氧化锆/石墨复合型芯的制备及固态金属颗粒冷却能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了以硅溶胶为粘结剂,氧化锆为耐火材料来制备氧化锆/石墨复合型芯的制备工艺;并分析了金属颗粒作为冷却剂在金属凝固过程中应用的可行性、金属颗粒的冷却能力以及金属颗粒作为辅助冷却剂在定向凝固的液态金属冷却法中的应用,得出以下结论:
     (1)以硅溶胶为粘结剂,氧化锆为耐火材料来配制涂料,采用刷涂石墨型芯的方法来制备的氧化锆/石墨复合型芯经800℃和1000℃实际浇铸实验,结果证明型芯的强度足够满足实际浇铸要求。
     (2)型芯制备的工艺为:氧化锆涂料的粉液比1:3.0~3.5,粘度控制为13~20×10~(-6)m~2/s,密度2.0~2.5g/cm~3;涂层层间干燥参数温度22~25℃,湿度45%~60%;型芯的最佳焙烧工艺为焙烧温度1000℃,保温时间2小时。
     (3)在金属凝固过程中用固态金属颗粒作为冷却剂能加快金属的冷却速度,用固态金属颗粒作为冷却剂是可行的。
     (4)熔点低的金属颗粒作为冷却剂的冷却效果优于高熔点的金属颗粒;在加入的冷却剂完全熔化的条件下,加入的金属颗粒越多,金属的冷却速度越快,冷却效果越明显。
     (5)金属颗粒作为辅助冷却剂应用于液态金属冷却法中,不但能加快金属的冷却速度,而且能有效地降低液态金属冷却剂的温度,从而增加液态金属冷却剂的作用时间;而且加入的颗粒越多,金属的冷却速度越快,液态金属冷却剂上升的温度越小,冷却剂的作用时间越长。
Zirconia/graphite compound mold core was prepared by the coating, in which the silicon sol was used as binder and zirconia was used as refractory materials. The application feasibility of metal particles as a coolant in the solidification process was studied, and the application of metal particles as subsidiary coolant in the liquid metal cooling of directional solidification were analyzed and studied in this investigation. The conclusions can be drawn as follows:
     1) The zireonia/graphite compound cores fabricated by brushing coating which was prepared by making silicon sol agglutinated zirconia as a refractory material were casteded at 800℃and 1000℃respectively, and the results show that the strength of the mold core is strong enough to meet the requirement of practical casting.
     2) Preparation technology of the mold core includes the following parameters: the ratio of powder and slurry is 1:3.0~3.5, the viscosity is 13~20×10~(-6)m~2/s, the density is 2.0~2.5g/cm~3; the room temperature is 22~25℃and the humidity is 45%~60%; the optimum firing parameter is 1000℃holding for 2h.
     3) The metal grains can be used as a coolant to enhance the cooling rate during the solidification, so it is feasible to choose metal grains as a coolant.
     4) The cooling effect of metal grains with low melting point is better than that of metal grains with high melting point. It have better cooling effect when added more metal grains which have higher cooling rate when the added coolant completely melted.
     5) Metal grains as subsidiary coolant can not only enhance the cooling rate of metal, but also decrease the temperature of liquid coolant and can prolong the affect time of liquid metal. With increase of grains addition, the cooling rate increases; the affect time became longer when the temperature of liquid metal became less.
引文
[1] 肖克.硅溶胶在定向凝固熔模铸件生产中的应用[J] .材料工程,2001,(2):47—49.
    [2] 肖克.硅溶胶在熔模精密铸造中的应用[J] .铸造技术,2001,(6):7—9.
    [3] 景宗梁,施进.硅溶胶制壳工艺的若干改进措施[J] .精密铸造特种铸造及有色合金,2004,(4):54—56.
    [4] 许云祥,鲁蕊,李磊.硅溶胶型壳的制壳工艺参数—对硅溶胶型壳的几点认识之二[J] .特种铸造及有色合金,2004,(3):55—60.
    [5] Versnyder F L, Shank M E. Development of Columnar Groin and Single Crystal High Temperature Materials through Directional Solidification[J] . Materials Science and Engineering, , 1970, 6(4): 213—247.
    [6] Versnyder F L, Barlow R B, Sink L W et. Directional Solidification in the Precision Casting of Gas Turbine Parts[J] . Modem Casting, 1967, 52(6): 68—75.
    [7] Smart R F. Investment Casting: A World View [J] . INCAST, 2001, (2): 22.
    [8] 周泽衡,姜不居.飞速发展中的中国精密铸造业[J] .特种铸造及有色合金,2001,(5):34.
    [9] 彭广威,刘健,李理,曾斌.定向凝固理论及其研究现状[J] .铸造设备研究,2005,(4):44—47.
    [10] 佟天夫,陈冰,姜不居.熔模铸造工艺[M] .北京:机械工业出版社,1991.
    [11] 李海树.熔模铸造型壳强度与硬化改进[J] .特种铸造及有色合金,2000,(1):38.
    [12] 全诗艾.氯化镁是水玻璃粘结剂良好的硬化剂[C] .第十届铸造年会论文集,南昌:2002.
