深过冷Co-Sn共晶合金及其含少量第三组元的凝固
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用熔融玻璃净化和循环过热相结合的方法对Co-24at%Sn共晶合金,Co-20at%Sn亚共晶合金和Co-28at%Sn过共晶合金以及添加少量第三组元Mn、Sb后的Co-24at%Sn共晶合金进行了过冷凝固实验。利用高速红外测温仪对熔化和凝固过程中的温度变化进行了监测,并采用双探头方法测定了不同过冷度下凝固时的晶体生长速度。利用光学显微镜和扫描电镜对凝固后试样的宏观与微观组织进行了观察,采用电子背散射衍射技术分析了异常共晶组织中共晶两相α-Co和β-Co_3Sn_2晶粒的位向情况。在假设过冷熔体中共晶凝固界面以旋转抛物面枝晶生长,且第三组元加入不产生新相的前提下,建立了含少量第三组元过冷共晶合金凝固的理论模型。对过冷共晶合金凝固界面形态、凝固组织形成机制等进行了深入分析。
     随第三组元加入量的增大,共晶枝晶的尖端半径减小。第三组元的加入量小于某一临界值时,较小过冷度下共晶生长速度因第三组元的加入而增大,大过冷度下则因第三组元的加入而减小。第三组元的加入量超过临界值时,共晶生长速度恒变小。共晶层片(棒)间距在第三组元加入后的变化与生长速度正好相反。第三组元在共晶两相中的溶质再分配系数相差大时,第三组元加入对共晶生长的影响增大。
     Co-24at%Sn共晶合金的凝固组织,在过冷度小于20 K时全部由层片共晶组成。在更高的过冷度下由异常共晶和层片共晶组成,且随着过冷度的增大,异常共晶逐渐增多。所有过冷度下异常共晶中的两相晶粒均是随机取向分布,表明快速凝固阶段共晶两相以耦合方式生长,只是由于温度再辉初生层片共晶发生了重熔分解与熟化。
     在所研究的过冷度范围内,Co-24at%Sn共晶凝固界面以海藻状方式生长,其原因是耦合生长时共晶两相的固液界面能各向异性均较低,加之共晶界面分裂后的尖端半径远大于共晶层片间距,使得共晶凝固界面的有效界面能各向异性进一步降低。过冷度较低时,Co-24at%Sn共晶凝固界面为分形海藻状,而当过冷度达到175 K后,界面形貌转变为密集海藻状,并伴随有生长速度的快速上升。
     少量Mn和Sb的添加显著改变过冷Co-24at%Sn共晶合金的凝固行为。Mn的添加增大共晶凝固界面的界面能及其各向异性,导致小过冷度下共晶凝固界面由海藻状转变为树枝状,并使中等过冷度下分形海藻向高过冷度下密集海藻转变的临界过冷度增加至182 K,但Mn对共晶生长速度的影响较小,尤其在过冷度较低时。与Mn不同,Sb的添加主要影响共晶生长速度,使低过冷度下的生长速度上升,高过冷度下的生长速度降低,但Sb对共晶凝固界面形态影响较小。
     利用相关理论模型对过冷Co-24at%Sn共晶合金凝固时的晶体生长速度进行计算后发现,当稳定性参数采用临界界面稳定性理论所确定的值0.025时,计算值与实验结果相差很大。当采用“微观可解性理论”,令稳定性参数为0.001时,计算值与实验结果在共晶生长界面为分形海藻状时符合较好。
Bulk Co-24at%Sn eutectic alloy, Co-20at%Sn hypo-eutectic alloy, Co-28at%Sn hyper-eutectic alloy and the Co-24at%Sn alloy with a small addition of Mn and Sb were undercooled to different degrees below the equilibrium liquidus temperature by the glass fluxing technique in combination with cyclical superheating, and a series of samples with different undercoolings for each alloy were solidified. The temperature change in melting and solidification was monitored by a high-speed infrared pyrometer. The crystal growth velocity was measured by two infrared pyrometers set along the sample axis (the dual-probe method). The solidification structure was observed by an optical microscope (OM) and a scanning electron microscope (SEM). The grain orientations of theα-Co andβ-Co_3Sn_2 phases in the anomalous eutectics were identified by the electron back scattered diffraction (EBSD) technology. Assmuing that the eutectic solidification interface advances in a dendritic form with a tip of paraboloid of revolution in the undercooled melt, and the small addition of a third element does not induce a new phase, a theoretical model was estabilished for the solidification of undercooled eutectic alloys containing a third element. The solidification interface morphology and the solidification structure formation of the undercooled alloys were comprehensively analyzed.
