ISG混合动力城市客车动力系统集成与优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车(HEV)是一种低能耗、低排放、技术成熟、成本适中、兼具纯电动汽车和传统内燃机汽车优点的新能源汽车。同时,混合动力汽车已被证实是短期内可以取代传统内燃机车的清洁汽车。混合动力轿车的应用已经得到迅速的推广,但是混合动力城市客车和商用车的开发和研究起步较晚,还不成熟。由于ISG混合动力系统以其对原车改动小、适应性强、可靠性好、易于产业化推广等特点,近年来,不少企业与高校合作进行了ISG混合动力汽车的开发并取得实质性进展。
     混合动力汽车动力系统的集成与优化是混合动力汽车开发的关键技术之一,是提高混合动力汽车综合性能的前提条件。本课题结合厂校重大合作项目“混合动力城市公交车的开发”,对ISG混合动力客车的动力系统进行了优化匹配和设计。根据ISG混合动力客车的工作特点和功能要求,提出了一种基于混合度的高效混合动力系统匹配优化方法,该方法可以最大限度地缩短开发时间,降低开发成本。主要从以下三个方面展开:根据ISG混合动力客车的工作特点和性能要求,初步确定了混合动力客车发动机、ISG电机和电池的选型;采用模块化的思想,在Matlab/Simulink环境下,建立了混合动力客车前向仿真平台和整车控制策略模型,并对该模型进行了试验验证;利用该仿真平台,对混合动力汽车的混合度进行了深入的研究和优化,确定最佳混合度,实现城市混合动力客车动力总成参数的优化匹配。
     混合动力总成系统参数匹配与多能源管理策略的优劣对混合动力汽车的性能起到关键的作用。就目前研究状态来看,对既定的混合动力总成参数匹配进行评估,对混合动力系统的能量分配控制策略做出评价是一个迫切需要解决的问题。评估混合动力性能的关键指标就是燃油经济性及排放性能。基于工程经验的控制策略,对燃油经济性,排放性及两者的最佳平衡往往难以给出确切的答案。本文构建了带权值的油耗和排放的目标函数,利用动态规划优化算法DP(Dynamic Programming),求解该目标函数的最小值,对混合动力总成参数的优化结果进行验证,对燃油经济性和排放改善的潜力进行了分析,从而达到对能量分配策略的分析与评估的目的。由于DP优化算法的控制变量和状态变量维数多,迭代次数多,计算量巨大,从而计算速度慢,费时费力。本文发现并利用控制变量和状态变量的之间的确定关系,对常规的动态算法进行改进,大大提高了运算速度与精度。由于动态规划是一种基于固定工况的全局优化方法,而实际工况具有随机性和不可预测性的特点,因此动态规划算法并不具备实时控制的特点,不能实现在线实时优化控制。本文对动态规划的离线优化仿真结果进行了分析,从中提取规律,制定了一个基于动态规划结果的实时控制策略RTCS-DP(Realtime Control Strategy based on Dynamic Programming),取得了较好的效果。
     在本文的最后,对ISG混合动力总成的优化匹配结果和RTCS-DP控制策略进行了台架试验和实车试验。关键零部件的台架试验为混合动力系统建模和控制策略的设计提供了必要的数据。道路试验结果表明,在保证SOC平衡的条件下,混合动力系统实现预期的工作模式和模式间的平滑切换。相对传统汽车,本项目提出的ISG混合动力总成及RTCS-DP在中国典型城市工况下燃油经济性提高近22.7%,实车试验结果和仿真结果非常接近。测试结果表明,本文所提出的混合动力系统进行性能匹配与优化方法是可行的,不但加快了开发进度,而且还节省了大量的开发费用,对混合动力汽车的研究和开发具有一定的应用价值和学术价值。
Hybrid Electric Vehicle (HEV) is a new energy vehicle with high fuel economy, low emissions and low cost compared with other vehicles. HEVs include the advantages of pure electric vehicle and conventional engine-only powered vehicles and are assumed to be the most promising alternative to a conventional vehicle in the near future. The hybrid electric passage cars have become available in the market and widely used in all over the world, while the technology research of hybrid electric bus and commercial vehicle is not well developed. ISG (Integrated Starter Generator) HEV is newly developed powertrain with high reliability, low cost and easy to accept for the market. Many company, university and institutes are engaged in this research and development with great achievement.
