时间序列的分割及不一致发现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时间序列是随着时间次序而变化的系列数据。时间序列的分割和不一致发现在许多领域非常重要,如金融数据的分割、太空遥感和医学等数据的不一致发现、网络监控、移动对象轨迹流的跟踪和异常检测等。针对时间序列的分割和不一致发现方面存在的不足,开展了以下研究工作:基于符号化表示的时间序列分割、基于符号化表示的时间序列相似性度量、基于预测的时间序列分割、基于比特表示的静态时间序列不一致发现、基于分形的时间序列流异常检测。
     针对基于符号化表示的已有分割方法只反映子段均值信息却丢失趋势信息的现状,提出基于趋势的符号化表示(Trend-based Symbolic approXimation,TSX)的分割方法。在对时间序列降维获得子段均值信息的同时,提炼出时间序列子段的重要趋势特征,并设计多辨析率的角度分裂区间查找表,将趋势特征离散化为符号,进而获得既提取均值信息又反映趋势信息的时间序列的符号化降维表示TSX。实验结果表明,在相似搜索中,基于TSX的分割较基于符号聚集近似法(Symbolic AggregateapproXimation,SAX)表示的分割可以更有效地支持相似搜索,错报率较低。
     由于基于符号化表示的时间序列分割的度量MINIDIST_PAA_iSAX不具有对称性,提出了基于SAX的相似性度量方法Sym_PAA_SAX。Sym_PAA_SAX考虑了待衡量的两条时间序列在距离计算中的地位对等性,使该度量方法不仅具有对称性,而且满足下界定理。实验显示,Sym_PAA_SAX的下界紧密性较好,错报率降低。
     为适应时间序列流数据在线、快速、数据量大、无法全部保存的重要特征,提出基于指数平滑预测的时间序列流的分割算法(Exponential Smoothing Predictionbased Segmentation algorithm for time series stream,ESPS)。运用经典的指数平滑法提前计算未来时刻的平滑值并作为其预测值;提出预测误差判定定理,保证预测误差的正态分布,并进一步推导出预测误差与压缩率之间的关系,为判定数据点是否为分割关键点确立了依据;基于基本滑动窗口模型,设计了ESPS算法。为弥补大多数已有的分割方法仅仅以分割后的总驻留误差作为衡量标准的缺陷,实验中采用标准分段数、标准总误差、标准总性能、计算时间等作为评估的指标。实验结果显示,相对于滑动窗口算法和滑动窗口自底向上算法,ESPS算法效果较好、效率较高。
     为解决不一致发现中算法复杂度高、计算量较大的问题,提出了基于比特表示聚类的静态时间序列不一致发现算法。首先,对给定原始时间序列采用基于PAA方式比特序列化的方法进行分割,该方法不仅提取了原始序列的主要趋势特征,而且能够避免噪声的影响;然后,基于比特表示并利用聚类可以加速的思想,提出了变形的k中心点聚类算法,将具有相似变化模式的子序列归为一类;基于该聚类算法提出了不一致发现的算法,算法中采取了启发式剪枝和根据簇中心距离剪枝两种剪枝策略。实验结果说明,基于比特表示聚类的不一致发现算法有效性较好,效率较高,且具有扩展性。
     时间序列的不一致发现可以应用于异常检测。为改进已有时间序列流的异常检测的效果,提出了基于分形的时间序列流异常检测算法。由于关联分形维数的改变可以用作数据集中数据趋势改变的指示器,因此,采用含有基本窗口的滑动窗口模型,利用关联分形维数捕获滑动窗口中当前可见数据的模式特征,设计了基于分形的异常检测算法。与基于TSA-tree的方法、基于免疫的方法的对比实验显示,基于分形的异常检测方法可以有效地发现异常。
Time series is a sequence of data which changes with time order. Time seriessegmentation and discord discovery are very important in various domains, such asfinancial data segmentation, discord discovery in space telemetry and medical data,network monitoring, tracking and anomaly monitoring over moving object trajectorystreams. According to the deficiencies on time series segmentation and discord discovery,the following work have been studied, including time series segmentation based onsymbolic representation, time series similarity measure based on symbolic representation,segmentation technique for time series stream, bit representation based discord discoveryon static time series, fractal-based anomaly detection over time series stream.