     As the content of the third element increases, the eutectic dendrite tip radius reduces. When the content of the third element is less than a critical value, the eutectic growth velocity becomes larger at low undercoolings but smaller at high undercoolings. Once the content of the third element exceeds the critical value, the eutectic growth velocity is always reduced. After the addition of the third element, the eutectic lamellar (rod) spacing changes in an opposite way of the growth velocity. When the partitioning coefficients of the third element in two eutectic phases differ greatly from each other, the effects of the third element on the eutectic growth become remarkable.
     The solidification structure of Co-24at%Sn alloy is composed of lamellar eutectics at undercoolings below 20 K, and lamellar eutectics plus anomalous eutectics at larger undercoolings. The fraction of anomalous etuectics in the solidification structure increases with undercooling. The grains of two eutectic phases in the anomalous eutectics orient randomly whether the undercooling is how large, indicating that coupled eutectic growth takes place in the rapid solidification stage. However, the primarily formed lamellar eutectics are subjected to superheating and partially remelting during the temperature recalescence and ripening in the subsequent solidification, and therefore evolved into anomalous eutectics.
     The eutectic solidification interface in the Co-24at%Sn alloy melt grows in seaweed modes at all experimental undercooling. The reason is that the solid/liquid interface energy anisotropies of the two eutectic phases are relatively low during coupled growth, and the eutectic interface tip radius after tip-splitting is much larger than the eutectic lamellar spacing, which leads to an extremely low interface energy anisotropy of the eutectic solidification interface. When undercooling is not too large, the eutectic solidification interface of Co-24at%Sn is of fractal seaweed pattern. Once undercooling exceeds 172 K, the interface morphology transforms to a compact seaweed pattern, accompanyied with a fast increase of growth velocity.
     Small additions of Mn and Sb remarkablely change the solidification behavior of undercooled Co-24at%Sn eutectic alloy. The addition of Mn increases the interface energy and its anisotropy, making the eutectic solidification interface change from a seaweed into dendrite form at low undercooling, and the critical undercooing for the eutectic interface to transit from a fractal seaweed at moderate undercooling to a compact seaweed at large undercooling increases to 182 K. Different from Mn, the addition of Sb mainly influences the eutectic growth velocity, i.e. the addition of Sb increases the growth velocity at lower undercoolings, and decreases the growth velocity at larger undercoolings.
     The eutectic growth velocity in the undercooled Co-24at%Sn eutectic melt was calculated using related theoretical models. It is found that when the critical stability parameter is let to be 0.025 according to the interface critical stability theory, the calculated growth velocities are obviously different from the experimental values. If the“microscopic solvabiltycriterion”is adopted and the critical stability parameter is let to be 0.001, the calculation results fit the experimental growth velocities well even if the eutectic growth interface is of fractal seaweed pattern.
引文
[1] Duwez P. Non-crystalline structure in solidified Gold-Silicon alloys [J]. Nature, 1960, 187: 869.
    [2] Willnec Ker R, Goerler G P, Wilde G. Appearance of a hypercooled liquid region for completely miscible alloys [J]. Materials Science and Engineering A, 1997, 226-228: 439.
    [3] Volmer M, Weber A. Zeitschrift fur Physikalische Chemie, 1926, 119: 227.
    [4] Bec Ker R, Doring W. The kinetic treatment of nuclear formation in supersaturated vapors [J]. Annals of Physics, 1935, 24: 719.