     The powertrain integration and optimization is one of the key technologies for hybrid electric vehicle to improve the fuel economy and emissions. Based on the university and factory cooperative project“The Development of Hybrid Electric Bus”, a high efficient system integration and optimization method is proposed according to function requirement and ISG hybrid electric bus characteristics. This method can shorten both the development time and cost. It can be summarized as followings. According to the characters and performance requirements, the type of engine, ISG and battery are selected; Hybrid electric bus simulation platform and control strategy are modeled and validated in Matlab/Simulink environment; the hybrid factor of the hybrid electric bus is optimized to determine the power of engine and motor.
     According to ISG hybrid electric bus characteristics and performance requirement, the type and candidate size of engine, ISG motor and battery are selected. A simulation platform of hybrid electric bus is developed and validated in Matlab/Simulink/Stateflow environment with a Hybrid Control Unit (HCU) model. The control strategy and powertrain parameter match are researched through the simulation over the typical urban driving cycles to select the most suitable power of ISG powertrain.
     For a particular hybrid electric vehicle, the hybrid powertrain and control strategy have important effect for the fuel economy and emission performance. Whether it can reduce fuel consumption and emission or not and how much is them are always problem. For a specific engineering experience based control strategy, it is difficult to determine whether it is the most optimization control strategy or not and whether is it fully explored the potential of hybrid electric vehicle or not. In order to investigate the potential of diesel engine hybrid electric vehicles in fuel economy improvement and emissions reduction, a Dynamic Programming (DP) based supervisory controller is developed to allocate the power requirement between ICE and batteries with the objective of minimizing a weighted cost function over given drive cycles. The DP is time and energy consumption algorithm with massive of control and state variables. The relationship between the control variable and state variable is found and a new DP algorithm is proposed to shorten the calculation time and improve the accuracy in this dissertation. The DP is not a real-time optimization algorithm which is based on a given driving cycle to explore the global optimization while the real road driving is random and unpredictable. The offline DP optimization results can be analyzed and some implemental rules or laws can be extracted from the results and applied to real-time control strategies. A real-time control strategy is proposed based on the DP optimization results. That is RTCS-DP ( Real-time Control Strategy based on Dynamic Programming) control strategy which is near global optimization control strategy.
     The bench test and field test results of the ISG hybrid electric bus are presents at the last part of this dissertation. The bench tests results of the components are validated the components model and control strategy. The tests are undertaken on dynamometer and real road test. Compared with the conventional bus, the ISG bus fuel economy has improved 21.7% under the China Urban Driving Cycle with the SOC sustainable. The test results demonstrate that the method of system integration and optimization proposed in this dissertation is useful in speed up the hybrid electric vehicle development and improving the domestic research and development of the HEV.
引文
[1]徐剑.中国历年石油生产、进口与依存度统计及预测.环球能源网2007.6
    [2]梁树和,中国石油进出口贸易政策介绍. 2006.
    [3]俞劲柏,柴油化是发展路线-陈清泰呼吁推广柴油车. http://auto.sohu.com/20060928/n245576592.shtml, 2006.
    [4]汪卫东,王建萍,李纯菊,清洁汽车的发展及对策,东风汽车工程研究院, 2000年度信息研究课题. 2000.
    [5]2006年国民经济和社会发展统计公报. 2007.3.
    [6]陈清泉,孙逢春,祝嘉光,现代电动汽车技术. 2002,北京理工大学出版社.
    [7]Williamson, S.S.,A. Emadi, Comparative Assessment of Hybrid Electric and Fuel Cell Vehicles Based on Comprehensive Well-to-Wheels Efficiency Analysis. 2006. 54(3): p. 856-862.
    [8]Brinkman, N., Well-to-Wheel Energy Use and Greenhouse Gas Emissions of Advanced Fuel/Vehicle Systems - North American Analysis–. June 2001. p. 89.
    [9]Demird?ven, N.,J. Deutch, Hybrid cars now, fuel cell cars later. Science, 2004. 305(974).
    [10]PHILIP Sharer, A.R., Benefits of hybridization for class 2B trucks[A].Proceedings of 2001 Joint ADVISOR/PSAT Vehicle Modeling Users Conference[C]. Southfield, Michigan,August,2001.
    [11]Morita, K., Automotive power source in 21st century. JSAE Review, 2003. 24(1): p. 3-7.
