生物医用钛合金显微组织和力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物医用钛合金以其与骨骼相近似的弹性模量、良好的生物相容性和机械加工性能及在生物环境下优良的抗腐蚀性等优点,引起了国内外学者的广泛关注,并在临床上得到了越来越广泛的应用。本文根据生物医用钛合金开发的现状和存在的问题,从合金选择、熔炼工艺出发,选择出新型生物医用Ti-Mo合金和Ti-Mo-Nb合金,并对其显微组织和力学性能进行研究。具体研究内容和结果如下:
     根据钛合金的分类及其特点,结合合金的选用原则,参照d电子合金理论,选定了合金化元素为Mo元素和Nb元素作为强化元素。这两种元素在强化的同时,对合金的塑性影响较小,同时具有优异的耐腐蚀性能和良好的生物相容性。结合Mo和Nb这两种元素对合金强度的影响,选用了一种Ti-Mo合金,并在二元合金的基础上加入Nb元素,制备出Ti-Mo-Nb合金。
     利用光学显微镜(OM)、X射线衍射(XRD)、透射电镜(TEM)等方法,系统地研究了Mo元素对Ti-Mo合金显微组织结构的影响,并对Ti-Mo合金的抗压强度、弹性模量、维氏硬度等几种常规力学性能进行了研究。考察了合金元素Mo对Ti-Mo合金力学行为的影响,并分析了Ti-Mo合金的断裂行为。结果表明,当Mo含量为10wt%时,Ti-Mo合金的等轴晶粒明显细化,抗干磨能力最好,具有优良的综合力学性能。
     在Ti-10Mo合金的基础上加入Nb元素,研究了Nb元素对Ti-10Mo合金的显微组织和力学性能的影响,得知Ti-10Mo-10Nb合金由β相组成,其屈服强度与Ti-10Mo合金相当,而塑性却大大改善。综合分析比较后,最终制备出一种新型生物医用钛合金。
     作为一种新型生物医用钛合金,Ti-10Mo-10Nb合金符合设计原则中提出的要求,具有良好的显微组织和力学性能,具有良好的应用前景。
Due to their similar elastic modulus to bone, excellent biocompatibility and mechanical properties and corrosion resistance in biological environment, titanium alloys have been widely studied and widely used in clinics. According to exploitation status quo and existing flaws of titanium alloys for surgical implants, considering the design principles and melting technology, new titanium alloys Ti-Mo and Ti-Mo-Nb for surgical implants is designed and studied, and also their mechanical properties and microstructures are systematically studied in this thesis. The concrete contents and results are shown as the follows:
     According to characteristics of each kind of titanium alloy , the design principles and d theory of the alloy, Mo and Nb are selected as intensification elements, which possess excellent corrosion resistance and outstanding biocompatibility, at the same time, have few effects on plastic deformation during strengthening the matrix. Based on the effect of Mo and Nb on strength of the titanium alloy, and then the titanium alloys are confirmed as Ti-Mo alloys, and then a new kind of biomedical titanium alloys was prepared when element Nb was added to the Ti-Mo alloys.
     The effect of Mo on the microstructure and mechanical properties of Ti-Mo alloys have been systematically studied by means of Optical Microscope(OM), X-ray Diffraction(XRD), Transmission Electron Microscope (TEM).The mechanics behaviors for compression strength, the elastic modulus and Vickers hardness were studied, too. At the same time, the influence of Mo on Ti-Mo alloys’mechanics behavior and the fracture behavior were analysed.