    [5] Turnbull D. Rate of nucleation in condensed systems [J]. Journal of Chemical Physics, 1949, 17:71.
    [6] Turnbull D. Kinetics of heterogeneous nucleation [J]. Journal of Chemical Physics, 1950, 18:198.
    [7] Turnbull D. Formation of crystal nuclei in liquid metals [J]. Journal of Chemical Physics, 1950, 21:1022.
    [8] Turnbull D. Kinetics of solidification of supercooled liquid mercury droplets [J]. Journal of Chemical Physics, 1952, 20:411.
    [9] Kattamis T Z, Flemings M C. Dendrite structure and grain size of undercooled melts [J]. Transaction TMS-AIME, 1966, 236: 1523.
    [10] Powell G L F. Undercooling of Cu-20wt% Ag alloy [J]. Transactions of the Metallurgical Society of AIME, 1969, 245(8): 1785.
    [11] Powell G L F, Hogen L M. The influence of oxygen content content on the grain size of undercooled silver [J]. Transactions of the Metallurgical Society of AIME, 1969, 245: 407.
    [12] Kui H W, Greer A L, Tumbull D. Formation of bul K metallic glass by Fluxing [J]. Applied Physics Letters, 1984, 45(6): 615.
    [13] He Y, Schwarz R B, Archuleta J I. Bul K glass formation in the Pd-Ni-P system [J]. Applied Physics Letters, 1996, 69: 1861.
    [14] Nisbiyama, Nobuyuki, Inoue A. Supercooling investigation and critical cooling rate for glass formation in Pd-Cu-Ni-P alloy [J]. Acta Materialia, 1999, 47(5): 1487.
    [15] Ebalard S, Spaepen F, Cochrane R F, et al.. Undercooling experiments on quasicrystal forming melts [J]. Material Science and Engineering A, 1991, 133(1): 569.
    [16] Moritz D H, Schroers J, Herlach D M, et al.. Undercooling and solidification behaviour of melts of the quasicrystal-forming alloys Al-Cu-Fe and Al-Cu-Co [J]. Acta Materialia, 1998, 46(5): 1601.
    [17] Guo W H, Kui H W. Bul K nanostructured alloy formation with controllable grain size [J]. Acta Materialia, 2000, 48: 2117.
    [18] Kashchiev D. Solution of the non-steady state problem in nucleation Kinetics [J]. Surface Science, 1969, 14: 209.
    [19] Shao G, Tsakiropoulos P. Prediction of phase selection in rapid solidification using time dependent nucleation theory [J]. Acta Metallurgica et Materialia, 1994, 42: 2937.
    [20] Duwez P, Willens R H, Klement Jr W. Continuous series of metastable solid solutions in RS alloys [J]. Journal of Applied Physics, 1960, 31: 1136.
    [21] Jr Pond R, Maddin R. A method of producing rapidly solidifies. Filamentary castings [J]. Transaction TMS-AIME, 1969, 245: 2475.
    [22] Dut Kiewicz J, Czeppe T, Morgiel J. Effect of titanium on structure and martensic transformation in rapidly solidified Cu-Al-Ni-Mn-Ti alloys [J]. Materials Science and Engineering A, 1999, 273-275: 703.
    [23] Chen H S, Leamy H J, Miller E. Preparation of glassy metals [J]. Annual Review of Materials Science, 1980, 10: 363.
    [24] Liebermann H H. The dependence of the Geometry of glassy alloy ribbons on the chill block melt-spinning process parameters [J]. Materials Science and Engineering, 1980, 43 (3): 203.
    [25] Powell G L F. The undercooling of Cu-20wt%Ag alloy[J].Transactions of the Metallurgical Society of AIME, 1969, 245: 1784.
    [26] Wang N, Gao J R, Wei B. Primary phase growth within highly undercooled Cu-Ge eutectic alloys [J]. Scripta Materialia, 1999, 41(9): 959.
    [27] Yao W J, Wei B. Nucleation and growth ofβCu3Sb intermetallic compound in undercooled Cu-31%Sb eutectic alloy, Journal of Alloys and Compounds [J]. 2004, 366: 165.