     According to the actuality that most of symbolic representation based segmentationmethods only reflect the mean value of segments but lose the trend information, proposeTrend-based Symbolic approximation (TSX) segmentation method. After dimensionalityreduction, get the mean value of segments and refine the important trend feature, thendesign multi-resolution angle breakpoint interval search table and discrete the trendfeature to symbol, thus obtain symbolic dimensionality reduction TSX, which not onlycollects the mean value but also reflects the trend information. Experiments indicatecompared with Symbolic Aggregate approximation (SAX), TSX has lower false positiverate in similarity search, which can effectively support similarity search.
     Due to the measure of time series segmentation based on symbolic representationMINDIST_PAA_iSAX does not hold the symmetry, put forward a new measureSym_PAA_SAX based on SAX. Sym_PAA_SAX considers the equal status of twoevaluated time series in distance calculation, not only holds the symmetry, but alsosatisfies the lower bounding theorem. Experiments show that Sym_PAA_SAX has bettertightness of lower bounding and lower false positive rate.
     To adapt the critical characteristics of time series stream, i.e., online arrival, fastchanging, massive and unable to store the whole data, propose Exponential SmoothingPrediciton based Segmentation algorithm for time series stream (ESPS). Use the typicalexponential smoothing method to calculate the smooth value in future time as predictionvalue; bring forword prediction error judgement theorem, which can assure the normaldistribution; further conduct the relationship between the prediction error and compressionratio, which guides how to judge whether the data point is a segmentation key point; based on basic sliding window model, design ESPS algorithm. In order to make up thedisadvantage that most segmentation methods only use the total residual error asevaluation standard, experimental evaluation standards include Normalized Number ofSegments, Normalized Residual Error Sum, Normalized Overall Performance, time cost.Experimental results demonstrate, compared with Sliding Window algorithm and SlidingWindow and Bottom-up algorithm, ESPS algorithm has better effect and higher efficiency.
     To solve the high algorithm complexity and large amout of computation problem indiscord discovery, put forward bit representation clustering based discord discoveryalgorithm on static time series. Firstly, utilize Piecewise Aggregate Approximation mannerbit series to segment time series, the method not only captures the main trendcharacteristic of raw time series, but and also avoids the affect of noise; then, based on bitrepresentation and using the idea of accelerating by clusterting, a variation of k-medoidclustering algorithm is proposed, it can merge the similar change pattern as one class;based on the clustering algorithm, put forward discord discovery algorithm,which utilizestwo pruning strategies, heuristic pruning and pruning on the cluster center distance.Experimental results show the proposed algorithm can effectively discover the discord,improve the efficiency, and has good scaliblity.
     Time series discord discovery can be used for anomaly detection. To improve the effectof anomaly detection on time series stream, propose fractal based anomaly detectionalgorithm. Because the change of correlation dimension can be used as indicator of datatrend change in data set, adopt sliding window model containing basic windows, utilizecorrelation dimension to capture the pattern feature of current seen data in sliding window,design fractal based anomaly detection algorithm. Experimental results show, comparedwith stands for Trend and Surprise Abstractions based method and immunology systembased method, the fractal based algorithm can detect the anomaly effectively.