    [12]徐贵宝,王震坡,张承宁,电动汽车续驶里程能量计算和影响因素分析.车辆与动力技术, 2005. 98(2): p. 53-58.
    [13]Clay, K.G., An Analysis of the Energy Efficiency, Range, and Attributable Emissions of Electric Vehicle, and An Assessment of U.S Department of Energy Electric and Hybrid Vehicle Program from 1976-2000. 2004. The University of Michigan. p. 256.
    [14]孙泽昌,魏学哲,钟再敏,燃料电池汽车动力系统功率平衡控制策略[J].机械工程学报, 2005(12).
    [15]钟再敏,魏学哲,孙泽昌,燃料电池汽车动力总成控制策略[J].同济大学学报(自然科学版), 2004(6).
    [16]孙泽昌,邹广楠,魏学哲, etc.,燃料电池汽车中直流—直流变换器仿真建模[J].同济大学学报(自然科学版), 2005(1).
    [17]严菁,马建新,万钢,用于燃料电池汽车重整器的CO脱除技术[J].天然气化工(C1化学与化工), 2002(5).
    [18]Mohrdieck, C.,A. Docter, Technical status and outlook for fuel cell drive systems at DaimlerChrysler. VDI Berichte, 2006(1975): p. 291-300.
    [19]Fukuo K, Fujimura A, Saito M, etc., Development of the ultra-low-fuel-consumption hybrid car- INSIGHT. JSAE Review, 2001. 22(1): p. 95-103.
    [20]Teratani, T., K. Kuramochi, H. Nakao, etc. Development of Toyota Mild Hybrid System (THS-M) with 42V PowerNet. IEEE International Electric Machines and Drives Conference, 2003..
    [21]杨颖子,徐鸣谦,电动汽车用直流无刷轮毂电机驱动器的保护措施.中国工程机械学报, 2005. 3(01): p. 88-91.
    [22]余卓平,张立军,熊璐,四驱电动车经济性改善的最优转矩分配控制.同济大学学报(工学版), 2005. 33(10): p. 1355-1361.
    [23]Chan, C.C., The state of the art of electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE, 2007. 95(4): p. 704-718.
    [24]Okamoto, K., Overview of current and future hybrid technology Proc of the Symposium on Advanced Automotive Powerplants and Energy Resources, 2002. Beijing, China: p. 89-94.
    [25]敖国强,黄伟山,龚秋明,等.,单轴并联式混合动力汽车性能仿真.车用发动机, 2006. 161(1): p. 29-33.
    [26]耿聪,刘溧,张欣,等., EQ6110混合动力电动汽车再生制动控制策略研究.汽车工程, 2004. 26(03): p. 253-256.
    [27]耿聪,张欣,张良,等.,混合动力电动公交汽车(HEB)再生制动的控制策略与性能仿真.高科技通讯, 2004(08): p. 80-83.
    [28]孙逢春,张承宁,祝嘉光,电动汽车—21世纪的重要交通工具.北京理工大学出版社,1997.
    [29]“十五”863计划书—电动汽车重大专项. 2001, 11.
    [30]Lin, C., B. Qiu,Q. Chen, Comparison of current input equivalent circuit models of electrical vehicle battery. Chinese Journal of Mechanical Engineering, 2005. 41(12): p. 76-81.
    [31]Yu, X.,H. He, Modeling of NiMH power battery pack. Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics, 2007. 39(2): p. 244-248.
    [32]Chen, C.H., J. Liu, M.E. Stoll, etc., Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. Journal of Power Sources, 2004. 128(2): p. 278-285.
    [33]Johnson, V.H., Battery performance models in ADVISOR. Journal of Power Sources, 2002. 110(2): p. 321-329.
    [34][Anon], NRC reports PNGV needs more resources, refocused effort. Mrs Bulletin, 1997. 22(7): p. 12-12.
    [35]Potter, B.G., T.Q. Duong,I. Bloom, Performance and cycle life test results of a PEVE first-generation prismatic nickel/metal-hydride battery pack. Journal of Power Sources, 2006. 158(1): p. 760-764.
    [36]Nelson, R.F., Power requirements for batteries in hybrid electric vehicles. Journal of Power Sources, 2000. 91(1): p. 2-26.
    [37]Gokasan, M., S. Bogosyan,D.J. Goering, Sliding mode based powertrain control for efficiency improvement in series hybrid-electric vehicles. IEEE Transactions on Power Electronics, 2006. 21(3): p. 779-790.
