低熔点多元共聚酰胺非织造纺丝成网及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文重点研制了新型低熔点多元共聚酰胺熔喷非织造材料。研究了低熔点多元共聚酰胺熔喷纺丝成网机理、熔喷工艺及其网膜的粘合性能。针对低熔点多元共聚酰胺的特点建立了熔喷数学模型,分析了影响熔喷实验的各种因素。根据其应用要求,对网膜的热熔粘合机理、压烫条件对剥离强度的影响作了分析。
     本研究采用低熔点聚合物是委托上海阿托菲纳高远化工有限公司配制的低熔点多元共聚酰胺原料(样品1和样品2),其熔点分别为104℃和120℃。首先,对样品进行基本性能的测定,对实验的结果综合分析得出,低熔点多元共聚酰胺适合热熔喷丝成网实验,但是工艺温度对聚合物熔体的性质影响较大。其次,根据本材料的性质对现有的熔喷实验设备系统提出了改进方案,经改进后实验所得的网膜质量有明显提高。
     经过研究得出实验参数对网膜性能的影响关系如下:
     网膜中纤维的平均直径随着模头温度的升高、随着接收距离的增大、随着空气压力的加大逐渐减小;随着螺杆挤出量加大逐渐增大。纤网面密度CV%值随着接收距离加大、空气压力的增高均呈现先增大而后减小的趋势;随着挤出量的增大逐渐增大。纤网的纵向断裂强度随着挤出量的增加而逐渐增大;随着空气压力的增大,呈现先增大后减小的现象;随着接收距离的增大而逐渐递减。
     本研究根据聚合物性质和具体工艺条件,建立了熔喷数学模型,将实验所测得的纤维直径和理论计算进行比较,得出本数学模型对熔喷低熔点多元共聚酰胺纤维直径有较好的预测性。
     本文同时对低熔点多元共聚酰胺网膜的粘合机理和对不同
    
    摘要
    面料的粘合性能进行了相关应用研究,得出本网膜热熔胶的最
    佳压烫工艺条件为:压烫温度140℃、压烫压力1.25kgf/cmZ、压
    烫时间205。压烫条件对剥离强度的影响关系为:剥离强度随着
    压烫温度的上升,先增加达到一个峰值后迅速下降;剥离强度随着压
    烫压力、时间的增加,逐渐增大。
     通过对不同材质的粘合面进行粘合实验得出:低熔点多元
    共聚酞胺网膜热熔胶对纤维素材质的表面粘合良好;对聚酷材
    质的粘合有选择性,纤维状的粗糙表面粘合较好,而光滑膜状
    表面粘合较差。因此使用本网膜热熔胶完全可以取代纤维素材
    质粘合所使用的粘合剂。
     本文还对低熔点多元共聚酞胺的热稳定性进行了研究,得
    出本实验的低熔点多元共聚酞胺适合在高于其熔点50℃的条
    件下加工,同时对低熔点共聚涤纶的熔喷成网工艺进行了相关
    探索性的研究。
The new nonwovens materials of the low melt-point copolyamide are made and mainly studied in this paper. The meltblown process and technology of low melt point copolyamide and web film thermal bonded property of nonwoven are discussed. The meltblown model of mathematics is made in terms of the characteristic of low melt point copolyamide and many kinds of influence factors of experiment is also analyzed.
    Considered its application, thermal bonded process and influence factors of press condition to peeling intensity are analyzed.
    The low melt-point polymer was made by shanghai ATOFINA gaoyuan chemical co.,Ltd. The melt point of sample 1 and 2 is 104℃ and 120℃ ,respectively. First, the basic property of sample was tested, the conclusion was reached by the analysis of the result that the low melt point copolyamide is fit to meltblown experiment regardless of the temperature's great effect on the characteristic of polymer. Second, the big improvements upon the present meltblown equipment system is made on basis of the characteristic of polymer and it is found that the quality of nonwovens web film made in the later meltblown equipment system increases markedly.
    After long time's research, the experiment parameter effects on the characteristic of web film are shown as follow.
    The mean fiber diameter in the film decreases with increasing of the die temperature, the die to collector distance(DCD) and the attenuating air pressure, and with
    
