复杂噪声背景下极化阵列信号参数估计的理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于极化阵列能够同时获取空间电磁信号的空域信息和极化信息而备受学者们的关注。与传统标量传感器阵列相比,极化阵列具有明显的优势:稳健的检测能力、较高的分辨能力、较强的干扰抑制能力以及极化多址能力;当多个极化信号在空间域不能被分辨时,利用信号的极化差异仍然能在极化域被分离;在极化阵列空间孔径较小时,仍然具有较好的分辨率。极化阵列的这些优势使其具有重要的军事、民事应用价值。
     基于极化阵列的信号多参数估计是极化阵列信号处理的一个重要研究内容,它在雷达、声纳、通信和生物医学等领域有着广泛的应用前景。本文首先介绍了极化阵列信号处理的基础知识,在此基础上,着重讨论了极化阵列信号多参量估计的理论与方法问题。其中包括:复杂噪声背景下循环平稳信号的多参数估计、机载矢量传感器阵列的信号多参数估计、相干信源的多参数估计、α稳定分布噪声背景下极化圆阵信号多参数估计,以及非平稳信号的二维DOA和极化参数估计方法等。这些内容都是极化阵列信号处理领域的研究热点,它们无论对极化阵列信号处理的理论发展还是实际应用,都有重要的意义。
Array signal processing which is an important branch of signal processing focuses onthe way of extraction of both characteristics of received signals and features of sourceswhich generate signals. It utilizes sensors array to receive and process the correspondingdata from received signal. Polarization Sensitive Array (PSA) signal processing is anewly emerging subdiscipline in array signal processing, which has been widely usedin field related in radar, sonar, communication, navigation, land and ocean exploring,seismic, ECM(Electronic Counter Measures) and biomedical signal processing etc. PSAhas been paid more and more attention since several past years and now is the hotspotin Array signal processing.
     Estimation techniques of the direction-of-arrival (DOA) of signals impinging uponan antenna array have been the subject of intensive study. Traditional scalar sensorarray (TSSA) on DOA estimation has two main disadvantages as shown below althoughit has a long research literature and also has made massive e?ort in academic region:first, the array element cannot obtain the complete electric and magnetic fields infor-mation but only the one field component information; second the array element outputcan only re?ect received signal intensity and its absolute phase. These faults eventuallydegenerates the algorithm performance. Compared with TSSA, however, Electromag-netic Vector Sensor (EMVS) can provide complete electric and magnetic fields, whichare composed of three orthogonal electric dipoles and three corresponding orthogonalmagnetic dipoles. The array formed by EMVS or trimmed vector sensors is called vectorsensors array (VSA). In other hand, as the VSA can acquire the polarization state of theimpinging signals, it is often called polarization-sensitive array (PSA). Not only it canuse its array geometry structure to acquire the spatial information of the signal, but alsocan acquire all polarization information. It has higher information acquire ability thanthe (TSSA) due to the additional polarization information. The PSA performs much better than the TSSA as shown followed: steady detective ability, stronger anti-jammingability as well as higher space resolution. The research on joint estimation of DOA andpolarization parameters using PSA is of great significance in practical application andacademy.
     The signal parameters, such as DOA, polarization, temporal frequency etc, playimportant roles in many applications, and their estimations have been and continue tobe a topic of great research interest. Based on narrative above, this paper mainly exploresthe corresponding theory and method of multi-parameters estimation of PSA signals, andalso discusses the two-dimensional(2-D) DOA and polarization parameters estimation ofcyclostationary signals in complex noise, multi-parameters estimation based on airbornevector sensor array, 2-D DOA and polarization parameters estimation of coherent sources,multi-parameters estimation based on the PSA in alpha-stable distribution noise, and2-D DOA and polarization parameters estimation of LFM signals.