    [38]Rajashekara, K., J.A. Macbain,M.J. Grieve. Evaluation of SOFC Hybrid Systems for Automotive Propulsion Applications. IEEE.Industry Applications Conference, 2006. 41st IAS Annual Meeting.
    [39]Syed, F.U., Y. Hao, K. Ming, etc. Rule-Based Fuzzy Gain-Scheduling PI Controller to Improve Engine Speed and Power Behavior in a Power-split Hybrid Electric Vehicle. Fuzzy Information Processing Society, 2006. NAFIPS 2006. Annual meeting of the North American. 2006.
    [40]Carpenter, J.A., The FreedomCAR and hydrogen fuels initiative and magnesium. Magnesium - Science, Technology and Applications, 2005, p. 17-20.
    [41]NREL, Heavy-Duty Fuel Cell/Hydrogen Vehicle Projects. www1.eere.energy.gov/vehiclesandfuels/avta/overview.html, 2006.
    [42]童毅,并联式混合动力系统动态协调控制问题的研究.清华大学. p. 167.
    [43]刘明辉,混合动力客车整车控制策略及总成参数匹配研究,汽车学院. 2005.吉林大学. p. 141.
    [44]Yoo, H., S.K. Sul, Y. Park, etc., System Integration and Power-Flow Management for a Series Hybrid Electric Vehicle Using Supercapacitors and Batteries. IEEE Transactions on Industry Applications, 2008. 44(1): p. 108-114.
    [45]Ehsani M, Gao Yimin,Butler K L, Application of electrically peaking hybrid (ELPH) propulsion system to a full-size passenger car with simulated designverification. IEEE Transactions on Vehicular Technology, 1999. 48(6): p. 1779-1787.
    [46]Kimura A, Abe T,Sasaki S, Drive force control of a parallel-series hybrid system. JSAE Review, 1999. 20(3): p. 337-341.
    [47]Lin, C.C., Peng, H., J.W, Kang.J. M. , Power Management Strategy for a Parallel Hybrid Electric Truck. . IEEE Tran. Control systems technology 2003. 11(6): p. 839-849.
    [48]Rahman Z, B.K.L., Ehsani M. A comparison study between two parallel hybrid control concepts. SAE Paper 2000-01-0994, 2000.
    [49]Paganelli G,Tateno M, Control development for a hybrid-electric sport-utility vehicle: strategy, implementation and field test results. Proceeding of the American Control Conference,Arlington, VA, USA,2001: p. 5064-5069.
    [50]Paganelli G, Ercole G, Brahma A, etc., General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Review, 2001. 22(4): p. 511-518.
    [51]Johnson V H, Wipke K B,Rausen D J, HEV control strategy for real-time optimization of fuel economy and emissions. SAE Paper 2000-01-1543, 2000.
    [52]Schouten, N.J., M.A. Salman,N.A. Kheir, Fuzzy logic control for parallel hybrid vehicles. IEEE Transactions on Control Systems Technology, 2002. 10(3): p. 460-468.
    [53]Andres, N., L. Oscar, J.A. Luis, etc. Development of an Optimal Fuzzy Controller for Novel Power Architectures in Automotive Applications. 12th International Power Electronics and Motion Control Conference. 2006.
    [54]Hajimiri, M.H.,F.R. Salmasi. A Fuzzy Energy Management Strategy for Series Hybrid Electric Vehicle with Predictive Control and Durability Extension of the Battery. Electric and Hybrid Vehicles, IEEE Conference ICEHV '06. 2006.
    [55]Hyeoun-Dong, L., K. Euh-Suh, S. Seung-Ki, etc., Torque control strategy for a parallel-hybrid vehicle using fuzzy logic. IEEE Industry Applications Magazine, 2000. 6(6): p. 33-38.
    [56]Jong-Seob, W.,R. Langari, Intelligent energy management agent for a parallel hybrid vehicle-part II: torque distribution, charge sustenance strategies, and performance results. IEEE Transactions on Vehicular Technology, 2005. 54(3): p. 935-953.
    [57]Mukhitdinov, A.A., S.K. Ruzimov,S.L. Eshkabilov. Optimal Control Strategies forCVT of the HEV during a regenerative process. Electric and Hybrid Vehicles, 2006. ICEHV '06. 2006.
