汽车白车身零部件激光三维切割与搭接焊研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光加工技术已广泛应用于汽车白车身及其零部件制造,尤其是激光切割与焊接在国外已逐渐成为车身零部件制造的标准加工工艺。激光焊接、切割技术虽然在国内取得了长足的发展,但在汽车制造方面的应用与国外尚存在较大差距,目前主要还是引进成套激光加工设备、生产线和工艺技术,用于汽车拼焊板,车身组件的焊接和切割。这阻碍了激光这一高新技术的应用推广,降低了激光产业化水平。为提升我国汽车制造的先进技术能力,在更广范围和更深层次上,加快激光加工在汽车制造业的应用与发展。首先要加强激光切割焊接汽车车身及其零部件的基础理论及工艺技术研究,其次要加快其成套设备的研制。
     本文综述了国内外研究现状,从车身的激光切割焊接实际应用出发,发现关键问题:在车身的三维激光切割中的空间狭窄位置切割头易与工件发生碰撞、工件拐角处易产生过烧、工件变形产生超程报警等;在车身激光焊接中,某些空间狭窄焊接部位焊接头也易与工件或夹具产生干涉、两车身零部件搭接位置因工件变形或夹持力度不够易产生较大的间隙致使无法进行熔焊连接、车身焊接部位激光焊缝长度和间距的制定无章可循、各种新材料在车身上的应用使得焊接难度增加等等。针对上述关键问题,本文从理论和试验上展开了全面研究。
     首先,基于某一车型的车门和侧围工件的结构与工艺特点,并兼顾生产单元的柔性及安全性,对生产单元进行了布局总体设计和主要设备的选型。重点分析和解决了三维激光切割过程中的碰撞、工件变形、转角过烧等难题。提出了激光型式(脉冲激光和连续激光)的选择原则。并通过试验的方法研究了三维激光切割工艺参数如激光功率、切割速度、辅助气体压力、脉冲频率、占空比、光束入射角及焦点位置等对切割质量的影响;从切缝宽度、切割面粗糙度、切割面波纹、挂渣及热影响层深度等方面对切割质量进行了评定。通过对试验结果的分析,总结出了工艺参数对切割质量的影响规律。
     其次,对激光焊接熔池特性进行了数值计算,分析了工艺参数对熔池形状及温度分布的影响。针对车身高强镀锌钢、镀锌钢、低碳钢以及铝合金等车身板材进行了光纤激光与C02激光搭接焊试验。研究了异种材料高功率光纤激光与C02激光搭接焊接头的成形特性和力学性能情况,以控制和优化车身零部件激光焊接质量。结果表明,采用光纤激光与CO2激光焊接时,焊缝形貌和接头性能均存在一定的差异,且光纤激光的焊接性能较CO2激光好。此外,在相同参数下进行异种板材激光搭接焊时,板间间隙大小、两板上下层的相对位置对焊接性能也有一定的影响。
     随后,针对汽车白车身零部件激光搭接焊的结构特点和镀锌板搭接焊的难点,分析了激光光束入射角、板间间隙和焊缝布置形式等对接头焊接性能的影响。并研究了基于不同板材组合的搭接接头和各种影响因素下的临界光束入射角和极限可焊板间间隙。结果表明,板材厚度、焊缝熔宽等对临界光束入射角与极限板间间隙都有一定的影响。板材厚度较大时,光束入射角不宜太大,而板间间隙可适当增大;焊缝熔宽较窄时,光束入射角可适当增大,而板间间隙不能太大。此外,板间间隙与光束入射角也相互影响,板间间隙较小时,光束入射角不宜太大。当被焊试件规格尺寸和焊缝总长度不变时,以“短长度与多段数”形式进行焊缝布置的接头表面形貌和力学性能均较好。
     最后,对激光焊与电阻点焊的性能进行了比较分析。针对同一板材搭接接头,设计了不同长度的激光焊缝,通过对各长度焊缝的接头进行力学性能比较,得出与一个电阻点焊性能相当的激光焊缝长度,并以此长度作为激光焊的最短焊缝长度。同时,分析了不同板厚、不同材质、不同焊缝表面熔宽以及异种板材的两板相对位置等因素对最短激光焊缝长度制定的影响。结果表明,板材厚度与焊缝表面熔宽不同时,最短激光焊缝长度取值不同;对于厚度和材质相近的异种板材搭接接头,两板的上下相对位置对激光焊缝长度的制定影响不大。此外,基于某一车型的车门零部件进行了激光焊与电阻焊对比试验。结果表明,采用激光焊时,焊接速度及车门整体静态强度显著高于电阻点焊,且激光焊接过程体现出更高的柔性。同时,激光焊接头的金相组织较电阻点焊细小均匀,显微硬度高于电阻点焊接头,抗腐蚀性能也优于电阻点焊接头。
Laser processing technology has been widely used in auto body-in-white and auto body parts manufacturing, especially the laser cutting and welding technology has gradually become standard process of auto body-in-white manufacturing in overseas. Although laser welding and cutting technology have grown rapidly in mainland, there still exists a great gap in the application of car manufacturing compared with foreign countries. In current situation, the complete laser processing equipments, production line and processing technology are mainly introduced for welding and cutting of tailor-welded blanks and auto body components from overseas. These hindered the promotion of laser technology application and reduced the level of the laser industry. In order to enhance our advanced technology and capabilities of auto manufacturing and accelerate the development of laser processing technology in auto manufacturing industry at a deeper level and a broader scope, first, the basic theory and technology of laser cutting and welding of auto body parts should be enhanced, and then the research of complete laser processing equipments should be accelerated.