    [28] Zhao S, Li J F, Liu L, et al.. Cellular growth of lamellar eutectics in undercooled Ag-Cu alloy [J]. Materials Characterization, 2009, 60(6): 519.
    [29] Barth M, Wei B, Herlach D M. Dendritic growth velocities of the intermetallic compounds Ni2TiAl, NiTi, Ni3Sn, Ni3Sn2 and FeAl [J]. Materials Science and Engineering A, 1997,226-228: 770.
    [30] Eckler K, Norman A F, Gartner F, et al., Microstructures of dilute Ni-C alloys obtained from undercooled droplets, Journal of Crystal Growth, 1997, 173: 528.
    [31] Li J F, Liu Y C, Lu Y L, et al., Structural evolution of undercooled Ni-Cu alloys, Journal of Crystal Growth, 1998, 192(3-4): 462.
    [32] Li M J, Nagashio K, Kuribayashi K. Reexamination of the solidification behavior of undercooled Ni-Sn eutectic melts [J]. Acta Materialia, 2002, 50: 3239.
    [33] Pu J, Feng W J, Xiao J Z, et al.. Non-equilibrium solidification of bul K undercooled Ni-P eutectic alloys [J]. Journal of Crystal Growth, 2003, 256: 139.
    [34] Murty Y V V R S, Kattamis T Z. Structure of highly undercooled cobalt-tin eutectic alloy [J].Journal of Crystal Growth, 1974, 22: 219.
    [35] Wei B, Herlach D M. Dendrite growth during rapid solidification of Co-Sb alloys [J]. Materials Science and Engineering, 1997, A226-228: 799.
    [36] Wilde G, Boni O, Fransaer, et al., Undercoolability of pure Co and Co-based alloys, Journal of Non-Crystalline Solids, 1999, 250-252: 271.
    [37] Mullins W W, Sekerka R F, Stability of planar interface during solidification of dilute binary alloy, Journal of Applied Physics, 1964, 35: 444.
    [38] Kattamis T Z, Flemings M C. Dendrites structure and grain size of undercooled melts [J]. Transactions of the Metallurgical Society of AIME, 1966, 236: 1523.
    [39] Li M J, Lin X, Song G S, et al., Microstructure evolution and metastable phase formation in undercooled Fe-30at%Co melt, Materials Science and Engineering, 1999, A208,: 90.
    [40] Li J F, Jie W Q, Yang G C, et al.. Solidification structure formation in undercooled Fe-Ni alloy [J]. Acta Materialia, 2002, 50(7): 1797.
    [41] Colligan G A, Bales B J. Dendrite growth velocity in undercooled nickel melts [J]. Acta Metallurgica, 1962, 10: 895.
    [42] Drehman A J, Greer A L, Turnbull D. Preparation of electron-eransparent (111) gold platelets as substrates for epitaxial studies [J]. Journal of Applied Physics, 1982, 41: 816.
    [43] Mendenhall C E, Ingersoll L R. On certain phenomena exhibited by small particles on a Nernst glower [J]. Philosophical Magazine Series, 1908, 15: 205.
    [44] Turnbull D, Cech R E. Microscopic observation of the solidification of small metal droplets [J]. Journal of Applied Physics, 1950, 21: 804.
    [45] Perepezko J H. Solidification of highly supercooled liquid metals and alloys [J]. Journal of Non-Crystalline Solids, 1993, 156-158 (Part 2): 463.
    [46] Perepezko J H, Nucleation in undercooled liquids, Materials Science and Engineering, 1984, 65(1): 125.
    [47] Perepezko J H. Proc 2nd Int Conf on Rapid Solidification Processing: Principles and Technologies, Baton Rouge, LA, Claitor’s Publishing Division, 1980: 56.
    [48] Perepezko J H, Rasmussen D H. Discussion of“Nucleation, undercooling and homogeneous structures in rapidly solidified powders”[J]. Metallurgical and Materials Transactions A, 1978, 9: 1490.