     It is worth noting that many modulated signals exhibit a cyclostationarity propertyin practical application such as radar, sonar and telecommunications, correspondingto the underlying periodicity arising from the carrier frequencies and baud rates. Re-cently, signal cyclostationarity has been widely considered for DOA, resulting in manytechniques that inherently exhibit a signal-selective property. For the problem of cy-clostationary signals parameters estimation, the third chapter proposes the followingmethods:(1)Based on EMVS, this dissertation proposes HOCS-MUSIC, HOCS-ESPRITand HOCS-TLS-ESPRIT method for estimating the DOA and polarization parame-ters. These proposed methods are suitable in the occasion where the aperture is lim-ited. (2)Fourth-order cumulant based method using polarization-sensitive uniform lineararray(PS-ULA). This dissertation proposes HOCS-MUSIC and HOCS-ESPRIT method.By su?ciently utilizing the cyclostationarity of the signals and array manifold of PS-ULA, these proposed methods can e?ectively suppress the additive stationary noises withany distribution and interfering signals with di?erent cyclic frequencies.(3)Based on anarbitrary array of EMVS, a new method is proposed for multi-parameters estimationof the cyclostationary signals. The algorithm can be used not only for arbitrary arraygeometries but also separate the signals by su?ciently utilizing the cyclostationarity ofthe signals. Meanwhile, they can suppress the colored noise and interference.
     Higher-order statistics and higher-order cyclic statistics as the mathematical toolshave many excellent properties. The fifth chapter introduces fourth-order cumulant andfourth-order cyclic cumulant approaches to the airborne electromagnetic vector sensorarray (EMVSA) signal processing. Based on airborne EMVSA, the proposed methods as follows:(1)Fourth-order cumulant based method, which gives the joint estimation of the 2-D DOA, frequency and polarization parameters of the non-Gaussian narrowband signals,and can suppress the white Gauss noise without any frequency information.(2)Fourth-order cyclic cumulant based method, which gives the joint estimation of the 2-D DOAand polarization parameters. Take full advantage of the algorithm is the cumulativevolume of high-cycle characteristics of the signal not only has more choices, but alsomore additive noise.
     For Coherent Source DOA and polarization parameters of the estimation analysis,the existence of coherent sources seriously decline in the performance of algorithm andsometimes even leads to failure. Based on the existing TSSA processing algorithmsmake use of coherent signals in the airspace of the information, but the polarization ofthe signal information and characteristics of cyclostationary signals are not fully utilized.Cyclostationary signal properties can not only e?ectively suppress interference and ef-fects of stationary noise, but also has the ability to select desired signals. In addition,the polarization of the signal information for the e?ective coherent decoupling solutionprovides a totally new means. Chapter V of this article proposed that, with the help ofa uniform rectangular array on the basis of EMVS, one can get a decoupling solutionthrough processing the information of the polarization combined with characteristicsof cyclostationary signals. The approach details are shown below: (1)Spatial smooth-ing(SS) method for coherent 2-D DOA and polarization estimation;(2)Polarimetric an-gular smoothing(PSA) method for coherent 2-D DOA estimation. All of the aboveapproaches not only solve the DOA estimation of coherent sources, but also have thecapability of suppressing interference and noise, and have signal-selectivity.
     In many practical applications, there are many non-Gaussian signals and noises,such as environmental noise,atmospheric noise, wireless channel noise, radar clutter andso on. It will be very inaccurate if they are treated as just Gaussian model.αstabledistribution is a very important non-Gaussian random distribution., which has extensiveuse in submarine sound signal, atmosphere and biomedicine signal processing. In re-cent years,αstable distribution as well as relevant fraction low-order statistic are usedabroad in acoustic and radar signal processing, speech signal processing and medicinesignal processing and so on. In the sixth chapter, it has been discussed that the multi-parameters estimation method which applies the polarization-sensitive uniform circulararray (PS-UCA) based onαstable distribution noise, and propose the method for 2-DDOA and polarization estimation using PS-UCA based on fraction lower-order statis-tic, has the capability of suppressingαstable distribution noise with the background of αstable distribution noise.
     Time-frequency analysis (TFA) methods are well suited for non-stationary time-varying signals and hence yield good performance superior to common subspace methods.The seventh chapter studies time-frequency analysis methods and their application inPSA processing to estimate DOA and polarization parameters of non-stationary signals.Spatial polar time-frequency distribution (SPTFD) is generalized by using PSA and thetime-frequency (TF) distribution. it has been developed as two principal approaches.One approach based on wigner-viller (WV) spectrum MUSIC uses a single EMVS. Theother based on cross WV spectrum MUSIC adopts dual-EMVSs for estimating the DOAand polarization parameters. The proposed methods have the ability to select the desiredsignal, suppress additive noise and interference, and are also suitable for stationarysignals.
     At last, a summarization of whole dissertation is concluded in the final chapter.