引文
[1]韩家炜,堪博.数据挖掘概念与技术.范明,孟小峰.北京:机械工业出版社,2007.320~325
    [2] Honda R, Wang S, Kilkuchi T, et al. Mining of Moving Objects from Time-SeriesImages and Its Application to Satellite Weather Imagery. Journal of IntelligentInformation Systems,2002,19(1):79~93
    [3] Zhu Y, Shasha D. Warping Indexes with Envelope Transforms for Query by Humming.in: Halevy A Y, Ives Z G(Eds.). Proceedings of ACM SIGMOD, San Diego, CA,USA,2003.New York: ACM Press,2003.181~192
    [4] Fu T C, Chung F L, Ng V, et al. Pattern Discovery from Stock Time Series UsingSelf-Organizing Maps. in: Minker J(Ed.). Workshop Notes of the Workshop onTemporal Data Mining,7thACM SIGKDD, San Francisco, CA, USA,2001. NewYork: ACM Press,2001.27~37
    [5]吴邵春,吴耿锋,王炜等.寻找地震相关地区的时间序列相似性匹配算法.软件学报,2006,27(3):185~192
    [6] Wei L. Efficient Pattern Discovery in Massive Time Series Databases:[Ph.D. Thesis].University of California, Riverside,2006
    [7] Qiang Y, Wang X.10Challenging Problems in Data Mining Research. InternationalJournal of Information Technology and Decision Making,2006,5(4):597~604
    [8] Wu H, Salzberg B, Zhang D. Online Event-driven Subsequence Matching overFinancial Data Streams. in: Weikum G, Konig A C, Debloch S(Eds.). Proc. of ACMSIGMOD,Paris,France,2004. New York: ACM Press,2004.23~34
    [9] Koski A, Juhola M, Meriste M. Syntactic Recognition of ECG Signals by AttributedFinite Automata. Pattern Recognition,1995,28(12):1927~1940
    [10]Vullings H, Verhaegen M, Verbruggen H. ECG Segmentation Using Time-Warping. in:Liu X,Cohen P,Berthold M(Eds.). Proc. of the2ndInternational Symposium onIntelligent Data Analysis,London,UK,1997.Berlin:Springer-Verlag,1997.275~285
    [11]Zhu Y, Shasha D. Efficient Elastic Burst Detection in Data Streams. in: Getoot L,Senator Ted E, Domingos P, et al.(Eds.). Proc of the9thACM SIGKDD, WashingtonDC, USA,2003. New York: ACM Press,2003.336~345
    [12]Sakurai Y, Faloutsos C, Yamamuro M. Stream Monitoring under the Time WarpingDistance. in: Stanley Y W S(Ed.). Proc. of the23rdInt’l Conf. on Data Engineering,Istanbul, Turkey,2007. Washington DC: IEEE Computer Society,2007.1046~1055
    [13]Sakurai Y, Papadimitriou S, Faloutsos C. Braid: Stream Mining through Group LagCorrelations. in: Ozcan F(Ed.). Proc. of the24thACM SIGMOD Conference,Baltimore, Maryland,2005. New York: ACM Press,2005.599~610
    [14]Lane T, Brodley C. Temporal Sequence Learning and Data Reduction for AnomalyDetection. ACM Trans. on Information and System Security,1999,2(3):295~331
    [15]Bu Y, Chen L, Fu A, et al. Efficient Anomaly Monitoring over Moving ObjectTrajectory Streams. in: Elder J F, Fogelman-Soulie F,Flach P A,et al.(Eds.).Proc. ofACM SIGKDD,Paris, France,2009. New York: ACM Press,2009.159~168
    [16]朱扬勇,熊赟.DNA序列数据挖掘技术.软件学报,2007,18(11):2766~2781
    [17]Zhang M, Kao B, Cheung D W,et al. Mining Periodic Patterns with Gap Requirementfor Sequences. ACM Trans. on Knowledge Discovery from Data,2007,1(2):1~39
    [18]Keogh E,Lin J, Fu A. HOT SAX:Efficiently Finding the Most Unusual Time SeriesSubsequence.in:Han J,Wah B W, Raghavan V,et al.(Eds.). ICDM, Houston, Texas,2005.Washington DC:IEEE Computer Society,2005.226~233
    [19]Yankov D, Keogh E, Wei Li, et al. Fast Best-Match Shape Searching inRotation-Invariant Metric Spaces.IEEE Transactions on Multimedia,2008:230~239