    [13] 任国斌,严汝珊,张海川等.Al_2O_3—SiO_2系实用耐火材料[M] .北京:冶金工业出版社,1998.
    [14] 宿庆阳,张立同.对高岭土精铸型壳材料性能特征的探讨[J] .特种铸造及有色合金,1996,(5):20.
    [15] 朱丽娟,张玉海,董秀琦等.粉料粒度优化级配降低精铸件表面粗糙度的机理及应用[J] .铸造,1996,(5):6.
    [16] 三机部621所.精铸铝矾土合成料的研究[J] .铸工,1981,(1):20.
    [17] 李德成,孟山都.Syonx30硅溶胶的研究[J] .铸造,1992,(7):9.
    [18] 蒋有华.涡轮叶片熔模铸造复合型壳的结构设计和实验[J] .铸造,1990,(7):31.
    [19] 沈桂荣.钛合金熔模铸造制壳材料及工艺的研究[J] .铸造,1986,(3):13.
    [20] 姜不居.熔模铸造的现状和未来[J] .特种铸造及有色合金,1998,(4):18.
    [21] 胡汉起.金属凝固原理[M] .北京:机械工业出版社,1991:74.
    [22] 李青春,王倩,常国威.定向凝固技术与新材料的进展[J] .辽宁工学院学报,2003,23(4):42—45.
    [23] W Filcher D J. Fundamentals of Solidification[M] . Switzerland: Trans Pub Ltd, 1998.
    [24] 常国威,王建中.金属凝固过程中的晶体生长与控制[M] .北京:冶金工业出版社,2002:148
    [25] Hengzhi, Xie Faqin. Solidification characteristics of near rapid and supercooling directional solidification [J] . Trans. Nonferrous Met. Soc. China. 1999, 9 (4): 44—50.
    [26] 杨森,周尧和等.定向凝固技术的研究进展[J] .兵器材料科学与工程,2003,23(2):44—49.
    [27] 周尧和,胡壮麒,介万奇.凝固技术[M] .北京:机械工业出版社,1998:206.
    [28] 安阁英.铸件成形理论.北京:机械工业出版社,1992:147.
    [29] 周振平,李荣德.定向凝固技术的发展[J] .中国铸造装备与技术,2003,(2):1—3.
    [30] Erickson J S, Owczarski W A, Curran P M Advances. in Fabricating Aerospace Structures Process Speeds up Directional Solidification[J] . Metal Progress, 1971, 99(3): 58—60.
    [31] Giamei A F, Tschinkel J G. Liquid Metal Cooling—A New Solidification Technique[J] . Metallurgical Transactions, 1976, 7A(9): 1427—1434.
    [32] 周镇华,李建国,傅恒志.定向凝固技术及其研究进展[J] .材料导报,1996,(6):1—6.
    [33] 陈光,李建国,傅恒志.先进定向凝固技术[J] .材料导报,1999,13(5):5—7.
    [34] 刘忠元,李建国,傅恒志等.两种定向凝固方法DZ22合金的力学性能和组织[J] .材料研究学报,1996,10(3):13.
    [35] 蔡英文,李建国,毛协民等.超高温度梯度场中的Al_2Bi偏晶合金共生行为[J] .材料研究学报,1995,9(3):208—212.
    [36] 周尧和,杨森等.定向凝固技术的发展与研究进展[J] .中国铸造装备与技术,2005,23(2):11—15.
    [37] 李金富.过冷Ni2Cu合金的组织形成规律及其定向凝固[D] .西安:西北工业大学,1998:12.
    [38] Lux B, Haour G, Mallard F. Dynamic Under cooling of Superalloys[J] . METALL, 1981, 35(12): 1235—1240.
    [39] 李金山.钢的电磁约束成形定向凝固研究[D] .西安:西北工业大学,1998:22.
    [40] 沈军,傅恒志等.合金电磁约束成形及凝固组织控制研究[J] .材料导报,2003,17(7):34—40.
    [41] 杨森,黄卫东,刘文会.激光超高温度梯度快速定向凝固研究[J] .中国激光,2002,29(5):475—480.
    [42] Gill S C, Zimmermann, Kurtz. Laser Resolidification of the Al—Al_2Cu Eutectic[J] . Alta Metallurgical of Material, 1992, 40(11): 2895—2906.
    [43] 杨森等.超高温度梯度快速定向凝固的CuMn合金胞晶间距[J] .中国有色金属学报,2001,2(11):25~32.
    [44] Liao Shijie, Hart Yafang. A study of the heat parameters during bidirectional solidification [J] . Science and Technology of Advanced Materials, 2001, (2): 281 — 284.
    [45] 范新会.单晶连铸技术研究[D] .西安:西北工业大学,1997.
    [46] 苏彦庆,郭景哲,刘畅等.定向凝固技术与理论研究的进展[J] .特种铸造及有色合金,2006,269(1):25—30.
    [47] G. Zhao, M. Rettenmayr. Using directional solidification to determine solid/liquid equilibria in multicomponent phase diagrams[J] . . Journal of Growth, 2005, (279): 540—550.