引文
[1]庄钊文,徐振海,肖顺平等著.极化敏感阵列信号处理[M].北京:国防工业出版社,2005.
    [2]王永良,陈辉,彭应宁,万群著.空间谱估计理论与算法[M].北京:清华大学出版社, 2004.
    [3] BURG J P. Maximum entropy spectral analysis[C]. Proc. of the 37th meeting ofthe Annual Int. SEG Meeting. klahoma, Okla., 1967.
    [4] PISARENKO V F. The Retrieval of Harmonics From a Covariance Function[J].Geophys JRoy AstronSoc. 1973, (33):247–266.
    [5] SCHMIDT R O. Multiple Emitter Location and Signal Parameter Estimation[J].IEEE Trans on AP. 1986, 34(3):276–280.
    [6] ROY R, KAILATH T. ESPRIT-A subspace rotation approach to estimation ofparameters of cissoids in noise[J]. IEEE Trans on Acoustics,Speech,and SignalProcessing. 1986, 34(10):1340–1342.
    [7] RAO B D, HARI K V S. Performance analysis of Root-MUSIC[J]. IEEE Trans onAcoustics,Speech,and Signal Processing. 1989, 37(12):1939–1949.
    [8] ROY R, KAILATH T. Total Least Squares ESPRIT[C]. Proc., 21st AsilomarConf., Circuits, Sys Computer. Monterey, CA, Nov,1987.
    [9] STOICA P, NEHORAI A. MUSIC, Maximum likelihood, and Carmer-Raobound[C]. In Proc. ICASSP. 1988, 2296–2299.
    [10] CADZOW J A. A high resolution direction-of-arrival algorithm for narrow-bandcoherent and incoherent sources[J]. IEEE Trans on Acoustics,Speech,and SignalProcessing. 1988, 36(7):965–979.
    [11] ZISKIND I, WAX M. Maximum likelihood localization of multiple sources byalternating projection[J]. IEEE Trans on Acoustics,Speech,and Signal Processing.1988, 36(10):1553–1559.
    [12] SWAMI A, MENDEL J M. Cumulant-based approach to the harmonic retrievaland related problems[J]. IEEE Trans on Signal Processing. 1991, 39(5):1099–1109.
    [13] CHIANG H, NIKIAS C L. The ESPRIT Algorithm with Higher Order Statistics[C].Vial CO, Jun.1989, 163–168.
    [14] PORAT B, FRIEDLANDER B. Direction finding algorithms based on high-orderstatistics[J]. IEEE Trans on Signal Processing. 1991, 39(9):2016–2023.
    [15] DOGAN M C, MENDEL J M. Application of cumulants to array processing- PartΙ: Aperture extension and array calibration[J]. IEEE Trans on Signal Processing.1995, 43(5):1200–1216.
    [16] DOGAN M C, MENDEL J M. Applications of cumulants to array processing, PartII: Non-Gaussian noise suppression[J]. IEEE Trans on Signal Processing. 1995,43(7):1663–1676.
    [17] DOGEN E, MENDEL J M. Application of cumulants to array processing-PartIII: Blind Beamforming for coherent signals[J]. IEEE Trans on Signal Processing.1997, 45(9):2252–2264.
    [18] DOGEN E, MENDEL J M, DOGAN M C. Application of cumulants to arrayprocessing-Part IV: Direction finding in coherent signals case[J]. IEEE Trans onSignal Processing. 1997, 45(9):2265–2276.
    [19] LIU T H, MENDEL J M. Application of cumulants to array processing-Part V:Sensitivity Issues[J]. IEEE Trans on Signal Processing. 1999, 47(3):746–759.
    [20]刘若伦. DOA估计中的应用研究[D].长春:吉林工业大学, 2000.
    [21]黄佑勇.基于高阶累积量的阵列信号多参数估计技术[D].成都:电子科技大学电子工程学院, 2001.
    [22] GARDNER W A. Simplification of MUSIC and ESPRIT by exploitation of cyclo-stationaity[J]. IEEE Trans on Comm. 1988, 76(1):845–847.
    [23] XU G H, KAILATH. Direction-of-Arrival Estimation via Exploitation on ofCyclostationary-A Combination of Temporal and Spatial Processing[J]. IEEETrans on Signal Processing. 1992, 40(17):1775–1785.