     In this paper, the research situation at home and abroad was reviewed. From the application of laser cutting and welding in auto body, the key issues were detected as shown the following:in the 3D laser cutting process of auto body, the cutting head in narrow spatial location easily collides with the workpiece, the workpiece corner is easy to be over-burnt, and the workpiece deformation causes over-travel alarm etc. In the laser welding process of auto body, the welding head in narrow spatial location also easily interferes with the workpiece or the fixture, two parts of auto body can't be welded to connect as a result of large gap due to workpiece deformation or not enough clamping force at overlap location, the laser length and space of welding seam at auto body welding position are determined with no description, and a variety of new materials used for auto body make more difficult to weld and so on. In order to find practical solutions to these problems, a comprehensive research from theory and experiment was carried out in this paper.
     First, with the door and side panel as an example, the structure and process were analyzed taking flexibility and security into consideration, the overall layout of laser cutting and welding production unit of auto body was designed and the main types of equipments were chosen. The problems during the 3D laser cutting process, such as collision, deformation of the workpiece, the corner over-burn were analyzed and solved. The selection principle of laser form (pulse or CW laser) was proposed. The influence of 3D laser cutting process parameters such as laser power, cutting speed, assistant gas pressure, pulse frequency, the beam incident angle and the focus position on cutting quality was studied by testing. And the cutting quality from the terms of the kerf width, cutting roughness, cutting waviness and heat affected zone width and so on was evaluated. Through analysis of test results, the rules of process parameters on cutting quality were summarized.
     Secondly, the characteristics of laser welding pool were numerical calculated, and the influence of process parameters on welding pool shape and temperature distribution was analyzed. The high-power fiber laser and CO2 laser welding experiments on automotive dissimilar materials such as high-strength galvanized steels, galvanized steels and common cold rolled automotive plates were carried out, and then their welding performance were compared and analyzed. The high-power fiber laser lap-welding joint forming properties and mechanical properties of heterogeneous materials were studied, so as to control and optimize the craft quality of fiber laser welding of auto body. The results show that when applying fiber laser and CO2 laser to weld respectively, the morphology and properties of welding joint have some differences, and the welding performance is much better under fiber laser welding condition. In addition, when welding the lap joint of dissimilar plates under the same parameters, the relative position between two plates has a certain effect on the welding performance.
     Then, for the structural characteristics of laser Welding of auto body-in-white and the difficulties of lap welding of galvanized sheets, the influence of incident angle of laser beam, the plates space and the welding layout on the mechanical properties of the welded joint were analyzed. And the critical incident angle and the limit welding plates space in different lap joints and other effecting factors condition were studied. The results showed that plates thickness, weld width have a certain impact on the critical beam incident angle and the limit plates space. When plates thickness is large, the beam incident angle should not be too large, but the plates space may be increased appropriately. And when the weld width is narrow, the beam incident angle can be properly increased, but the plates space can't be too large. In addition, the plates space and the beam incident angle are mutually influenced. When plates space is small, the beam incident angle should not be too big. When the size of workpiece and the total length of welding seam are constant, the surface morphology and the mechanical properties of the lap joint arranged according the weld seam layout principle "short length and multi section" are good.
