环保型可降解耐火纤维的探索性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为新型的高温隔热节能材料,环保型可降解陶瓷纤维已经在某些领域完全替代了传统的硅酸铝纤维。研究开发环保型可降解耐火纤维有利于改善人类的生活环境,也能够使人们免受非降解纤维的危害。
     本文采用硅灰石、镁砂和石英砂等原料,通过电阻炉熔融喷吹法制备了具备降解性能的可降解耐火纤维,并探讨了不同的添加剂对可降解纤维熔体性能和降解性能的影响。
     在CaO-MgO-SiO_2系中,通过加入不同的添加剂,研究了可溶性陶瓷纤维在模拟肺液中的溶解性能以及纤维在溶解前后的SEM检测,探讨了可降解陶瓷纤维的降解机理:一方面生物可溶性陶瓷纤维从表面开始溶解,膨胀,使结构疏松,表面积迅速扩大,纤维被分散;另一方面,纤维中的非晶态二氧化硅与水作用,不断地溶解,可溶性纤维中的硅酸镁、硅酸钙消耗了水中的氢离子,使模拟肺液的pH值增加,pH值增加的模拟溶液进一步地侵蚀纤维。
     在CaO-MgO-SiO_2系中,随着ZrO_2含量的增加,可溶性陶瓷纤维的降解性能下降;随着Al_2O_3含量的增加,可溶性纤维的降解性能也下降。
     在CaO-MgO-SiO_2系中,通过在配方中引入不同添加剂,并测定高温熔体的粘度,绘制了粘度变化曲线,研究了不同添加剂对高温熔体粘度的影响。结果表明:生物可溶性陶瓷纤维高温熔体粘度随着温度的升高粘度降低;在同一温度下,随着配方中ZrO_2含量增加纤维的熔体粘度增加。在高温区相同温度下,随着配方中Al_2O_3含量增加纤维的熔体粘度下降;在熔体低温区时,随着Al_2O_3含量增加可溶性陶瓷纤维高温熔体粘度下降,但变化不大。
As the energy-saving high-temperature furnace insulation materials, environment-friendly biodegradable refractory fibers can be entirely replace the traditional Aluminum silicate refractory fibers in some areas. Therefore research and development of environment-friendly biodegradable refractory fiber will help to improve the living environment of mankind, and enable people from the harm of non-degradable fibers.
     In this paper, the Environment-friendly biodegradable refractory fibers were prepared by melting the raw materials of wollastonite, magnesia, quartz sand and others. Meanwhile, The effects of a variety of additives on the performance of biodegradable fibers melt and degradation were studied.
     The solubility of refractory fiber in a simulated lung fluid were studied by adding different additives and the SEM analysis were done to the before and after dissolution. The degradation of the refractory fiber were discussed also. While the refractory fibers began dissolving, swelling from the surface, the structure become loose and the area of the fiber rapid expanded and spread., the fiber were dissolved because of the reaction between the amorphous silica and water. The magnesium silicate, calcium silicate in soluble fiber consumed the hydrogen ions in the water, what made the simulated lung fluid pH value to increase, and the solution with higher pH value would erode the fiber badly.
     In CaO-MgO-SiO_2 system, with the content of ZrO_2 increasing, the degradation of the soluble refractory fiber decline, as while as adding Al_2O_3.
     The viscosity curve about the CaO-MgO-SiO_2 systems had been drawn after adding different additives and testing the viscosity of the high temperature melting. By which, the effects of different additives on the high-temperature viscosity were discussed. The results showed that: high temperature melt viscosity declined with the temperature increasing. In the same temperature, as the content of ZrO_2 in the fiber increased, melt viscosity was improved. But at high temperature zone, when the content of Al_2O_3 was more, the melt viscosity was declined. However, in the Low-temperature zone, with Al_2O_3 content increased, melt viscosity was declined a little.
引文
[1]崔之开,陶瓷纤维[M],北京:化学工业出版社,2004.1
    [2] Carmal,Tolicoeur.Daniel,Poisson Surface Physic-Chemical Studies of Chrysalides Asbestos and Related Mineral[J],Toxicology appl pharmacology,1981,(10):1~47
    [3]GOberdoster,Determinats of the Pathogenicity of Man-made Vitreous Fibers[J],Int ArchOccup Environ Health,2000,73:60~68
    [4]L.Daniel Maxim,Richard W.Mast,Hazard Assessment and Risk Analysis of Two New Synthetic Vitreous Fibers [J],Regulatory Toxicology and Pharmacology,1999;130):54~74.