    [20]Yankov D, Keogh. E, Medina J, et al.Detecting Time Series Motifs under UniformScaling. in:Berkhin P,Caruana R,Wu X.(Eds.). Proc. of the13thACMSIGKDD.2007.San Jose,California,USA,2007. New York: ACM Press,2007.844~853
    [21]Babcock B, Bahu S, Datar D, et al. Models and Issues in Data Stream Systems.in:Stefano C,Christoph F,Pat S(Eds.).Proc. of21stACM Symposium on Principles ofDatabase Systems.New York,USA,2002.New York:ACM Press,2002.1~16
    [22]Keogh E, Selina C, David H,et al. An Online Algorithm for Segmenting Time Series.in: Macintosh A,Moulton M, Preece A(Eds.).ICDM, CA, USA,2001. WashingtonDC:IEEE Computer Society,2001.289~296
    [23]Shatkay H, Zdonik S. Approximate Queries and Representations for Large DataSequences. in: Stanley Y, Su W(Eds.). Proc. of the12thInt’l Conf. on DataEngineering, New Orleans, Louisiana,1996. Washington DC:IEEE ComputerSociety,1996.536~545
    [24]Keogh E, Smyth P. A Probabilistic Approach to Fast Pattern Matching in Time SeriesDatabases. in: Heckerman D,Mannila H, Pregibon D(Eds.). Proc. of3rdInt’l Conf. onKnowledge Discovery and Data Mining, Newport Beach, CA, USA,1997. NewYork:ACM Press,1997.419~429
    [25]Man P W P, Wong M H. Efficient and Robust Feature Extraction and PatternMatching of Time Series by a Lattice Structure. in: Macdonald C,Ounis L,RuthvenL.(Eds.). Proc. of10thInt’l Conf. on Information and Knowledge Management,Atlanta, Georgia, USA,2001. New York:ACM Press,2001.271~278
    [26]Morinaka Y, Yoshikawa M, Amagasa T, et al. The L-index: An Indexing Structure forEfficient Subsequence Matching in Time Sequence Databases. in: Cheung D W,Williams G J, Li Q.(Eds.). Proc. of Pacific-Asian Conf. on Knowledge Discovery andData Mining, Hong Kong, China,2001. Springer,2001.51~60
    [27]Chen Q, Chen L, Lian X, et al. Indexable PLA for Efficient Similarity Search.in:Koch C,Gehrke J, Garofalakis M N,et al.(Eds.).Proc. of33th VLDB Conf., Vienna,Austria,2007. Morgan Kaufmann Press,2007.435~446
    [28]肖辉.时间序列的相似性查询与异常检测:[博士论文].复旦大学,2005
    [29]Keogh E, Chakrabarti K, Pazzani M, et al. Dimensionality Reduction for FastSimilarity Search in Large Time Series Databases.Knowledge and InformationSystems,2000,3(3):263~286
    [30]Yi B,Faloutsos C.Fast Time Sequence indexing for Arbitrary Lp Norms.in:AbbadiA,Brodie M,Chakravarthy S,et al.(Eds.).Proc. of the26thInt’l Conf. on Very LargeDatabases.Cairo,Egypt,2000.Morgan Kaufmann Publishers,2000.385~394
    [31]王元珍,李俊奎,曹忠升.RPAA:一种基于时间特性的时间序列建模表示.计算机科学.2007,34(3):83~86
    [32]Huang N Q V, Anh D T.An Improvement of PAA for Dimensionality Reduction inLarge Time Series Databases.in: Ho T, Zhou Z(Eds.). PRICAI,2008.Berlin:Springer-Verlag,2008.698~707
    [33]Keogh E, Chakrabarti, Pazzani M, et al. Locally Adaptive Dimensionality Reductionfor Indexing Large Time Series Databases. in: Aref W G(Ed.). Proc. of the ACMSIGMOD,Santa Barbara, USA,2001. New York: ACM Press,2001.151~162
    [34]Agrawal R, Faloutsos C, Swami A. Efficient Similarity Search in Sequence Databases.in: Lomet D B(Ed.). Proc. of the4thInt’l Conf. on Foundations of Data Organizaitonand Algorithms,Chicago,USA,1993.Springer,1993.69~84
    [35]Faloutsos C, Ranganathan M, Manolopoulos Y. Fast Subsequence Matching inTime-Series Databases. in: Richard S T,Marianne W(Eds.). Proc. of ACMSIGMOD,Minneapolis, Minnesota,USA,1994.New York: ACM Press,1994.419~429