    [24] XIN J, TSUJI H, HASE Y, SANO A. Directions-of-Arrival estimation of cyclosta-tionary coherent signals in array processing[C]. In Proc. IX Euro. Signal Process.Conf. Rhodes,Greece, 1998, vol. 3, 1781–1784.
    [25] XIN J. Higher order cyclostionarity based direction estimation of coherent narrow-band signals[C]. IEICE Trans,Fundamentals. 2000, E83-A(8):1624–1633.
    [26] XIN J, SANO A. Linear prediction approach to direction estimation of cyclosta-tionary signals in multipath environment[J]. IEEE Trans on Signal Processing.2001, 49(4):710–720.
    [27] CHARGE P, WANG Y. An Extended Cyclic MUSIC Algorithm[J]. IEEE Transon Signal Processing. 2003, 51(7):1695–1701.
    [28] GIANNAKIS G B, SHAMSUNDER S. Non-Gaussian source localization via ex-ploitation of higher-order cyclostationarity[C]. Proc.IEEE 6th SP Workshop onStatistical Signal and Array Processing. 1992, 193–196.
    [29] SHAMSUNDER S, GIANNAKIS G B. Signal Selective Localization of Non-Gaussian Cyclostationary Sources[J]. IEEE Trans on Signal Processing. 1994,51(10):2860– 2864.
    [30] JIANG H, WANG S X. Azimuth/elevation estimation for cyclostationary coherentsources using higher order cyclic cumulant[C]. 14th IEEE Proceedings on Personal,Indoor and Mobile Radio Communications(PIMRC). 2003, vol. 3, 2480–2484.
    [31] JIANG H, WANG S X. Fourth-order cyclic cumulant TLS-ESPRIT algorithm toestimate direction of cyclostationary coherent sources[C]. IEEE Int. Conf. NeuralNetworks and Signal Processing. Nanjing,China, 2003, vol. 2, 1330–1333.
    [32] LU H J, WANG S X, JIANG H. Blind DOA estimation using higher order cy-clostationarity and linear prediction in multipath environment[C]. 7th Int. Conf.Signal Processing,ICSP’04. 2004, vol. 1, 483–486.
    [33]黄知涛,王炜华,姜文利,周一宇.基于循环互相关的非相干源信号方向估计方法[J].通信学报. 2003, 24(2):108–113.
    [34]陶建武.阵列信号处理在雷达和移动通信中的应用研究[D].长春:吉林大学通信工程学院, 2004.
    [35] ZHAO F, CHEN D M, JING T, LI S H. DOA estimation in multipath basedon third-order cyclic moment[J]. The Journal of China Universities of Posts andTelecommunications. 2007, 14:100–104.
    [36] ZHANG C, CHEN D, LU H Z, TAO H M. Cyclic cross-correlation based two-dimensional direction of arrival estimation algorithm[C]. ICIA 2008. 2008, 1148–1152.
    [37] BELOUCHRANI A, AMIN M G. Blind source separation based on time-frequencysignal representations[J]. IEEE Trans on Signal Processing. 1998, 46(11):2888–2897.
    [38] BELOUCHRANI A, AMIN M G. Time-frequency MUSIC[J]. IEEE Signal Pro-cessing letter. 1999, 6(5):109–110.
    [39] ZHANG Y M, AMIN M G. Spatial averaging of time-frequency distributions forsignal recovery in uniform linear array[J]. IEEE Trans on Signal Processing. 2000,48(10):2892–2902.
    [40] ZHANG Y M, WU W F, AMIN M G. Subspace analysis of spatial time-frequencydistributions matrices[J]. IEEE Trans on Signal Processing. 2001, 49(4):747–759.
    [41] CIRILLO L A, ZOUBIR A M, MA N, AMIN M G. Automatic classification ofauto-and cross-terms of time-frequency distributions in antenna arrays[C]. Proc.IEEE ICASSP’02. 2002, vol. 2, 1445–1448.
    [42] CIRILLO L A, AMIN M G. Wideband direction of arrival estimation of mul-tiple Chirp signals using spatial time-frequency distributions[C]. Proc. IEEEICASSP’03. 2003, vol. 6, 465–468.
    [43]黄克骥,田达,陈天麒.基于对称阵列Wigner-Ville分布的宽带线性调频信号AOA估计[J].信号处理. 2003, 19(2):104–107.