    [49] Perepezko J H, Anderson I E. Rapidly solidified amorphous and crystalline alloys [J]. North-Holland, Amsterdam, Proc Symp of Materials Research Society, 1982: 49.
    [50] Herlach D M, Willnecker R, Gillessen F. Proc 5th Symp on Materials Science under Microgravity, Noordwijk, Netherlands, Eurpean Space Agency, 1985: 339.
    [51] Willnecker R, Herlach D M, Feuerbacher B. Containerless undercooling of bulk Fe-Ni melts [J].Applied Physics Letters, 1986, 49: 1339.
    [52] Daniel E, Rosner, Michael E. Simultaneous kinetic and heat transfer limitations in the crystallization of highly undercooled melts [J]. Chemical Engineering Science, 1975, 30: 511.
    [53] Doinkov A A. Acoustic radiation force on a bubble: Viscous and thermal effects [J]. The Journal of the Acoustical Society of America, 1998, 103: 143.
    [54] Chung S K, Thiessen D B, Rhim W K. A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials, Review of Science Instrum, 1996, 67: 3175.
    [55] Rhim W K, Ohsaka K, Paradis P F. Laser-induced rotation of a levitated sample in vacuum [J]. Review of Science Instrum, 1999, 70: 2796.
    [56] Lipton J, Glic Ksman M E, Kurz W. Dendritic growth into undercooled alloy metals [J]. Materials Science and Engineering, 1984, 65(1): 57.
    [57] Ludwig A. Limit of absolute stability for crystal growth into undercooled alloy melts [J]. Acta Metallurgica et Materialia, 1991, 39(11): 2795.
    [58] Jansen R, Sahm P R. Solidification under microgravity [J]. Materials Science and Engineering, 1984, 65(1): 199.
    [59] Ben-Jacob E, Garik P. The formation of pattterns in non-equilibrium growth [J]. Nature, 1990, 343: 523.
    [60] Ben-Jacob, Deutscher E, Garik G, et al. Formation of a Dense Branching Morphology in Interfacial Growth [J]. Physical Review Letters, 1986, 57: 1903.
    [61] Brener E, Muller-Krumbhaar H, and D. Tem Kin. Kinetic Phase Diagram and Scaling Relations for Stationary Diffusional Growth [J]. Europhysics Letters, 1992, 17: 535.
    [62] Brener E, Muller-Krumbhaar H, and Tem kin D. Structure formation and the morphology diagram of possible structures in two-dimensional diffusional growth [J]. Physical Review E, 1996, 54: 2714.
    [63] Brener E, Muller-Krumbhaar H, and Temkin D, et al.. Morphology diagram of possible structures in diffusional growth [J]. Physica A, 1998, 249: 73.
    [64] Kupferman R, Shochet O, Ben-Jacob E. Numerical study of a morphology diagram in the large undercooling limit using a phase-field model [J]. Physics Review E, 1994, 50: 1005.
    [65] Ben-Jacob E. From Snowflake Formation to Growth of Bacterial Colonies: I. Diffusive Patterning in Nonliving Systems [J]. Contemporary Physics, 1993, 34: 247.
    [66] Ihle T, Muller-Krumbhaar H. Fractal and compact growth morphologies in phase transitions with diffusion transport [J]. Physics Review E, 1994, 49: 2972
    [67] Ihle T, Muller-Krumbhaar H. Diffusion-limited fractal growth morphology in thermodynamical two-phase systems [J]. Physics Review Letters, 1993, 70: 3083.
    [68] Müller-Krumbhaar H, Zimmer M, Ihle T, et al.. Morphology and selection processes in diffusion-controlled growth patterns [J]. Physica A, 1996, 224: 322.
    [69] Singer H M, Singer-Loginova I, Bilgram J H, et al.. Morphology diagram of thermal dendritic solidification by means of phase-field models in two and three dimensions [J]. Journal of Crystal Growth, 2006, 296: 58.
    [70] Karma A, Rappel W J. Quantitative phase-field modeling of dendritic growth in two and three dimensions [J]. Physics Review E, 1998, 57: 4323.