    [36]Rafiei D, Mendelzon A. Similarity-Based Queries for Time Series Data. in: PeckhamJ(Ed.).Proc. of ACM SIGMOD,Tucson, Arizona, USA,1997. New York: ACMPress,1997.13~25
    [37]Refiei D. On Similarity-Based Queries for Time Series Data. in: Kitsuregawa M,Maciaszek L,Papazoglou M,et al.(Eds.). Proc. of15thInt’l Conf. on Data Engineering,Syndey, Australia,1999. Washington DC: IEEE Computer Society,1999.410~417
    [38]Chan K, Fu A W. Efficient Time Series Matching by Wavelets. in: Richard S T(Ed.).Proc. of15thInt’l Conf. on Data Engineering, Sydney, Australia,1999.Washington DC:IEEE Computer Society,1999.126~133
    [39]Kahveci T, Singh A. Variable Length Queries for Time Series Data. in: Urban J,Dasgupta(Eds). Proc. of the17thInt’l Conf. on Data Engineering, Heidelberg,Germany,2001.Washington DC: IEEE Computer Society,2001.273~282
    [40]Popivanov I, Miller R J. Efficient Similarity Queries over Time Series Data UsingWavelets. in: Agrawal R, Dittrich K, Ngu AHH.(Eds.). Proc. of the18thInt’l Conf. onData Engineering, San Jose, CA,2002. Washington DC: IEEE Computer Society,2002.273~282
    [41]Shahabi C, Tian X, Zhao W. TSA-tree: A Wavelet-Based Approach to Improve theEfficiency of Multi-Level Surprise and Trend Queries on Time-Series Data. in:Gunther O,Lenz H J(Eds.). Proc. of the12thInt’l Conf. on Scientific and StatisticalDatabase Management, Berlin,Germany,2000. Washington DC: IEEE ComputerSociety,2000.55~68
    [42]Korn F, Jagadish H, Faloutsos C. Efficiently Supporting Ad Hoc Queries in LargeDatasets of Time Series.in: Joan P(Ed.). Proc. of the ACM SIGMOD, Tuescon,USA,1997. New York:ACM Press,1997.289~300
    [43]Agrawal R, Psaila G, Wimmers E L, et al. Querying Shapes of Histories. in:Umeshwar D,Peter G M D, Shojiro N(Eds.).Proc. of the21stInt’l Conf. on VLDB,Zurich, Switzerland,1995. Morgan Kaufmann Press,1995.502~514
    [44]Xia B B.Similarity Search in Time Series Data Sets:[Master thesis]. Simon FraserUniversity,1997
    [45]Lin J, Keogh E, Lonardi S, et al. A Symbolic Representation of Time Series, withImplications for Streaming Algorithms. in: Mohammed J Z, Charu A C(Eds.). Proc. ofthe8thACM SIGMOD Workshop on Research Issues in Data Mining and KnowledgeDiscovery, San Diego, CA, USA,2003. New York: ACM Press,2003.2~11
    [46]Lin J, Keogh E, Wei Li, et al. Experiencing SAX: A Novel Symbolic Representationof Time Series. Data Mining Knowledge Discovery,2007:107~144
    [47]Lkhagva B, Suzuki Y, Kawagoe K. New Time Series Data Representation ESAX forFinancial Applications. in: Liu L,Reuter A, Whang K, et al.(Eds.). Proc. Of the22ndInt’l Conf. On Data Engineering Workshops, Atlanta, Georgia, USA,2006.Washington DC:IEEE Computer Society,2006.17~22
    [48]Huang N Q V, Anh D T. Combining SAX and Piecewise Linear Approximation toImprove Similarity Search on Financial Time Series. in: Int’l Symposium onInformation Technology Convergence, Washington DC:IEEE Computer Society,2007.58~62
    [49]Shieh J, Keogh E. iSAX: Indexing and Mining Terabyte Sized Time Series.in: Li Y,Liu B, Sarawagi S.(Eds.). Proc. of ACM SIGKDD, Las Vegas, Nevada, USA,2008.New York: ACM Press,2008.623~631
    [50]Shieh J, Keogh E. iSAX:Disk-Aware Mining and Indexing of Massive Time SeriesDatasets. Data Mining Knowledge Discovery.2009,19(1):24~57