     Finally, the performance of laser welding and resistance spot welding were compared. For the same plate's lap joint, designing different length of laser seam and through comparing the mechanical properties of weld joints with different seam length, one considerable welding seam was obtained. The influence of laser welding seam length on the mechanical properties of the lap joint was summarized. And the influence such as different thickness, different plates, different weld pool width, and relative position of heterogeneous plates and so on also were analyzed. The results showed that when the plate thickness and weld pool width are not the same, the laser weld length is different. For the lap joint of heterogeneous plates with similar thickness and material, their relative position has little impact on determining the shortest length of welding seam. In addition, based on the door parts of a vehicle, a comparison test between laser welding and resistance welding was carried out. Results found that under laser welding condition, the welding speed and the overall static stiffness of the door were higher, and the laser welding process reflected a higher flexibility. Simultaneously, results also showed that compared with the resistance spot welding joint, the microstructure of laser welding joint is more even and smaller, the hardness is higher, and the corrosion resistance is better.
引文
[1]李铸国.复杂汽车零部件精度焊接[J].焊接学报,2001,22(5):65-68
    [2]周建忠,张永康.激光加工技术在汽车车身制造中的应用.电加工与模具,20004,32-36
    [3]Ashley Steven.Steel cars facea weighty decision[J].Mechanical Engineering, 1997,119(2):56-61.
    [4]陈剑虹.汽车连接新工艺—54届国际焊接学会综述[J].焊接,2002,(3):5-9.
    [5]余淑荣,樊丁,熊进辉等.汽车用铝合金拼焊板技术研究现状.电焊机,2006,36(8):28-31
    [6]杨建明.轿车车身焊装夹具和生产线的设计及故障诊断技术研究:[上海交通大学博士后学位论文].上海:上海交通大学,2003
    [7]邓仕珍,范淼海.汽车车身制造工艺学[M].北京:北京理工大学出版社,1996,77-80
    [8]熊晓萍,金权东.汽车车身制造中的自动焊接技术[J].焊接,2006,(11):44-47
    [9]占海平.激光焊接技术在汽车工业中的推广应用[J].中国科技信息,2007,18:87-89
    [10]李斌.激光技术在汽车行业的应用.www.Farleylaserlab.cn,2009-07-27
    [11]安特激光.激光焊接在汽车行业中的应用.www.Info.Laser.hc360.com.2006-05-26
    [12]Hecht J.Solid-State High-Energy Laser Weapons[J].Optics & Photonics News, 2003,(1):58-61.
    [13]李晓娜,许先果,边美华.激光焊接在汽车工业中的应用[J].电焊机,2006,36(4):47-49.
    [14]董绍斌.激光拼焊板技术在汽车车身制造中的应用[J].汽车工艺与材料,2006,(5):9-11
    [15]李伯虎,吴澄,刘飞等.现代集成制造的发展与863/CIMS主题的实施策略[J].计算机集成制造系统-CIMS,1998,4(5):7-15
    [16]罗来军.基于焊装特征和偏差控制的车身柔性件焊装夹具设计方法研究:[上海交通大学博士后学位论文].上海:上海交通大学车辆工程研究所,2003,15-16
    [17]孙晓辉.激光加工技术的产业化应用[J].机械工人,2004,(4):35-37
    [18]江声蛮.激光在汽车车身上的应用[J].汽车工艺与材料,1994,5:1-4
    [19]伍强.汽车用高强镀锌钢的CO2激光焊接研究:[湖南大学硕士学位论文].长沙:湖南大学激光研究所,2007,2-7
    [20]王家淳.激光焊接技术的发展与展望[J].激光技术,2001,25(1):48-53
    [21]史俊锋,肖荣诗,左铁钏-激光深熔焊接光致等离子体行为与控制[J].激光杂志,2000,21(5):40-42
    [22]左铁钏等.高强铝合金的激光加工[M].北京:国防工业出版社,2002
    [23]Z.Szymanski, J.Hoffman, J.Kurzyna, A. Kolasa et al. Oscillations of keyhole pressure and plasma radiation during CW CO2 Laser Welding [J]. Proc. of SPIE: Laser Technology,2000,4238:7-19