    [58]Abdollahi, A.D. An Intelligent Control Strategy in a Parallel Hybrid Vehicle. Electric and Hybrid Vehicles, IEEE Conference ICEHV '06. 2006.
    [59]Langari, R.,W. Jong-Seob. Integrated drive cycle analysis for fuzzy logic based energy management in hybrid vehicles. The 12th IEEE International Conference on Fuzzy Systems, 2003.
    [60]Kamiya, M., H. Ikeda, S. Shinohara, etc., Dala-collection and transmission system for automatic environmental tests, IEEE Industry Applications Magazine, 2000. 6(6): p. 39-48.
    [61]Galdi, V., A. Piccolo,P. Siano. A Fuzzy Based Safe Power Management Algorithm for Energy Storage Systems in Electric Vehicles. IEEE Vehicle Power and Propulsion Conference VPPC '06. 2006.
    [62]Aihua, W.,Y. Weizi. Design of Energy Management Strategy in Hybrid Vehicles by Evolutionary Fuzzy System Part I: Fuzzy Logic Controller Development. Intelligent Control and Automation, WCICA 2006..
    [63]Qishan, F., Y. Chengliang,Z. Jianwu. A transient dynamic model for HEV engine and its implementation for fuzzy-PID governor.. IEEE International Conference on. Vehicular Electronics and Safety, 2005.
    [64]Koo Euh Suh, Lee Hyeoun Dong, Sul Seung Ki, etc. Torque control strategy for a parallel hybrid vehicle using fuzzy logic. Industry Applications Conference, 1998. Thirty-Third IAS Annual Meeting. 1998.
    [65]Langari, R.,Won Jong Seob, Intelligent energy management agent for a parallel hybrid vehicle-part I: system architecture and design of the driving situation identification process. IEEE Transactions on Vehicular Technology, 2005. 54(3): p. 925-934.
    [66]Liu Yao Lun, Tong Chia-Chang, Jwo Wu-Shun, etc. Design an Intelligent Neural-Fuzzy Controller for Hybrid Motorcycle. North American Fuzzy Information Processing Society, 2007. NAFIPS '07. Annual Meeting of the. 2007.
    [67]Ao Guoqiang, Zhong Hu, Yang Lin, etc., Fuzzy Logic Based Control for ISG Hybrid Electric Vehicle. Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06), 2006: p. 274-279.
    [68]Baumann, B.M., W. Gregory, G.B. C., etc., Mechatronic design and control of hybrid electric vehicles. IEEE/ASME Transactions on Mechatronics, 2000. 5(1): p.58-72.
    [69]Schouten N. J., S., M. A. and Kheir, N. A., Fuzzy Logic Control for Parallel Hybrid Vehicles. . IEEE Tran. on control system technology. 10(3): p. 460- 468.
    [70]Wagener A., K.C., Seger P. et al. , Cost function based adaptive energy management in hybrid drivetrains Berlin,Germany. Proceedings of the 18th International Electric Vehicle Symposium, 2001.
    [71]Galdi V, I.L., Piccolo A, et al, Multiobjective optimization for fuel economy and emissions of HEV using the goal-attainment method. Proc of the 18th International Electric Vehicle Symposium, Berlin, Germany, 2001.
    [72]Bellman, R.E.,S.E. DREYFUS, Applied dynamic programming. Princeton University Press, New Jersey.
    [73]Bertsekas, D.P., Dynamic Programming and Optimal Control, 3rd Edition, Athena Scientific. 2005.
    [74]Bertsekas, D.P., Lecture slides on dynamic programming. Based on lectures given at MIT, 2002.
    [75]张欣,李国岫,宋建锋,等.,并联式混合动力汽车多能源动力总成控制单元的研究与开发.高技术通讯, 2003(2): p. 92-96.
    [76]Zeraoulia, M., M.E.H. Benbouzid,D. Diallo, Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study. IEEE Transactions on Vehicular Technology, 2006. 55(6): p. 1756-1764.
    [77]张欣,宋建锋,李国岫, HEV动力总成硬件在环仿真系统的研究与开发.高技术通讯, 2003(3).
    [78]杜雪飞,孙跃,混合电动车及其电气驱动系统.重庆大学学报(自然科学版), 2002(9).
    [79]王保华,张建武,罗永革,并联混合动力客车再生制动仿真研究.汽车工程2005.p.648-651.