    
    decreasing of polymer throughput. The fiberweb density coefficient of mean deviation increases gradually when polymer throughput increases gradually, yet first increases and then decreases when the die to collector distance(DCD) and the attenuating air pressure increase. The fiberweb longitudinal strength increases as the polymer throughput increases and the die to collector distance(DCD) decreases, and first increases and then decreases as the attenuating air pressure increases.
    The mathematical model is established in terms of polymer performance and specific technical condition. By comparing the theoretical diameter and practical one, the conclusion is reached that the model has good prediction on fiber diameter.
    The low melt point copolyamide web film thermal bonded process and the adhesivity related to many fabrics are also studied in the paper. The following are the conclusions reached after the experiments and analyzing: the better pressing condition- press temperature 140 癈 , press fore 1.25kgf/cm2, press time 20 s, the peeling strength first rising and then dropping with rising of the press temperature, and the peeling strength rising with rising of the press force and time.
    The conclusions are reached after thermal bonded experiments to different materials: the low melt point copolyamide web film adhesive has good cohesive action against cellulose fiber material, and has selectivity to polyester material- good cohesive action to fiber coarseness surface but bad action to slippery surface. Hence, the web film adhesive can replace adhesive in the market in cellulose fiber material.
    Finally, the low melt point copolyamide thermal stability is researched and the conclusion is that the low melt point
    
    copolyamide is fit to meltblow under the temperature 50℃ above its melt point. Coherence research about meltblown process upon low melt point copolyester is made in the end.
引文
[1] 中华人民共和国国家标准《胶粘剂术语 GB/T 2943—94》
    [2] 翁汉元,服装粘合衬用共聚尼龙热熔胶粘剂,黎明化工,1992,(4):1~6
    [3] 刘建泽,热熔粘合衬及其涂层设备的开发,产业用纺织品,1998,(8):1~4
    [4] 蒋海滨,改性共聚聚酰胺热熔胶的研制,粘接,2000,(2):20~21
    [5] 张开来等 网状热熔胶的研制 粘合剂 1989,(4):19~23
    [6] 粘合剂 1986,(4):9
    [7] Fust G, New Generation Fibers for Interlining, Textile Asia, 1998, 29, (10): 55~57
    [8] 李宇刚,自粘合熔喷非织造热熔网膜,专利 94105906.5
    [9] 杜郢等 中国胶粘剂 1999,9,(3):1~3
    [10] Shambaugh R L. A macroscopic view of the melt-blowing process of producing microfibers. Industrial & engineering chemistry research, 1988, 27(12): 2363~2372
    [11] 王延熹.非织造布生产技术,中国纺织大学出版社,1998:275
    [12] 李月新.熔喷生产线全套设备安装的现状.国外纺织技术,1999,6:36~37
    [13] 王惠兰.美国精确机械制造公司的熔喷法系统综合介绍.高科技纤维与应用,1998,23(10):17~20
    [14] Shipp J, Peter W. Melt-blown material with depth fiber size gradient. US P4714647. 1987-12-22
    [15] Allen, M.A, Fetcko, et al. Modular melt blowing die. US P5618566. 1997
    [16] The spunbond & melt blown story. Nonwovens-Industry, 1999, 30(12): 62~66
    [17] 徐朴.美国国际非织造布展览会概况.纺织导报,1998,4:31~
    
    34
    [18] 徐朴.参加美国IDEA2001国际非织造布展览会报告(续).非织造布,2002,10(3):11~13
    [19] Schwarz, Eckhard C A. Apparatus and process for melt-blowing a fiberforming thermoplastic polymer and product produced thereby. US P4380570. 1983
    [20] Schwarz, Eckhard C A. Apparatus and process for uniformly melt-blowing a fiberforming thermoplastic polymer in a spinnerette assembly of multiple rows of spinning orifices. US P 5476616. 1995-12-19
    [21] Appel, D W, Drost, et al. Slotted melt-blown die head. US P4720252, 1988
    [22] 徐朴.参加美国IDEA2001国际非织造布展览会报告(续).非织造布,2002,10(3):11~13
    [23] Milligan. MW. Multi-hole melt blown die nosepiece. US P6099282 2000
    [24] Bergen Language Institute Teaneck, New Jersey. NONWOVENS INDUSTRY SINCE'93特刊, 1993, 11
    [25] Christine(Qin)Sun,Dong Zhang.双组分纤维熔喷非织造布及其潜在应用.产业用纺织品,2001,11:9~13
    [26] 徐朴.从INDEX’02展览会看国际非织造布技术发展.非织造布,2002,10(9):3~8
    [27] 王卫兵.德国Reifenhauser公司非织造布设备及工艺.山西化纤,1998,4:9~13
    [28] 韩亚元,李瑶君,张清华等.熔喷法弹性无纺布的研究进展.西安工程科技学院学报,2002,16(3):88~91
    [29] Khan-AYA, Wadsworth-LC, Ryan-CM. Polymer-laid-nonwovens from poly (lactide) resin. International-Nonwovens-Journal, 1995, 7(2): 69~73
    