    [44]黄克骥,田达,陈天麒.基于时频子空间分解的宽带线性调频信号DOA估计[J].电子与信息学报. 2004, 26(3):344–349.
    [45]李立萍,黄克骥,陈天麒.基于REPT变换和空间EP谱的宽带LFM信号参数估计[J].电波科学学报. 2005, 20(5):604–609.
    [46]汤建龙,李滔,杨绍全.基于修正空时频分布矩阵的到达角估计[J].系统工程与电子技术. 2004, 26(6):714–716.
    [47]汤建龙,杨绍全.一种新的宽带Chirp信号到达角估计[J].信号处理. 2006,22(2):149–152.
    [48]汤建龙,罗勇江,斯海飞,杨绍全.修正STFD-ESPRIT到达角估计[J].西安电子科技大学学报. 2007, 34(1):131–134.
    [49]刘云,李志舜.基于信号时频表示的宽带源波达方向估计[J].系统仿真学报. 2004,16(7):1560–1562.
    [50]刘云,李志舜.基于空间时频分布的宽带源波达方向估计[J].电声技术. 2004,(10):44–47.
    [51]刘云,李志舜.基于时频阵列模型的波达方向估计[J].声学学报. 2005, 30(2):115–119.
    [52] SAKALIDES P T, NIKIAS C L. Maximum likelihood localization of sources innoise modeled as a stable process[J]. IEEE Trans Signal Processing. 1995, 43:2700–2713.
    [53] SAKALIDES P T, NIKIAS C L. The robust covariation-based MUSIC(ROC-MUSIC) algorithm for vearing estimation in impulsive noise environments[J]. IEEETrans Signal Processing. 1996, 44(7):1623–1633.
    [54] LIU T H, MENDEL J M. A subspace-based direction finding algorithm using frac-tional lower order statistics[J]. IEEE Trans Signal Processing. 2001, 49(8):1605–1613.
    [55] ZHA D F, QIU T S. Direction finding in non-Gaussian impulsive noise environ-ments[J]. Digital Signal Processing. 2007, 17:451–465.
    [56]吕泽均.高分辨阵列测向技术研究[D].成都:电子科技大学电子工程学院, 2003.
    [57]何劲,刘中.利用分数低阶空时矩阵进行冲击噪声环境下的DOA估计方法[J].航空学报. 2006, 27(1):104–108.
    [58]夏铁骑,万群,汪学刚.冲击噪声环境下基于任意阵列流形的空时二维DOA估计方法[J].航空学报. 2008, 29(5):1233–1238.
    [59] CODARA L C(美)著,左群声等译.无线通信天线手册[M].北京:国防工业出版社, 2004
    [60]徐振海.极化敏感阵列信号处理的研究[D].长沙:国防科学技术大学电子科学与工程学院, 2004.
    [61]黄家才.极化阵列信号处理及其应用研究[D].长春:吉林大学通信工程学院,2006.
    [62]庄钊文,肖顺平,王雪松.雷达极化信息处理及应用[M].北京:国防工业出版社,1999.
    [63]王雪松.宽带极化信息处理的研究[D].长沙:国防科学技术大学电子科学与工程学院, 1999.
    [64] NEHORAI A, PALDI E. Vector sensor processing for electromagnetic source loca-tion[C]. Twenty-Fifth Asilomar Conference on Signals, Systems and Computers.Pacific Grove, California, 1991, 566–572.
    [65] NEHORAI A, PALDI E. Vector-sensor array processing for electromagnetic sourcelocalization[J]. IEEE Trans Signal Processing. 1994, 42(2):376–398.
    [66] TAN K C, HO K C, NEHORAI A. Linear independence of steering vectorsof an electromagnetic vector sensor[J]. IEEE Trans Signal Processing. 1996,44(12):3099–3107.
    [67] TAN K C, HO K C, NEHORAI A. Uniqueness study of measurements obtainablewith array of electromagnetic vector sensors[J]. IEEE Trans Signal Processing.1996, 44(4):1036–1039.
    [68] TAN K C, HO K C, NEHORAI A. Estimating directions of arrival of completelyand incompetely polarized signals with electromagnetic vector sensors[J]. IEEETrans Signal Processing. 1999, 47(10):2845–2852.
    [69] NEHORAI A, HO K C, TAN B T G. Minumun-Noise-Variance Beamformer withan Electromagetic Vector Sensor[C]. ICASSP1998. 1998, 2021–2024.