    [80]季小尹,符向荣,王安丽,混合动力电动汽车用永磁无刷直流电机的设计与实现.微特电机, 2004(2).
    [81]邓亚东,高海鸥,王仲范, Insight混合动力电动汽车驱动系统建模与仿真.武汉理工大学学报. 2004(06).
    [82]徐顺余,高海鸥,邱国茂,等.,混合动力汽车车用镍氢动力电池分析.上海汽车, 2002(2).
    [83]Antoni Szumanowski,混合电动车辆基础,北京理工大学出版社,2001.11.
    [84]崔刚,阎立江,曲峰, CAN总线混合动力骄车电控系统的设计与实现.汽车工程2005(11).
    [85]Burke, A.F., Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE , 2007. 95(4): p. 806-820.
    [86]何小阳,计算机监控原理及技术.第1版.重庆大学出版社, 2003:123-126.
    [87]Rahman Z, B.K.L., Ehsani M, A comparison study between two parallel hybrid control concepts. SAE Paper 2000-01-0994, 2000.
    [88]Powell B K, B.K.E., Cikanek S R., Dynamic modeling and control of hybrid electric vehicle powertrain systems. IEEE Control Systems Magazine, 1998, 18(5): 17-33.
    [89]Wipke K B, C.M.R., Burch S D, ADVISOR 2.1: a user-friendly advanced powertrain simulation using a combined backward/forward approach. . IEEE Transactions on Vehicular Technology, 1999, 48(6): 1751-1761.
    [90]Markel T, B.A., Hendricks T, et al, ADVISOR: a systems analysis tool for advanced vehicle modeling. Journal of Power Sources, 2002, 110(2): 255-266.
    [91]Hauer K-H. Analysis tool for fuel cell vehicle hardwareand software (controls) with an application to fuel economy comparisons of alternative system designs. (Dissertation) University of California Davis, USA, 2001, 2002.
    [92]Uzunoglu, M.,M.S. Alam, Modeling and Analysis of an FC/UC Hybrid Vehicular Power System Using a Novel-Wavelet-Based Load Sharing Algorithm. IEEE Transaction on Energy Conversion, 2008. 23(1): p. 263-272.
    [93]Rizzoni G, G.L., Baumann B M, Unified modeling of hybrid electric vehicle drivetrains. IEEE/ASME Transactions on Mechatronics, 1999, 4 (3): 246-257.
    [94]Wilkins S, L.M.U., An object-oriented modeling tool of hybrid powertrains for vehicle performance simulation. Proceedings of the 19th International Electric Vehicle Symposium, Busan, Korea, 2002. 1079-1089.
    [95]Schouten N J, S.M.A., Kheir N A, Energy management strategies for parallel hybrid vehicles using fuzzy logic. Control Engineering Practice, 2003, 11(2): 171-177.
    [96]童毅,欧阳明高,前向式混合动力汽车模型中传动系建模与仿真.汽车工程2003, 25(5):419-423.
    [97]童毅,欧阳明高,张俊智,并联式混合动力汽车控制算法的实时仿真研究. 2003.
    [98]王庆年,刘志茹,王伟华,等.,混合动力汽车正向建模与仿真.汽车工程2005.
    [99]谭文春,唐航波,梁锋等,柴油机高压共轨供油系统硬件在环仿真的设计.上海交通大学学报. 38(10): p. 1647-1651.
    [100]朱访君,吴坚,内燃机工作过程数值计算及优化.北京:国防工业出版社,1997.
    [101]Heywood H J著,唐.,内燃机原理.武汉:海军工程学院出版社, 1992.
    [102]Yang, Y.P.,D.S. Chuang, Optimal Design and Control of a Wheel Motor for Electric Passenger Cars. IEEE Transactions on Magnetics, 2007. 43(1): p. 51-61.
    [103]Shuai, L., K.A. Corzine,M. Ferdowsi, A New Battery/Ultracapacitor Energy Storage System Design and Its Motor Drive Integration for Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology , 2007. 56(4): p. 1516-1523.
    [104]Szumanowski, A.,C. Yuhua, Battery Management System Based on Battery Nonlinear Dynamics Modeling. IEEE Transactions on Vehicular Technology, 2008. 57(3): p. 1425-1432.
    [105]李彬轩,徐航,何文华,柴油机实时仿真中燃烧模型的建立.内燃机学报, 2001. 19(2): p. 148-152.