    
    [30] Muller D H, Krobjilowski A. Meltblown fabrics from biodegradable polymers. International-Nonwovens-Journal, 2001, 3: 11~17
    [31] 北京合成纤维实验长编 锦纶生产 石油化学工业出版社 1976
    [32] G. P. Hoff, Ind. Eng. Chem., 32, 1560(1940)
    [33] H.霍蒲夫 等著 聚酰胺 1965 中国工业出版社
    [34] R.J.扬著 聚合物导论 1988 哈尔滨工业大学出版社
    [35] 杜郢 周亚东 缪亮 低分子聚酰胺热熔粘合剂的研究 中国胶粘剂 9(3):1~3
    [36] 于永为 以四元聚酰胺单体合成尼龙热熔胶 吉林石油化工 1994(4):1~5
    [37] Dr.Hermann Klare聚酰胺纤维的化学与工艺学 中国工业出版社1964
    [38] Schlack, P.und Kunz, K. loc. cit. unter[5]S. 638 bis 642.
    [39] Quig, J. B. loc. eit. unter[31]S. 285 bis 286
    [40] Baker, W.O.und Fuller, C.S.Journ.Am. Chem. Soc. 64(1942)2399.
    [41] 何曼君等.高分子物理,复旦大学出版社,1998年10月:261-264
    [42] Bansal, Vishal, R. L. Shambaugh, On-line Determination of Diameter and Temperature during Melt Blowing of Polypropylene, Ind. Eng. Chem. Res. 37: 1799-1806
    [43] Uyttendaele M A J, Shambaugh R L.Meltblowing: general equation development and experimental verification. AIChE Joural, 1990, 36(2): 175~186
    [44] Matsui M. Air Drag on a Continuous Filament in Melt Spinning. Transactions of the Society of Rheology, 1976, 20(3): 465-473
    [45] zieiminski K F,spruiell J E.结晶性成纤高聚物的数学模型.合成纤维,1986,4:31~38
    [46] 佟立民 李晓久 粘合衬与面料剥离强度测试方法的研究 天津纺织工学院学报 1998,17(5):29~33
    
    
    [47] 翁汉元 服装粘合衬用共聚尼龙热熔胶粘基 黎明化工 1992,(4):1~6。
    [48] 何华雄 热熔粘合衬布生产技术初探 非织造布进展.第四届上海国际非织造布讨论会文集.1:59~65。
    [49] Wessling R A, Oswald J H, Effect of polymerization conditions on the morphology of as-polymerized poly(vinylididene chloride). J Polym Sci, 1973, A11(2): 875
    [50] Samuels J.Quantitative structural characterization of the melting behavial of isotatic polypylene, J Polym Sci, 1975, A13(7): 1417
    [51] Cebe P, Chung S. Melting behavial of high performance composite, matrix polymers: poly(phemylene sulfide). Polym Compos, 1990, 11(4): 256
    [52] Bonnet M, Rogauseh K D, Petermann J. The endothermic "annealing peak" of poly (phemylene sulphide) and poly(phemylene terephthalate). Colloid Polym Sci, 1999, 277: 513
    [53] 王国明等 热历史对尼龙610熔融的影响 建筑材料学报 1998,1(1):77~81
    [54] 李磊等 尼龙 66的多重熔融行为 中国纺织大学学报 2000,26(4):93~95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700