     The results indicate that the size of Ti-Mo alloys’equi-axed grains was dramasticly decreased and needle exudation matters in crystal interior distributed unorderly were found and the alloy has excellent complex mechanics behavior when the content of Mo is 10 wt %. When Nb was added to Ti-10Mo alloy ,the influence of Nb on it related to microstructure and properties was studied, and the microstructure of Ti-10Mo-10Nb alloy is made up of equi-axed and dendriticβgrains, its yield strength is similar with that of Ti-10Mo alloy and plastic properties were improved greatly. A new biomedical alloy was prepared finally
引文
1 俞耀庭,张兴栋.生物医用材料.天津大学出版社.2000:1~2
    2 B.D.Ratner,L.L.Hench.Perspectives on Biomaterials.Current Opinion in Solid State and Science.2002,4:379~380
    3 顾汉卿,徐国风.生物医学材料学.天津科技翻译出版公司.1993:1~13
    4 宁聪琴,周玉.医用钛合金的发展及研究现状.材料科学与工艺.2002,10 (1): 100~106
    5 Ang K.The Use of Titanium for Medical Application in the USA.Mater Sci Eng.1996,A213:134~137
    6 崔福斋,冯庆玲.生物材料学.科学出版社.1997: 88~90
    7 王静梅,姚松年.生物材料及其仿生学的研究进展与展望.材料研究学报.2000,14(4):337~343
    8 张国才.摘译自《日本金属学会会报》.钛合金信息.1999,3:1~2
    9 C.Mauli Agrawal.Reconstructing the human body using biomaterials. JOM. January, 2001:31~35
    10 Leventhal G S. Titanium,a Metal for Surgery.J Bone Joint Surg.1951,A33:473~ 474
    11 Khan M A,Williams R L,Williams D F.Cojoint Corrosion and Wear in Titanium Alloys.Biomaterials.1999,20:765~772
    12 Branemark P,Hansson B,Adell R.et al.Osseointegrated Implants in the Treatment of Edentulous Jaw Experience from a 10-year Period.Scand J Reconstr Surg Suppl.1977,16:1~4
    13 Long M,Rack H J.Titanium Alloys in Total Joint Replacement-a Materials Science Perspective.Biomaterials.2003,19:1621~1639
    14 Buly R L.Titanium Wear Debris in Failed Cemented Total Hip Arthroplasty. Arthroplasty.1992,7(3):315~323
    15 Niinomi M.Mechanical Properties of Biomedical Titanium Alloys.Materials Science and Engineering .2000,A243:231~236
    16 Yoshimistisu Okazaki,Yoshimasa Ito ,Kenj Kyo,et al.Corrosion Resistance and Corrosion Fatigue Strength of New Ttitanium Alloys for Medical Implants without V and Al.Materials Science and Engineering.1996,A213:138~147
    17 [英]威廉姆斯D F 编,朱鹤孙 等译.医用与口腔材料.北京:科学出版社. 1999:29~63.
    18 Li Zuochen, Zhao Yongqing, Li Changliang.Proc. of Xi'an Int. Titanium Conf., Xi'an. 1998:463
    19 李佐臣等.外科植入TAMZ合金生物学评价.稀有金属材料与工程.1998, 27(1):59~61
    20 张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向.生物医学工程学杂志. 2000,17(2):206~208
    21 钱九江.外科植入物用纯钛及其合金.稀有金属.2001,25(4):303~306
    22 Semlitsch M,Weber H,Streiche R,et al. Joint Replacement Components Made of Hot-forged and Surface-treated Ti-6Al-7Nb Alloy. Biomaterials. 2001,13(11): 781~788
    23 Song Y.Xu D S,Yang R,Li D.et.Theoretical Study of the Effects of Alloying Elements on the Strength and Modulus of β-type Bio-titanium Alloys.Mater Sci Eng.1999,A260:269~274
    24 Zwicker R, Buehler K, Rmueller. Proc. 4th Int. Conf. On Titanium. Kyoto, Japan, 1980:505
    25 于思荣.生物医学钛合金的研究现状及发展趋势.先进材料产业.2001,2 (2): 23~25.