    [51]Camerra A, Palpanas T, Shieh J, et al. iSAX2.0: Indexing and Mining One BillionTime Series.in: Webb G I, Liu B, Zhang C,et al.(Eds.).ICDM, Sydney, Australia,2010.Washington DC: IEEE Computer Society,2010.58~67
    [52]Pham N D, Le Q L, Dang T K. Two Novel Adaptive Symbolic Representations forSimilarity Search in Time Series Databases. in: Han W, Srivastava D,Yu G, etal.(Eds.).Proc. of the12thInt’l Asia-Pacific Web Conference, Busan, Korea,2010.Washington DC: IEEE Computer Society,2010.181~187
    [53]Ratanamahatana C A,Keogh E,Bagnall A J,et al.A Novel Bit Level Time SeriesRepresentation with Implications for Similarity Search and Clustering.in: Ho T B,Cheung D W, Liu Huan.(Eds.).PAKDD, Hanoi, Vietnam,2005. Springer,2005.771~777
    [54]Bagnall A, Ratanamahatana C A,Keogh E,et al. A Bit Level Representation for TimeSeries Data Mining with Shape Based Similarity. Data Mining and KnowledgeDiscovery,2006,13(1):11~40
    [55]Lu K,Lin S,Qiao J,et al. FSMBO: Fast Time Series Similarity Matching Based on BitOperation. in:Wang G,Chen J,Fellow M R.(Eds.). Proc. of the9thInt’l Conf. forYoung Computer Scientists,Zhang Jia Jie,Hunan,China,2008.Washington DC:IEEEComputer Society,2008.1866~1871
    [56]李新萍.基于比特序列变化模式聚类的时间序列相似搜索:[硕士论文].华中科技大学,2007
    [57]Pratt K B,Fink E.Search for Patterns in Compressed Time Series.International Journalof Image and Graphics,2000,2(1):89~106
    [58]Phetking C,Sap M N M,Selamat A. A Multiresolution Important Point RetrievalMethod for Financial Time Series Representation.in: Alam A, Rahman F, MorshidiM,et al.(Eds.). Proc. of the Int’l Conf. on Computer and Communication Engineering,Kuala Lumpur,Malaysia,2008.Washtong DC:IEEE Computer Society,2008.510~515
    [59]Chung F L,Fu T C,Luk R,et al.Flexible Time Series Pattern Matching Based onPerceptually Important Points.in:Int’l Joint Conf. on Artifical Intelligence Workshopon Learning from Temporal and Spatial Data,Seattle,Washington DC, USA,2001,1~7
    [60]Fu T,Chung F,Luk R,et al.Representing Financial Time Series Based on Data PointImportance.Engineering Application of Artifical Intelligence,2008,21(2):7~300
    [61]Bao D,Yang Z.Intelligent Stock Trading System by Turning Point Confirming andProbabilistic Reasoning.Expert Systems with Applications,2008,34(1):620~627
    [62]Park S,Kim W,Chu W W.Segment-Based Approach for Subsequence Searches inSequence Databases.in:Haddad H(Ed). Proc. of the16thACM Symposium on AppliedComputing,Las Vegas, Nevada,USA,2001.New York:ACM Press,2001.248~252
    [63]Liu X,Lin Z,Wang H.Novel Online Methods for Time Series Segmentation.IEEETransactions on Knowledge and Data Engineering,2008,20(12):1616~1626
    [64]李爱国,覃征.在线分割时间序列数据.软件学报,2004,15(11):1671~1679
    [65]Ogras U,Ferhatosmanoglu H.Online Summarization of Dynamic Time SeriesData.The VLBD Journal,2006,15(1):84~98
    [66]Li J,Wang Y. APCAS: An Approximate Approach to Adaptively Segment Time SeriesStream.in: Dong G(Ed.). APWeb/WAIM, Huangshan, China,2007. Berlin:Springer-Verlag,2007.554~565
    [67]张彬,蒋涛,李国徽等.基于PLA的多数据流自适应分段算法.华中科技大学学报(自然科学版),2009,37(5):64~67
    [68]杜奕,卢德唐,李道伦等.一种快速的时间序列线性拟合算法.中国科学技术大学学报,2007,37(3):310~314
    [69]闫秋艳,夏世雄.一种无限长时间序列的分段线性拟合算法.电子学报,2010,38(2):443~448
    [70]闫秋艳.煤矿概率流数据挖掘方法研究:[博士论文].中国矿业大学,2010
    [71]Fuchs E,Gruber T,Nitschke J,et al.Online Segmentation of Time Series Based onPolynomial Least-Squares Approximations.IEEE Transactions on Pattern Analysisand Machine Intelligence,2010,32(12):2232~2245
