura,Danijel Pavkovic,Gilberto Burgio,et al. A model-based traction control strategynon-reliant on wheel slip information[J]. Vehicle System Dynamics,2011,49(8):1245-1265.
    [119]赵又群,林棻.基于UKF算法的汽车状态估计[J].中国机械工程,2010,21(5):615-619,629.
    [120]邓自立.卡尔曼滤波与维纳滤波—现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [121] Greg Welch, Gary Bishop. An Introduction to the Kalman Filter [R]. TR95-041Chapel Hill,NC27599-3175,2000.
    [122] Jouni Hartikainen and Simo Sarkka. Optimal filtering with Kalman filters and smoothers–aManual for Matlab toolbox EKF/UKF[M]. Laboratory of Computa-tional Engineering, HelsinkiUniversity of Technology,2007.
    [123] JohnT.Tielking,Naveen K.Mital.A Comparative Evaluation of Five Traction Tire Models
    [R].Interim Document6,Jan.1974,Highway Safety Research Institute, University of Michigan
    [124] Jong Hyeon Park,Chan Young Kim. Wheel slip control in traction control system for vehiclestability[J]. Vehicle System Dynamics,1999,31(4):263-278.
    [125] Hiroshi Fujimoto, Kiyoshi Fujii, Naoki Takahashi. Vehicle stability control of electric vehiclewith slip-ratio and cornering stiffness estimation[C].Proceedings of the2007IEEE/ASMEInternational Conference onAdvanced Intelligent Mechatronics,2007.
    [126]石辛民,郝整清.模糊控制及Matlab仿真[M].北京:清华大学出版社,2008.
    [127] M Burckhat,Fahrwerktechnik.RadscIlupf-Regelsysteme [M].Wrzburg:VogelVerlag,1993.
    [128] Shino Motoki, Nagai Masao. Motion control of micro-scale electric vehicle by DYCconsidering lane marker information[C].8th IEEE International Workshop on Advanced MotionControl,2004.
    [129] Geng Cong, Mostefai Lotti, Denai Mouloud, Hori Yoichi. Direct yaw-moment control of anin-wheel-motored electric vehicle based on body slip angle fuzzy observer[J]. IEEE Transactionson Industrial Electronics,2009,56(5):1411-1419.
    [130] Shino, M., Nagai, M. Vehicle handling and stability control by integrated control of direct yawmoment and active steering. AVEC02,2002.
    [131] Goodarzi, A., Alirezaei, M. A new fuzzy–optimal integrated AFS/DYC control strategy.AVEC06,2006.
    [132] Xiujian Yang, Zengcai Wang, Weili Peng. Coordinated control of AFS and DYC for vehiclehandling and stability based on optimal guaranteed cost theory [J]. Vehicle System Dynamics,2009,47(1):57–79.
    [133] Koehn Philip, Eckrich Michae.l Active Steering the BMWApproach Towards ModenSteeringTechnology[C]. SAEPaper2004-01-1105.
    [134] E. F. Camacho, C. Bordons. Model Predictive Control[M].springer-Verlag Berlin HeidelbergNew York,1998.
    [135] Sehyun Chang, Tim J. Gordon. Improvement of Vehicle Dynamics using Model-basedPredictive Control[C]. SAE Paper,2009-01-0427.
    [136]席裕庚.预测控制[M].北京:国防工业出版社,1993.
    [137] Anton T.Van Zanten, Rainer Erhardt, Klaus Landesfeind, Georg Pfaff. VDC SystemDevelopment and Perspective[C]. SAE Paper,980235.
    [138] Rajesh Rajamani, Vehicle dynamics and control [M]. New York: Springer,2006.
    [139] Peng He, Yoichi Hori. Experimental Evaluation of Dynamic Force Distribution Method for EVMotion Control[C]. Fourth Power Conversion Conference-NAGOYA,2007.
    [140]续丹,王国栋,曹秉刚,冯晓辉.独立驱动电动汽车转矩优化分配策略研究[J].西安交通大学学报,2012,46(3):y1-y5
    [141]李国斐,林逸,何洪文.电动汽车再生制动控制策略研究[J].北京理工大学学报,2009,29(6):520-524.
    [142]刘清河,孙泽昌,王鹏伟,刘曦东.电动汽车电液并行制动系统研究[J].汽车工程,2008,30(6):527-530
    [143] Xiaoyu Huang, Junmin Wang. Nonlinear Model Predictive Control for Improving EnergyRecovery for Electric Vehicles during Regenerate Braking[J].201150th IEEE conference onDesicion and Control and European Control conference, Orlando, FL,USA,December12-15,2011:7458-7463
    [144]宗长富,张继红,陈国迎等.四轮驱动与前轮驱动电动车的再生制动性能[J].吉林大学学报(工学版),2010,40(增刊):24-28.
    [145]张磊.电动轮车再生制动的研究[D].武汉:武汉理工大学,2012.
    [146]郑宏宇.四轮独立驱动电动汽车再生制动控制策略.吉林大学学报(工学版),2012.(网络优先出版)
    [147]方泳龙.汽车制动理论与设计[M].北京:国防工业出版社,2005.
    [148]张娟文.电动汽车再生制动力的研究与应用[D].哈尔滨:哈尔滨工业大学,2011.
    [149]靳立强.电动汽车电动轮驱动理论与应用技术[D].吉林:吉林大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700