    [70] NEHORAI A, HO K C, TAN B T G. Minimum-Noise-Variance Beamformerwith an Electromagnetic Vector Sensor[J]. IEEE Trans Signal Processing. 1999,47(3):601–618.
    [71] LI J, COMPTON R T, Jr. Angle estimation using a polarization sensitive array[C].Antennas and Propagation Society International Symposium. Jun. 1991, vol. 1,356–359.
    [72] LI J, COMPTON R T, Jr. Angle and polarization estimation using ESPRIT witha polarization sensitive array[J]. IEEE Trans on Antenna and Propagation. 1991,39(9):1376–1383.
    [73] LI J, COMPTON R T, Jr. Angle estimation using a polarization sensitive array[J].IEEE Trans on Antenna and Propagation. 1991, 39(10):1539–1543.
    [74] LI J, COMPTON R T, Jr. Two-dimentional angle and polarization estimationusing the ESPRIT algorithm[J]. IEEE Trans on Antennas and Propagation. 1992,40(5):550–555.
    [75] LI J. Direction and polarization estimation using arrays with small loops and shortdipoles[J]. IEEE Trans Antennas and Propagation. 1993, 41(3):379–487.
    [76] LI J. On arrays with small loops and short dipoles[C]. IEEE International Con-ference on Acoustics, Speech, and Signal Processing,ICASSP1993. Apr. 1993, vol.4, 27–30.
    [77] WONG K T, ZOLTOWSKI M D. Uni-vector-sensor ESPRIT for multisource az-imuth, elevation, and polarization estimation[J]. IEEE Trans Antennas and Prop-agation. 1997, 45(10):1467–1474.
    [78] WONG K T, ZOLTOWSKI M D. Self-Initiating MUSIC-Based Direction Findingand Polarization Estimation in Spatio-Polarizational Beamspace[J]. IEEE TransAntennas and Propagation. 2000, 48(8):1235–1245.
    [79] WONG K T, ZOLTOWSKI M D. ESPRIT-based 2-D direction finding with asparse uniform array of electromagnetic vector-sensors[J]. IEEE Trans Signal Pro-cessing. 2000, 48(8):2195–2204.
    [80] WONG K T, ZOLTOWSKI M D. Closed-form direction finding and polarizationestimation with arbitrarily spaced electromagnetic vector-sensors at unkown loca-tions[J]. IEEE Trans Antennas and Propagation. 2000, 48(5):671–680.
    [81] WONG K T, ZOLTOWSKI M D. Cloesd-form eigenstructure-based direction find-ing using arbitrary but identical subarrays on a sparse uniform cartesian arraygrid[J]. IEEE Trans Signal Processing. 2000, 48(8):2205–2210.
    [82] WONG K T, LI L. Root-MUSIC-based direction-finding and polarization estima-tion using diversely polarized possibly collocated antennas[J]. IEEE Antenna andWireless Propagation Letters. 2004, 3:129–132.
    [83] OBEIDAT B A, ZHANG Y M, AMIN M G. Polarimetric time-frequency ES-PRIT[C]. IEEE Conf Signals,Systems ans Computers. 2003, 1:1178–1182.
    [84] ZHANG Y M, OBEIDAT B A, AMIN M G. Polarimetric time-frequency MU-SIC in coherent signal environment[C]. IEEE Proc Statistical Signals ProcessingWorkshop. 2003:254–257.
    [85] ZHANG Y M, OBEIDAT B A, AMIN M G. Spatial polarimetric time-frequencydistributions for direction-of-arrival estimations[J]. IEEE Trans Signal Processing.2006, 54(4):1327–1340.
    [86]王建英,陈天麒.频率、二维到达角和极化联合估计[J].电子学报. 1999,27(11):74–76.
    [87]王洪洋,王兰美,廖桂生.基于单矢量传感器的信号多参数估计方法[J].电波科学学报. 2005, 20(1):15–19.
    [88]王兰美,王洪洋,廖桂生.提高信号到达角估计精度的新方法[J].电波科学学报.2005, 20(1):91–94.
    [89]王兰美,王洪洋,廖桂生.矢量传感器误差校正与补偿[J].电子与信息学报. 2006,28(1):92–95.