    [72]Li A,He S,Qin Z.Real-Time Segmenting Time Series Data.in:Zhou X,ZhangY,Orlowska M E(Eds.).Proc. of the5thAsian-Pacific Web Conf. on Web Technologiesand Applications, Xi’an, China,2003.Springer,2003.178~186
    [73]Mori T,Nejigane Y,Shimosaka M,et al.Online Recognition and Segmentation forTime-Series Motion with HMM and Conceptual Relation of Actions.in:Proc. ofIEEE/RSJ Int’l Conf. on Intelligent Robots and Systems,Alberta, Canada,2005.Washington DC:IEEE Computer Society,2005.2856~2863
    [74]Kohlmorgen J,Lemm S,Muller K R,et al.Fast Change Point Detection in SwitchingDynamics Using a Hidden Markov Model of Prediction Experts.in:Proc. of the9thInt’l Conf. on Artificial Neural Networks,Edinburgh, UK,1999.204~209
    [75]Yi B K,Sidiropoulos N,Johnson T,et al.Online Data Mining for Co-Evolving TimeSequence.in:Proc. of Int’l Conf. on Data Engineering,San Diego, California, USA,2000. Washington DC:IEEE Computer Society,2000.13~22
    [76]王永利,周景华,徐宏炳等.时间序列数据流的自适应预测.自动化学报,2007,33(2):197~201
    [77]Lian X,Chen L.Efficient Similarity Search over Future Stream Time Series.IEEETransactions on Knowledge and Data Engineering,2008,20(1):40~54
    [78]Lian X,Chen L,Yu J X,et al.Similarity Match over High Speed Time-Series Streams.in:Stanley Y W S(Ed.). Proc. of the23rdInt’l Conf. on Data Engineering, Istanbul,Turkey,2007. Washington DC: IEEE Computer Society,2007.1086~1095
    [79]Zhang T, Yue D, Gu Y, et al. Boolean Representation Based Data-AdaptiveCorrelation Analysis Over Time Series Streams. in: Silva M,Laender A,Baeza-YatesR,et al.(Eds.). CIKM, Lisboa, Portugal,2007. New York:ACM Press,2007.203~212
    [80]Keogh E,Palpanas T,Zordan V B,et al.Indexing Large Human-MotionDatabases.in:Mairo A N,Tarmer M,Donald K,et al.(Eds.).Proc. of the30thConf. onVery Large Databases.Toronto,Canada,2004.Morgan Kaufmann Press,2004.780~791
    [81]Berndt D J,Clifford J.Finding Patterns in Time Series:A Dynamic ProgrammingApproach.in:Weld D,Clancey B(Eds.).Advances in Knowledge Discovery and DataMining,Oregon,Portland,1996.The MIT Press,1996.229~248
    [82]Yi B,Jagadish H,Faloutsos.Efficient Retrieval of Similar Time Sequence under TimeWarping.in:Proc. of the14thInt’l Conf. on Data Engineering,Orlando,Florida,USA,1998. Washington DC: IEEE Computer Society,1998.201~208
    [83]Keogh E,Ratanamahatana C.Exact Indexing of Dynamic Time Warping.Knowledgeand Information Systems,2005,7(3):358~386
    [84]兰妥,江弋,张东站.基于ESAX表示的时间序列相似性度量.计算机科学,2008,35(10):87~89
    [85]Li J,Wang Y,Li X.LB_HUST:A Symmetrical Boundary Distance for Clustering TimeSeries.in:Mohanty S,Sahoo A(Eds.).Proc. of9thInt’l Conf. on Information Technology,Bhubaneswar, Orissa, India,2006. Washington DC:IEEE Computer Society,2006.203~208
    [86]Li W,Keogh E,Xi X.SAXually Explicit Images:Finding Unusual Shapes.in:PernerP(Ed).Proc. of the6thInt’l Conf. on Data Mining. Hong Kong, China,2006.Washington DC:IEEE Computer Society,2006.711~720
    [87]Fu A,Leung T,Keogh E,et al.Finding Time Series Discords Based on HaarTransform.in:Li X,Zaiane O,Li Z(Eds.).ADMA,Xi’an, China,2006. Springer,2006.31~41
    [88]Yankov D,Keogh E,Rebbapragada U.Disk Aware Discord Discovery:Finding UnusualTime Series in Terabyte Sized Datasets.in: Stanley Y W S(Ed.). Proc. of the23rdInt’lConf. on Data Engineering, Istanbul, Turkey,2007. Washington DC: IEEE ComputerSociety,2007.381~390