    [106]Ceraolo, M., A. di Donato,G. Franceschi, A General Approach to Energy Optimization of Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology, 2008. 57(3): p. 1433-1441.
    [107]重型混合动力电动汽车能量消耗量试验方法,GB/T 19754-2005.
    [108]殷承良,浦金欢,张建武,并联混合动力汽车的模糊转矩控制策略.上海交通大学学报. 2006(01) p.157-162.
    [109]于秀敏,曹珊,李君,等.,混合动力汽车控制策略的研究现状及其发展趋势.机械工程学报2006(11).p.10-16.
    [110]Rahman Z, B.K.L., Ehsani M, A comparison study between two parallel hybrid control concepts. SAE Paper 2000-01-0994, 2000.
    [111]钱立军,袭著永,金德全,混合动力电动汽车控制策略的设计与仿真.汽车工程2005(03).
    [112]浦金欢,殷承良,张建武,等.,混合动力轿车的控制策略与建模.上海交通大学学报2004.38(11) p.1918-1921.
    [113]Pisu, P.,G. Rizzoni. A supervisory control strategy for series hybrid electric vehicles with two energy storage systems. IEEE Conference Vehicle Power and Propulsion. 2005.
    [114]Musardo, C., G. Rizzoni,B. Staccia. A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management. European Control Conference. CDC-ECC '05. 44th IEEE Conference on. Decision and Control, 2005.
    [115]Paganelli, G., S. Delprat, T.M. Guerra, etc. Equivalent consumption minimization strategy for parallel hybrid powertrains. IEEE 55th. Vehicular Technology Conference, 2002.
    [116]Paganelli, G., M. Tateno, A. Brahma, etc. Control development for a hybrid-electric sport-utility vehicle: strategy, implementation and field test results. Proceedings of the American Control Conference 2001.
    [117]浦金欢,殷承良,张建武,遗传算法在混合动力汽车控制策略优化中的应用.中国机械工程2005. 16(7) p.648-652.
    [118]Antoniou, A.I., J. Komyathy, J. Bench, etc., Modeling and Simulation of Various Hybrid-Electric Configurations of the High-Mobility Multipurpose Wheeled Vehicle (HMMWV). IEEE Transactions on Vehicular Technology, 2007. 56(2): p. 459-465.
    [119]Zheng, P., A. Chen, P. Thelin, etc., Research on a Tubular Longitudinal Flux PM Linear Generator Used for Free-Piston IEEE Transactions on Energy Converter. Magnetics, 2007. 43(1): p. 447-449.
    [120]Kim, K.C., S.B. Lim, D.H. Koo, etc., The Shape Design of Permanent Magnet for Permanent Magnet Synchronous Motor Considering Partial Demagnetization. IEEE Transactions on Magnetics, 2006. 42(10): p. 3485-3487.
    [121]Albert, I.J., E. Kahrimanovic,A. Emadi, Diesel sport utility vehicles with hybrid electric drive trains. IEEE Transation on Vehicle Technology, 2004. 53(4): p. 1247-1256.
    [122]混合动力电动汽车动力性能试验方法,GB/T 19752-200.
    [123]王庆年,曾小华,王伟华,混合动力汽车混合度设计方法研究.农业机械学报, 2006. 37(12): p. 8-12.
    [124]Pisu, P.,G. Rizzoni. H/sub /spl infin// control for hybrid electric vehicles. 43rd IEEE Conference on. Decision and Control, 2004.
    [125]Pisu, P.,G. Rizzoni, A Comparative Study Of Supervisory Control Strategies for Hybrid Electric Vehicles. IEEE Transactions on Control Systems Technology, 2007. 15(3): p. 506-518.
    [126]Salmasi, F.R., Control Strategies for Hybrid Electric Vehicles: Evolution, Classification, Comparison, and Future Trends. IEEE Transactions on Vehicular Technology, 2007. 56(5): p. 2393-2404.
    [127]Gao, D.W., C. Mi,A. Emadi, Modeling and Simulation of Electric and Hybrid Vehicles. Proceedings of the IEEE, 2007. 95(4): p. 729-745.
    [128]Gokasan, M., S. Bogosyan,D.J. Goering, Sliding mode based powertrain control for efficiency improvement in series hybrid-electric vehicles. IEEE Transactions on Power Electronics, 2006. 21(3): p. 779-790.