    [90]许友根,刘志文.电磁矢量传感器阵列相干信号源波达方向和极化参数的同时估计:空间平滑方法[J].通信学报. 2004, 25(5):28–38.
    [91]许友根,刘志文.基于累积量的极化敏感阵列信号DOA和极化参数的同时估计[J].电子学报. 2004, 32(12):1963–1966.
    [92]文忠,李立萍,陈天麒.矢量阵元阵列对Chirp信号极化和到达角的联合估计[J].电子与信息学报. 2005, 27(5):726–730.
    [93]熊维族,叶中付.利用电磁矢量传感器估计分布源三维到达角[J].电路与系统学报. 2004, 9(4):36–41.
    [94] ZHAO L C, KRISHNAIAH P, BAI Z D. Remarks on Certain Criteria for Detectionof Number of Signals[J]. IEEE Trans on Acoustics,Speech,and Signal Processing.1987, 35(2):129–132.
    [95] WONG K M, ZHANG Q T, REILLY J E. On Information Theoretic Criteria forDetermining the Number of Signals in High Resolution Array Processing[J]. IEEETrans on Acoustics,Speech,and Signal Processing. 1990, 38(11):1959–1971.
    [96]张贤达.时间序列分析――高阶统计量方法[M].北京:清华大学出版社, 1996.
    [97]张贤达,保铮.非平稳信号分析与处理[M].北京:清华大学出版社, 1998.
    [98]汪仪林,殷勤业,金梁,姚敏立.利用信号的循环平稳特性进行相干源的波达方向估计[J].电子学报. 1999, 27(9):86–89.
    [99]黄知涛,周一宇,姜文利.基于循环平稳特性的源信号到达角估计方法[J].电子学报. 2002, 20(3):372–375.
    [100]姜宏.高阶循环统计量在移动通信系统定位参数估计中的应用[D].长春:吉林大学通信工程学院, 2005.
    [101] LEVY P. Calul des probabilities[J]. Paris:Gauthier-Villars. 1925, 23(6):23–29.
    [102] STUCK B. Minimum error dispersion linear filtering of scalar symmetric stableprocesses[J]. IEEE Trans on Automat Contr. 1978, 23(3):507–509.
    [103]邱天爽,张旭秀,李小兵等.统计信号处理――非高斯信号处理及其应用[M].北京:电子工业出版社, 2004.
    [104] CAMBANIS S, MILLER G. Linear problems in pth order and stable proeesses[J].SIMA Journal on Applied Mathematics. 1981, 41(1):43–69.
    [105]黄家才,石要武,陶建武,康晓涛.宽带循环平稳信号二维DOA和极化参数联合估计算法[J].系统仿真学报. 2007, 19(5):1100–1108.
    [106] GARDNER W A. Cyclostationarity in Communications and Signal Processing[M].New York: IEEE, 1993.
    [107]张贤达.矩阵分析与应用[M].北京:清华大学出版社, 2004.
    [108] SCHLEHER D C. MTI and pulsed Doppler radar[C]. London: Artech House Inc.,1999.
    [109] GE F X, PENG Y N, WANG X T. PSD accumulation for estimating the bandwidthof the clutter spectra[J]. IEICE Transactions on Communications. 2002, E85-B.(5)
    [110] FREEMAN A. Simple MTI using Synthetic Aperture Radar[C]. IEEE ProcIGARSS’84. 1984:65–70.
    [111] KLEMM R. Antenna design for adaptive airborne MTI[C]. IEE Conference Pub-lication. 1992, n365:296–299.
    [112]王家礼著.电磁场与电磁波[M].西安:西安电子科技大学出版社, 2000.
    [113] XU Y G, LIU Z W. UNI-VECTOR-SENSOR DIRECTION FINDING WITHREGULARIZED ESPRIT[J]. Journal of Electronics(China). 2008, (01):20–27.
    [114] BERLINER M J, LINDBERG J F. Acoustic Particle Velocity Sensor: Design,Performance and Applications[M]. New York, USA: AIP: Woodbury, 1996.
    [115] BULL J F. Field probe for measuring vector components of an electromagneticfield[P]. USPaten no5300885. Apr. 1994.
    [116] MIR H S, SAHR J D, KELLER C M. Source localization using airborne vectorsensors[C]. IEEE ICASSP2005. 2005, vol. IV, 1033–1036.