    [71] Wheeler A A, Murray B T, Schaefer R J. Computation of dendrites using a phase-field model [J]. Physica D, 1993, 66: 243.
    [72] Mullis A M, Dragnevski K I, Cochrane R F. The transition from the dendritic to the seaweed growth morphology during the solidification of deeply undercooled metallic melts [J]. Materials Science and Engineer, 2004, A 375-377: 157.
    [73] Plapp M, Karma A. Eutectic colony formation: A phase-field study [J]. Physics Review E, 2002, 66: 061608.
    [74] Utter B, Bodenschatz E. Double dendrite growth in solidification [J]. Physics Review E, 2005, 72: 011601.
    [75] Akamatsu S, Faivre G. Anisotropy-driven dynamics of cellular fronts in directional solidification in thin samples [J]. Physics Review E, 1998, 58: 3302.
    [76] Stalder I, Bilgram J H. Morphology of structures in diffusional growth in three dimensions [J]. Europhysics Letters, 2001, 56: 829.
    [77] Lamelas F J, Seader S, Zunic M. Morphology transitions during the growth of alkali halides from solution [J]. Physics Review B, 2003, 67: 045414.
    [78] Goetzinger R, Barth M, Herlach DM. Physical mechanism of formation of the anomalous eutectic structure in Ni-Si, Co-Sband Ni-Al-Ti alloys [J]. Journal of Applied Physics, 1998, 84: 1643.
    [79] Lipton J, Kurz W, Trivedi R. Rapid Dendritic Growth in Undercooled Melts [J]. Acta Metallurgica, 1987, 35: 957.
    [80] Kurz W, Trivedi R. Solidification microstructures: Recent developments and future directions [J]. Acta Metallurgica, 1990, 38: 1.
    [81] Trivedi R. Theory of dendritic growth under rapid solidification conditions [J]. Journal of Crystal Growth, 1985, 73: 289.
    [82] Langer J S, Müller-Krumbhaar H. Theory of dendritic growth—I. Elements of a stability analysis [J]. Acta Metallurgica, 1978, 26: 1681; 1689; 1697.
    [83] Langer J S, Müller-Krumbhaar H. Stability effects in dendritic crystal growth [J]. Journal of Crystal Growth, 1977, 42: 11.
    [84] Meiron D. Selection of steady states in the two-dimensional symmetric model of dendritic growth [J]. Physics Review, 1986, A33: 2704.
    [85] Benamar M, Pomeau Y. Theory of Dendritic Growth in a Wea Kly Undercooled Melt [J]. Europhysics Letters, 1986, 2: 307.
    [86] Barbieri A, Hong D C, Langer J S. Velocity selection in the symmetric model of dendritic crystal growth [J]. Physics Review A, 1987, 35:1802.
    [87] Kessler D, Levine H. Stability of Dendritic Crystals [J]. Physics Review Letters, 1986, 57: 3069.
    [88] Bensimon D, Pelce P, Shraiman B I. Dynamics of curved fronts and pattern selection [J]. Journal of Physics A, 1987, 48: 2081.
    [89] Jackson K A, Hunt J D. Lamellar and rod eutectic growth [J]. Transaction of Metals Society of AIME, 1966, 236: 1129.
    [90] Trivedi R, Magnin P, Kurz W. Theory of eutectic growth under rapid solidification conditions [J]. Acta Metallurgica, 1987, 35 (4): 971.
    [91] Kurz W, Trivedi R. Eutectic growth under rapid solidification conditions [J]. Metallurgical Transaction A, 1991, 22: 3051.
    [92] Aziz M J. Model for solute redistribution during rapid solidification [J]. Journal of Applied Physics, 1982, 53(2): 1158.
    [93] Aziz M J, Tsao J Y, Thompson M O, et al.. Solute trapping: comparison of theory with experiment [J]. Physics Review Letters, 1986, 56(23): 2489.
    [94] Zryd A, Gremaud M, Kurz W. Lamellar eutectic: a comparison of three models valid at high growth rate [J]. Materials Science and Engineering A, 1994, 181-182: 1392.