    [89]Liu Y,Chen X,Wang F,et al.Efficient Detection of Discords for Time SeriesStream.in:Li Q,Feng L,Pei J, et al.(Eds.). APWeb/WAIM, Suzhou, China,2009.Berlin:Springer-Verlag,2009.629~634
    [90]Pham N D, Le Q L, Dang T K.HOT aSAX:A Novel Adaptive SymbolicRepresentation for Time Series Discords Discovery.in:Nguyen N T,Le MT,Swiatek(Eds.).ACIIDS,Hue City,Vietnam,2010.Springer,2010.113~121
    [91]Chandola V,Banerjee A,Kumar V.Anomaly Detection:A Survey.ACM ComputingSurveys,2009,41(3):1~58
    [92]Dasgupta D,Forrest S.Novelty Detection in Time Series Data Using Ideas fromImmunology.in:Proc. of the5thInt’l Conf. on Intelligent Systems.1996.82~87
    [93]Keogh E,Lonardi S,Chiu W.Finding Surpring Patterns in a Time Series Database inLinear Time and Space. in: Goebel R(Ed). Proc. of the8thACM SIGKDD, Edmonton,Canada,2002. New York: ACM Press,2002.550~556
    [94]Ma J, Perkins S. Online Novelty Detection on Temporal Sequences. in: GetoorL,Senator T,Domingos P, et al.(Eds.). SIGKDD,Washington DC,USA,2003.NewYork:ACM Press.2003
    [95]Chiueh T. Content-Based Image Indexing. in:Bocca J,Jarke M,ZanioloC(Eds.).VLDB,Santiago de Chile, Chile,1994.Morgan Kaufmann Press,1994.582~593
    [96]李晓光,宋宝燕,张昕.基于滑动多窗口的时间序列流趋势变化检测.电子学报,2010,38(2):321~326
    [97]程文聪,邹鹏,贾焰等.基于DTW距离的伪周期数据流异常检测.计算机研究与发展,2010,47(5):893~902
    [98]Brown R G. Smoothing Forecasting and Prediction of Discrete Time Series.Prentice-Hall,1963.3~24
    [99]张婷.基于动态指数平滑模型预测Ad Hoc网络流量的路由协议:[硕士论文].东北大学,2009
    [100]《数学手册》编写组编.数学手册.北京:高等教育出版社,2008.807~809
    [101] Ganti V, Gehrke J,Ramakrishnan R. Demon:Data Evolution and Monitoring.in:Proc. of the16thInt’l Conf. on Data Engineering,San Diego,California,2000.Washington, DC: IEEE Computer Society,2000.439~448
    [102] Gehrke J,Korn F,Srivastava.On Computing Correlated Aggregates over ContinualData Streams.in: Aref W G(Ed.). Proc. of the ACM SIGMOD,Santa Barbara,USA,2001. New York: ACM Press,2001.13~24
    [103]金澈清,钱卫宁,周傲英.流数据分析与管理综述.软件学报,2004,15(8):1172~1181
    [104]秦首科,钱卫宁,周傲英.基于分形技术的数据流突变检测算法.软件学报,2006,17(9):1969~1979
    [105] Mandelbrot B B.The Fractal Geometry of Nature.San Francisco:Freeman,1982
    [106]张济忠.分形.北京:清华大学出版社,2011.1~14
    [107] Folino G, Pizzuti C, Spezzano G. An Adaptive Distributed Ensemble Approach toMine Concept-drifting Data Streams.in: Avouris N, Bourbakis N(Eds.). Proc. of the19thIEEE International Conference on Tools with Artificial Intelligence, Patras,Greece,2007. Washington, DC: IEEE Computer Society,2007.183~188
    [108] Traina J C, Wu L, Traina A, et al. Fast Feature Selection Using Fractal Dimension.In: Becker K, Souza A A, Fernandes D Y, et al.(Eds.).Brazilian Symposium onDatabases, Joao Pessoa, Brazil,2000. Ceará: CEFET-PB,2000.158~171
    [109] Zhu Y, Shasha D.StatStream: Statistical Monitoring of Thousands of DataStreams in Real Time. in:Bressan S,Chaudhri A, Lee M,et al.(Eds.). Proc. of the28thVLDB, Hong Kong, China,2002. Morgan Kaufmann Press,2002.358~369
    [110] Keogh E, Lonardi S, Chiu B Y. Finding Surprising Patterns in a Time SeriesDatabase in Linear Time and Space. in: Goebel R(Ed). Proc. of the8thACM SIGKDD,Edmonton, Canada,2002. New York: ACM Press,2002.550~556

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700