    26 徐丽娟.无毒生物医用β型钛合金材料凝固组织和性能的研究.哈尔滨工业大学硕士学位论文.2003,7:1~4
    27 D.Kuroda,M.Niinomi,M.Morinaga,Y.Kato and T.Yashiro.Design and Mechanical Properties of New β type Titanium Alloys for Implant Materials. Mater. Sci.Eng. 1998,A243:244~249
    28 L. L. Hench. Biomaterials: a Forecast for the Future.biomaterials.2003, 19:1419 ~1423
    29 C.J.Damien,J.R.Parsons.BoneGraft Substitutes:a Review of Current Technology从and applications.J.Appl.Biomater.1992,2:187~208
    30 王晓云.钛合金熔模精铸制壳工艺的研究.哈尔滨工业大学工学硕士学位论文. 1998,7:58~63
    31 甘敬林等.大型发动机固定壳体钛合金铸件的研制.特种铸造及有色合金. 1994,(2):35~46
    32 Ida K,Kudoh Y,Kawada E,et al.Surface Reaction between Titanium Casting andInvestments.Bull Tokyo Dent Coll,1996,37(3):129~136
    33 Okabe T, Watanabe I, et al. Dental Casting of Commercial Titanium Alloys. J Dent Res.2004,7:168
    34 吴波,彭德林,张翥,沈剑韵,柳松青.Ti2AINb基合金的ISM熔炼研究.宇航材科工艺,2002, 32(2):47~50
    35 谢成木 编著.钛及钛合金铸造.机械工业出版社.2005,1:11~25
    36 Tengvallp,Lundstrom I. Physico-Chemical Considerations of Titanium as a Biomaterial.Clin Mater.2002,9:115~134
    37 Matthew Donachie.Biemedical Alloys.Advanced Material&processes. 1998,7: 63~65
    38 Van Noortr.Titanium:the Implants of Today.J Mater Sci.1987,22:3801~3811
    39 于思荣.金属系牙科材料的应用现状及部分元素的毒副作用.金属功能材料.2000,7(1):1~6
    40 郭天文.口腔科铸钛理论和技术.世界图书出版公司.1997,8
    41 马如璋,蒋民华,徐祖耀.功能材料学概论.冶金工业出版社.1999,5:63
    42 李军.新型医用钛合金TZNT机械性能、耐蚀性能及生物相容性能的研究.东北大学工学硕士学位论文.2002,3:14~24
    43 张钧.近α钛合金中α2有序相的析出规律及机制.中国科学院金属所博士学位论文.2002,1:1~3
    44 Zhang B C.Nonferrous Metal and Heat Treat.Xi’an:North-Weatern Polytechnical University Press.1993:93
    45 王金友,葛志明,周彦邦.航空用钛合金.上海科学技术出版社.1985,216~238.
    46 李世普.生物医用材料导论.武汉工业大学出版社.2000,8:65
    47 S.G..Steinemann,S.M.Perren.Titanium Science and Technology,Proceedings of the Fifth International Conference on Titanium (Munich, FRG. September 10~14 1984).1984,2: 1327~1334
    48 J.Breme.Sixth World Conference on Titanium(France).1988:57
    49 梁英教主编.物理化学.冶金工业出版社.第二版.1995:369~373
    50 Moringa M et al.,J.Phys.Soc.Jpn..1984,53:653
    51 Moringa M et al.,Sixth World Conf.on Titanium.France.1988:1601
    52 徐东生,李东 , 胡壮麒 . 第八届全国钛及钛合金学术交流会文集 . 无锡,1993:107~115
    53 张久来,罗国珍,海荣.稀有金属.1997,21:48~52
    54 [德] C.莱恩斯 M.皮特尔斯 编,陈振华 等译.钛与钛合金.化学工业出版社.2005,3:14~21
    55 Paul J.Bania.Beta Titanium Alloys in the 1990′s. Materials& Society.2003:3~5
    56 陈治清 主编.口腔材料学.第三版.人民卫生出版社.1995,10:17~38
    57 何奖爱,王玉玮 编著.材料磨损与耐磨材料.东北大学出版社,2001,4:9~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700