    [95] Li J F, Zhou Y H. Eutectic growth in bulk undercooled melts [J]. Acta Materialia, 2005, 53: 2351.
    [96] Trivedi R, Kurz W. Solidification microstructures: a conceptual approach [J]. Acta Metallurgica et Materialia, 1994, 42: 15.
    [97] Li J F, Li X L, Liu L, et al. Mechanism of anomalous eutectic formation in the solidification of undercooled Ni-Sn eutectic alloy [J]. Journal of Materials Research, 2008, 23: 2139.
    [98] Walder S, Ryder P L. Nonequilibrium solidification in undercooled melts of the alloy Ag-39.9at.% Cu [J]. Journal of Applied Physics, 1993, 73(4): 1965.
    [99] Leonhardt M, Loser W, Linden Kreuz H G, Solidification Kinetics and phase formation of undercooled eutectic Ni-Nb melts, Acta Materilia, 1999, 47(10): 2961.
    [100] Li M J, Nagashio K, Ishikawa T, et al. Microtexture and macrotexture formation in the containerless solidification of undercooled Ni-18.7%Sn eutectic melts [J]. Acta Materialia, 2005, 53: 731.
    [101] Yang C L, Liu F, Yang G C, et al. Microstructure and phase selection in bul K undercooled Fe-B eutectic alloys [J]. Journal of Alloys and Compounds, 2007, 441: 101.
    [102] Kattamis T Z, Flemings M C. Structure of undercooled Ni-Sn eutectic [J]. Metallurgical Transaction, 1970, 1A(5): 1449.
    [103] Jones B L. Growth mechanisms in undercooled eutectic [J]. Metallurgical Transaction, 1971, 2A: 2950.
    [104] Li M J, Kazuhiko, Kuribayashi. Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts [J]. Metallurgical and Materials Transactions A, 2003, 34A: 2999.
    [105] Wei B, Yang G C, Zhou Y H, High undercooling and rapid solidification of Ni-32.5Sn eutectic alloy, Acta Metallurgica et Materialia, 1991, 39(6): 1249.
    [106] Goetzinger R, Barth M, Herlach D M. Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys [J]. Acta Materialia, 1998, 46(5): 1647.
    [107] Tewari S N. Effect of carbide additions on the microstructure of Ni-35%Mo and Ni-38%Mo alloys [J]. Metallurgical Transaction, 1987, 18A: 525.
    [108] Xing L Q, Zhao D Q, Chen X C. Solidification of undercooled Ni-32.5%Sn eutectic alloy [J]. Journal of Material Science, 1993, 28: 2733.
    [109] Li J F, Jie W Q, Zhao S, Zhou Y H. Structural evidence for the transition from coupled to decoupled growth in the solidification of undercooled Ni-Sn eutectic melt [J]. Metallurgical and Materials Transaction A, 2007, 38: 1806.
    [110] Plapp M, Karma A. Eutectic colony formation: A stability analysis [J]. Physics Review E, 1999, 60: 6865.
    [111] Gruzleski J E, Winegar W C. The cellular structure in the Sn-Cd eutectic [J]. Transaction of Metals Society of AIME, 1968, 242(9): 1785.
    [112] Yamauchi I, Ueyama S, Ohnaka I. Effects of Mn and Co addition on morphology of unidirectionally solidified FeSi2 eutectic alloys [J]. Materials Science and Engineering, 1996, A208: 101.
    [113] Li H T, Guo J T, Huai K W, et al. Microstructure characterization and room temperature deformation of a rapidly solidification NiAl-based eutectic alloy containing trace Dy [J]. Journal of Crystal Growth, 2006, 290: 258.
    [114] Liu L, Li J F, Zhao S, Zhou Y H. Redetermination of the eutectic composition of the Co-Sn binary alloy [J]. Journal of Phase Equilibria and Diffusion, 2009, 30: 242.
    [115] Turnbull D. Metastable structures in metallurgy [J]. Metallurgical Transaction A, 1981, 12: 695.