    [129]Lukic, S.M.,A. Emadi, Effects of Drivetrain Hybridization on Fuel Economy and Dynamic Performance of Parallel Hybrid Electric Vehicles. IEEE Transation on Vehicle Technology, 2004. 53(2): p. 385-389.
    [130]GB/T 19752-2005混合动力电动汽车动力性能试验方法. 2005.
    [131]Fazeli, A.M., A. Nabi, F.R. Salmasi, etc. Development of energy management system for A parallel hybrid electric vehicle using fuzzy logic. 2006. Torino, Italy: American Society of Mechanical Engineers, New York, NY 10016-5990, United States.
    [132]Bogosyan, S., M. Gokasan,D.J. Goering, A Novel Model Validation and Estimation Approach for Hybrid Serial Electric Vehicles. IEEE Transactions on Vehicular Technology, 2007. 56(4): p. 1485-1497.
    [133]Ehsani, M., Y. Gao,J.M. Miller, Hybrid Electric Vehicles: Architecture and Motor Drives. Proceedings of the IEEE, 2007. 95(4): p. 719-728.
    [134]Emadi, A., L. Young Joo,K. Rajashekara, Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles. IEEE Transactions on Industrial Electronics, 2008. 55(6): p. 2237-2245.
    [135]Boldea, I., C.I. Pitic, C. Lascu, etc., DTFC-SVM motion-sensorless control of a PM-assisted reluctance synchronous machine as starter-alternator for hybrid electric vehicles. IEEE Transactions on Power Electronics, 2006. 21(3): p. 711-719.
    [136]赵克刚,黄向东,罗玉涛,混联式混合动力电动汽车动力总成的优化匹配与监控.汽车工程2005(7).
    [137]Tsin Hing, H., H. Tin Kin,F. Yu Fai, Coordinated road-junction traffic control by dynamic programming. IEEE Transactions on Intelligent Transportation Systems, 2005. 6(3): p. 341-350.
    [138]G.-Q. AO, J.-X.Q., H. ZHONG, L. YANG, B. ZHUO EXPLORING THE FUEL ECONOMY POTENTIAL OF ISG HYBRID ELECTRIC VEHICLES THROUGH DYNAMIC PROGRAMMING. International Journal of Automotive Technology 2007. 8(6): p. 781-790.
    [139]Yu, S., X. Zhou, L. Yang, etc., Study on the model-based development approach for the electronically controlled system of a high-pressure common-rail dieselengine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006. 220(3): p. 359-366.
    [140]黄妙华,喻厚宇,影响并联混合动力电动汽车发动机在高效区工作的因素. 2005(01).
    [141]Chau, K.T.,C.C. Chan, Emerging Energy-Efficient Technologies for Hybrid Electric Vehicles. Proceedings of the IEEE, 2007. 95(4): p. 821-835.
    [142]Chau, K.T., C.C. Chan,L. Chunhua, Overview of Permanent-Magnet Brushless Drives for Electric and Hybrid Electric Vehicles. IEEE Transactions on Industrial Electronics, 2008. 55(6): p. 2246-2257.
    [143]周雅夫,辛世界,隆武强,混合动力电动汽车多能源原型控制器研究.大连理工大学学报.2004.44(6).p.793-796.
    [144]朱元,田光宇,陈全世,等,混合动力汽车能量管理策略的四步骤设计方法. 2004.
    [145]Prokhorov, D.V., Training Recurrent Neurocontrollers for Real-Time Applications. IEEE Transactions on Neural Networks, 2007. 18(4): p. 1003-1015.
    [146]李建秋,田光宇,卢青春,等.,利用V型开发模式研制燃料电池混合动力客车的整车控制器. 2005(12).
    [147]Yali, X., C. Xu, Z.J. Shen, etc., Prognostic and Warning System for Power-Electronic Modules in Electric, Hybrid Electric, and Fuel-Cell Vehicles. IEEE Transactions on Industrial Electronics, 2008. 55(6): p. 2268-2276.
    [148]李雅博,张俊智,卢青春,混合动力电动汽车车上CAN网络设计实时性分析. 2005(01).
    [149]冯启山,殷承良,张云侠,等.,混合动力汽车发动机调速系统研究.内燃机学报. 2005(02). p.162-167.
    [150]Sorensen, B., On the road performance simulation of hydrogen and hybrid cars. International Journal of Hydrogen Energy, 2007. 32(6): p. 683-686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700