    [117] MIR H S, SAHR J D. Calibration of a polarization diverse array[C]. ICASSP2006.2006, vol. IV, 1065–1068.
    [118] MIR H S, SAHR J D. Passive Direction Finding Using Airborne Vector Sensorsin the Presence of Manifold Perturbations[J]. IEEE Trans on Signal Processing.2007, 55(1):156–164.
    [119]崔伟,陶建武,刘亮.机载电磁矢量传感器阵列DOA和极化参数估计[J].系统工程与电子技术. 2008, 30(2):222–225.
    [120] HAWKES M, NEHORAI A. Acoustic Vector-Sensor Processing in the Presence ofa Re?ecting Boundary[J]. IEEE Trans on Signal Processing. 2000, 48(11):2981–2993.
    [121]常文秀,陶建武.基于部分校准极化敏感阵列的信号DOA和极化参数迭代估计[J].电子与信息学报. 2008, 30(8):1893–1896.
    [122]殷勤业,邹理和, Robert W.Newcomb.一种高分辨二维信号参量估计方法――波达方向矩阵法[J].通信学报. 1991, 12(4):1–7.
    [123] SHAN T J, WAX M, KAILATH T. Spatial smoothing approach for location estima-tion of coherent signals[J]. IEEE Trans On Acoustics,Speech,and Signal Processing.1985, 33(8):806–881.
    [124] DUW, KIRLINR L. Improved spatial smoothing techniques for coherent signals[J].IEEE Trans On Acoustics,Speech,and Signal Processing. 1991, 39(5):1208–1210.
    [125] PILLAI S U, KWON B H. Forward/backward Spatial Smoothing Techniques forcoherent identification[J]. IEEE Trans On Acoustics,Speech,and Signal Processing.1989, 37(1):8–15.
    [126] WANG H, KAVEH M. On the performance of signal-subspace processing-PartII: Coherent wide-band systems[J]. IEEE Trans On Acoustics,Speech,and SignalProcessing. 1987, 35(11):1583–1591.
    [127] KUNG S Y, LO C K, FOLA R. A Toeplitz approximation without calibration forrandomly perturbed arrays[J]. IEEE Trans Signal Processing. 1987, 39(1):194–197.
    [128] YEH C C, LEE J H, CHEN Y M. Estimating two-dimensional angle of arrivalin coherent source environment[J]. IEEE Trans On Acoustics,Speech,and SignalProcessing. 1989, 37(1):153–155.
    [129] CHEN Y M. On spatial smoothing for two-dimensional direction-of-arrival estima-tion of coherent signals[J]. IEEE Trans Signal Processing. 1997, 45(7):1689–1696.
    [130] YI H Y, ZHOU X L. On 2-D forward-backward spatial smoothing for azimuthand elevation estimation of coherent signals[C]. IEEE Antennas and PropagationSociety International Symposium. 2005, 2B:80–83.
    [131]魏小丽,陈建,林琳.基于空间平滑算法的二维相干源DOA估计[J].吉林大学学报(工学版). 2008, 38(5):1160–1164.
    [132] RAHAMIM D, TABRIKIAN J. Source localization using vector sensor ar-ray in a multipath environment[J]. IEEE Trans Signal Processing. 2004,52(11):3096–3103.
    [133]黄家才,石要武,陶建武.多径循环平稳信号二维波达方向估计――极化域平滑法[J].电子与信息学报. 2007, 29(5):1110–1114.
    [134] TAN J, GODDARD J W F, THURAI M. Application of di?erential propagationphase in polarization-diversity radar at S-band and C-band[C]. IEEE Antennasand Propagation Conference. April.1995, vol. 2, 336–341.
    [135]何劲.α稳定分布噪声背景下阵列信号处理方法研究.南京:南京理工大学电子工程学院, 2007.
    [136] TSAKALIDES P, NIKIAS C L. Maximum likelihood localization of sources in noisemodeled as a stable process[J]. IEEE Trans Signal Processing. 1995, 43(11):2700–2713.
    [137] HUANG J C, SHI Y W, TAO J W. Joint Estimation of DOA, Frequency, andPolarization based on Cumulants and UCA[J]. Journal of System Engineering andElectronics. 2007, 18(4):704–709.
    [138]周欣.基于电磁矢量传感器阵列的波达方向和极化参数同时估计的方法研究[D].长春:吉林大学通信工程学院, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700