    [116] Donaghey L F, Tiller W A. On the diffusion of solute during the eutectoid and eutectic transformations, part I [J]. Materials Science and Engineering, 1968-69, 3: 231.
    [117] Karma A, Langer J S. Impurity effects in dendritic solidification [J]. Physics Review A, 1984, 30:147.
    [118] Eckler K, Norman A F, Gartner F, Greer A L, Herlach D M. Microstructures of dilute Ni-C alloys obtained from undercooled droplets [J]. Journal of Crystal Growth, 1997, 173: 528.
    [119] Ishida K, Nishizawa T. The Co-Sn (Cobalt-Tin) System [J]. Journal of Phase Equilibria and Diffusion, 1991, 12(1): 88.
    [120] Jiang M, Sato J, Ohnuma I, Kainuma R, Ishida K. A thermodynamic assessment of the Co-Sn system [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2004, 28: 213.
    [121] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R. Solidification microstructures and solid-state parallels: Recent development, future directions [J]. Acta Materialia, 2009, 57: 941.
    [122] Boettinger W J, Coriell S R, Trivedi R. In Rapid Solidification Processing: Principles and Technologies, fifth ed. Louisiana: Baton Rouge; 1988.
    [123] Trivedi R, Kurz W. Dendritic growth [J]. International Materials Reviews, 1994; 39: 49.
    [124] Kurz W, Fisher D J. Fundamentals of Solidification, forth ed. Switzerland: Ueti Kon-Zuerich; 1998.
    [125] Han X J, Wang N, Wei B. Rapid eutectic growth under containerless condition [J]. Applied Physics Letters, 2002; 81: 778.
    [126] Liu X R, Cao C D, Wei B. Microstructure evolution and solidification kinetics of undercooled Co-Ge eutectic alloys [J]. Scripta Materialia, 2002; 46: 13.
    [127] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M, Trivedi R. Solidification microstructures: recent developments, future directions [J]. Acta Materialia, 2000, 48: 43.
    [128] Utter B, Bodenschatz E. Dynamics of low anisotropy morphologies in directional solidification [J]. Phys Rev E 2002; 66: 051604.
    [129]姚文静,魏炳波.落管中Co-Sn共晶合金的快速凝固.自然科学进展, 2003年,第13卷: 964.
    [130] Wu Y Y, Liu X F, Bian X F. Effect of AlP on the eutec- tic nucleation in Ni-38wt.%Si alloys [J]. Mater Sci Eng, 2006, A 427: 69.
    [131] Henry S, Minghetti T, Rappaz M. Dendrite growth morphologies in aluminium alloys [J]. Acta materials, 1998, 46 : 6431-6443.
    [132] Gonzales F, Rappaz M. Dendrite growth directions in aluminum-zinc alloys [J]. Metallurgical Transaction A, 2006, 37: 2797.
    [133] Haxhimali T, Karma A, Gonzales F, and Rappaz M. Orientation selection in dendritic evolution [J]. Nature Materials, 2006, 5 : 660.
    [134] Asta M, Hoyt J J, Karma A. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations [J]. Physical review B, 2002, 66 : 100101.
    [135] Becker C A, Olmsted D, Asta M, et al. Atomistic underpinnings for orientation selection in alloydendritic growth [J]. Physical review letters. 2007, 98 : 125701.
    [136] Bakker H. Enthalpies in alloys-Miedema’s semi-empirical model [M]. Trans Tech Publications Ltd, Switzerland: Ueti Kon-Zuerich, 1998.
    [137] Davidchack R L, Laird B B. Crystal Structure and Interaction Dependence of the Crystal-Melt Interfacial Free Energy [J]. Physics Review Letter, 2005, 94: 086102
    [138] Morris J R, Mendelev M I, Srolovitz D J. Journal of Non-Crystal Physic, 2006, 69: 020102.
    [139] Spaepen F. A structural model for the solid-liquid interface in monatomic systems [J]. Acta Metallurgical Materials, 1975, 23: 729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700