    [48] 罗宁,张锡平,闫双景,吕志刚等.熔模铸造型壳的现状[J] .综述特种铸造及有色合金,2005, (5):30—32.
    [49] 曹科,闵小俊,邱桂斌,张平.以硅溶胶为粘结剂的浇注成型陶瓷型芯[J] .中国铸造装备与技术,2005,(2):23—25.
    [50] 李冰,李涤尘,张敏华.基于SL原型的快速精铸氧化物陶瓷型壳制备工艺研究[J] .铸造技术,2004,25(3):189—191.
    [51] 章浩龙,赵雅琴.熔模精铸用硅溶胶的粘度性能[J] .精密铸造特种铸造及有色合金,2002,(4):52—54.
    [52] 张锡平,阎双景,吕志刚,姜不居,赵雅琴.熔模铸造用硅溶胶粘结剂综述[J] .精密铸造特种铸造及有色合金,2002(2):39—42.
    [53] 崔春兰,柳贤福,张华,罗永滨,王宏.快干硅溶胶的生产应用[J] .汽轮机技术,2005,47(1):79—80.
    [54] 王自新,赵冰.硅溶胶制备与应用[J] .化学推进剂与高分子材料,2003,1(5):34—39.
    [55] 许云祥,鲁蕊,李磊.硅溶胶的胶团结构和干燥胶凝过程—对硅溶胶型壳的几点认识之一[J] .精密铸造特种铸造及有色合金,2004,(2):52—55.
    [56] 丁国权,王洪基,孙海燕,金东斌.硅溶胶涂料及其表面涂层的质量控制[J] .汽轮机技术,2003,45(6):408—410.
    [57] 孙延明,吴连凯.用硅溶胶制壳方法制作砂芯的试验[J] .精密铸造特种铸造及有色合金,2004(6):56~61.
    [58] 马波.快干硅溶胶应用研究[J] .精密铸造特种铸造及有色合金,2005,25(4):234—237.
    [59] 葛毓立,李玉光.精密铸造硅溶胶粘结剂型壳发泡涂料的研究[J] .大连大学学报,2003,24(6):32—35.
    [60] Bohm, Benno. Fining with aluminates—modified silica sol[P] . US4027046, 1997.
    [61] Alexander. Process for modifying the properties of silica sol and product[P] . US 2892797, 1999.
    [62] Iler. Method of producing colloidal silica by electro dialysis of a silicate[P] . US 3668088, 1972.
    [63] HB5346—86.熔模铸造用硅溶胶[S] .北京:301出版社,1986.
    [64] 郭锋扬.熔模铸造用粘结剂与耐火材料的研究应用[J] .精密铸造特种铸造及有色合金,2004,(5):3—5.
    [65] 宋辉,陈晖,冯润棠.新型耐火材料用含锆原料及应用[J] .产业透视,2004,(10):53—54.
    [66] 张志力.制备氧化物涂层的新方法[J] .南昌航空工业学院学报,1998,(4):70—73.
    [67] 梁波,陈煌.氧化锆涂层(薄膜)的应用与研究[J] .硅酸盐通报,2003,(6):63—68.
    [68] 邵刚勤,潘牧.氧化锆等离子喷涂粉末的研究动态[J] .材料导报,1996,(4):47—51.
    [69] Buntrock Industries, Inc. More than A Seller of Other People's Products[J] . INCAST, 2004, (7): 12—13.
    [70] Vandermeer J. A New Silica Binder for Investment Shell Slurries[J] . INCAST, 1999, (3): 18—19.
    [71] Duffey D. The We coat Binder System [C] . Investment Casting Institute, 49th An—nual Technical Meeting, 2001.
    [72] 李海树.熔模铸造复合型壳成本分析与工艺改进[J] .精密铸造特种铸造及有色合金,2005,25(2):110—112.
    [73] 孙延明,吴连凯.用硅溶胶制壳方法制作砂芯的试验[J] .精密铸造特种铸造及有色合金,2004,(6):56—60。
    [74] HB5346—86.硅溶胶型壳检验[S] .北京:301出版社,1986.
    [75] 刘城.快速凝固技术的应用与发展[J] .广东有色金属学报,2005,(4):48—52.
    [76] 安金敏,任忠鸣,李伟轩等.连续定向凝固技术研究[J] .上海金属,2005,(6):32—36.
    [77] 刘健,李理,曾斌,彭广威.定向凝固技术制取高温合金单晶铸件的思考[J] .湖南工程学院学报(自然科学版),2005,(2):11—16.
    [78] 周尧和.为发展凝固理论与技术作贡献[J] .中国科学院院刊,1994,(2):20~25.
    [79] 卢百平.定向凝固技术的若干进展[J] .铸造,2006,(8):767—771.
    [80] Higginbotham G J S. From Research to Cost—Effective Directional Solidification and Single—Crystal Production—an Integrated Approach [J] . Materials Science and Technology, 1986, 2 (5): 442—459.
    [81] 傅恒志,魏炳波,郭景杰.凝固科学技术与材料[J] .中国工程科学,2003,(8):1—14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700