    [5]王德平,梯度生物微晶玻璃材料的析晶性能及其物性分析[J],硅酸盐学报,2002 28 (1):19~22
    [6]李晓溪,闰玉华,可降解磷酸钙生物陶瓷研究的进展[J],陶瓷,2003,162(2):27~30
    [7]陆佩文,硅酸盐物理化学[M],武汉:武汉科技大学出版社,1996.7
    [8]摩根坩埚有限公司,盐水可溶性无机纤维,CN,C03C13/00,94190925.5,1996.02.07
    [9]摩根坩埚有限公司,无机纤维材料, CN, C03C13/06,95194468.1,1997.08.06
    [10]摩根坩埚有限公司,盐水可溶的无机纤维,CN,C03C13/00(2006.01),200610091542.X,2006.11.29
    [11]尤尼弗瑞克斯有限公司,耐高温玻璃纤维,CN, C03C13/02,96191313.4,1998.02.04
    [12]尤尼弗瑞克斯有限公司,耐高温玻璃质无机纤维,CN,C09B67/00,03805677.1,2005.07.13
    [13]尤尼弗瑞克斯有限公司,耐高温的玻璃质无机纤维,CN, C03C3/095(2006.01),200480024490.3,2006.10.04
    [14]摩根坩埚有限公司,耐高温的可溶于盐水的纤维,CN,C03C13/00,00812697.6,2002.10.09
    [15]周载禄,齐荣丽,介绍一种改进的称球法粘度计[J],玻璃,1984 (2):20~23
    [16] Gebhard Schramm,实用流变测量学[M],北京:石油工业出版社,1998
    [17]孙克光,几种纤维玻璃流变特性的研究[J],玻璃纤维,1987 (4): 1~6
    [18] Bansa NP,Doremus RH,Determination of Reaction Kinetic Parameters from Variable-Temperature DSC or DTA[J],Am Ceram Soc,1984,29(1):115~119
    [19] Marotta A,SaielloS,BuriA,Remarks on Deterination of the Avram Exponent by Non-isother Anaysis [J],Non-CrystSolids,1983,57:473~475
    [20] RysavaN,SpasovT,TichyL,Isothermal DSC Method for Evaluation of the Kinetics of Crystallization in the Ge-Sb-S Glass system [J],Therma Ana,1987,32:1015~1021
    [21]黄占杰,磷酸钙陶瓷生物降解研究的进展[J],功能陶瓷,1997,28 ( 1):1~4
    [22] DonaldIW,The Crystallization Kinetic Sofa Glass Based on the Cordierite Composition Studied by DTA and DSC[J],JMaterSci,1995,39:904~915
    [23]袁玉喋,姚玉田,苏打.硼砂—玻璃系熔渣的粘度[J],有色金属,1997,49 (2):47~52
    [24]梁开明,段仁官,顾守仁。F-离子和Ti4+离子在CaO-A12O3-SiO2系玻璃晶化时的作用[J],清华大学学报(自然科学版),1998 38 (12 ):69~72
    [25]邹学禄等,含TiO2的镁铝硅系玻璃分相对晶核形成的影响[J],上海建材学院学报,2001.2:100~103
    [26]曲彦平,邵桂春等,含MnO高炉型钛渣粘度的研究[J],沈阳工业大学学报,1997,19 (71):7680
    [27]李玉海,娄太平等,含钛高炉渣中CaO和MnO对钙钛矿结晶影响[J],钢铁研究学报,2000,12(3):1~4
    [28]梁开明,顾守仁等,CaO- A12O3-SiO2系玻璃晶化时首析晶相及TiO2的作用机理预测和研究[J],硅酸盐学报,1997,25 (3):305~311
    [29]Zdaniewski W.DTA X-Ray Analysis Study of Nucleation and Crystallization of MgO- A12O3-SiO2 Glasses Containing ZrO2,TiO2,CeO2 [J],Am Ceramic Soc,1975,58(5-6):163~168
    [30] Isard J O,Tames P F Ramsden A H. An Investigation of the Possibility that Electric Fields could Affect the Nucleation of Glass Ceramics[J], Phys Ceramic Glasses,1978,19(1):9~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700