    [24]Duley,W.W.Laser Welding[M].New York:John Wiley&Sons,1999
    [25]徐松英.汽车工业中焊接技术的展望[J].焊接研究与生产,1996,2:22-24
    [26]Z Li, S.L.Gobbi.Laser welding for lightweight structures. Journal of Materials Processing Technology,1997,70(1-3):137-144
    [27]如雪.激光焊接在汽车行业的运用史.www.rxyj.org,2010-03-20
    [28]王滕宁.激光焊接和切割在汽车车身部件制造中的应用[J].焊工之友,2002,31(5):55
    [29]韩立军.激光焊接技术在一汽大众迈腾车身制造中的应用[J].金属加工2008,(8):32-40
    [30]W.M.Steen, J.N.Kamalu. Laser cutting [J]. Laser Materials Processing,1983, (3):107-111
    [31]L.M.Yu. Three Dimensional Finite Element Modeling of laser Cutting [J]. Journal of Materials Processing Technology,1997,63:637-639
    [32]虞钢,虞和济.集成化激光智能加工工程[M].北京:冶金工业出版社,2002,5
    [33]意大利普瑞玛工业公司.三维激光加工技术在汽车车身工业中的应用[J].汽车制造业,2005,(5):76-82
    [34]林忠钦.汽车车身制造质量控制技术[M].北京:机械工业出版社,2005,1-2
    [35]A. Lamikiz, L.N.Lopez, J.A.Sanchez et al. CO2 laser cutting of advanced high strength steels [J]. Applied Surface Science,2005,242:362-368
    [36]陈涛,王智勇.激光加工技术在汽车车身大型覆盖件中的应用[J].中国机械工程,2002,13(1):8-11
    [37]陈根余,曹茂林,黄丰杰.三维激光切割的应用和研究.激光与光电子学进展,2007,44(3):38-42
    [38]赵杰,张桂香,吴绪成.基于PLC的车门焊接生产线系统的设计.计算机测量与控制,2009,17(8):1558-1561
    [39]刘旭飞.白车身激光切割焊接生产线的布局设计及切割工艺研究:[湖南大学硕士学位论文].长沙:湖南大学,2009
    [40]罗敬文.三维数控激光切割机[J].激光与光电子学进展,2009,46(9):56-61
    [41]黄开金,谢长生.三维激光切割的发展现状.激光技术,1998,(12):352-356
    [42]黄丰杰.车身覆盖件的三维激光切割工艺研究:[湖南大学硕士学位论文].长沙:湖南大学,2008
    [43]Kaebernick H, Bicleanu D.Brandtm.Theoretical and experimental investigation of pulsed laser cutting. Annal of CIRP,1999,48(1):163-165
    [44]Y. Arata, H. Maruo, I. Miyamoto. Dynamic behavior in laser gas cutting of mid steel.Trans JWRI,1979,8(2):15-26
    [45]D. Schuocker. Theoretical model of reactive gas assisted laser cutting including dynamics effects. SPIE,1986,650:210-219
    [46]E.Abdulhad, J.M.Pelletier, M.Lambertn.Development in laser cutting of steel: analytical modeling and experimental validation of the metallurgical effects. SPIE,1997,3097:17-25
    [47]Avanish Kumar Dubey, Vinod Yadava. Multi-objective optimisation of laser beam cutting process. Optics & Laser Technology,2008,40(1):562-570
    [48]Giovanni Tani, Luca Tomesani. Quality factors assessed by analytical modelling in laser cutting. Thin Solid Films,2004,453-454:486-491
    [49]Kai Chen, Y.Lawrence Yao. Gas Dynamic Effects on Laser Cut Quality. Journal of Manufacturing Processes,2001,12(1):38-49
    [50]Evgueni V.Bordatchev, Suwas K.Nikumb. Effect of focus position on informational properties of acoustic emission generated by laser-material interactions. Applied Surface Science,2006,253:1122-1129
    [51]许瑞麟.中国汽车焊接装备发展展望.见:汽车焊接国际论坛论文集.北京:机械工业出版社,2003,11
    [52]孙中发,盛延林.我国“八五”科技攻关激光技术应用取得的进展.激光集锦,1997,7(1):1-4
    [53]谢耀辉,朱国力,段正澄等.三维激光切割加工中曲面法矢获取算法的研究.华中理工大学学报,1999,(1):50-52
    [54]朱国力,谢耀辉,段正澄.三维激光切割加工法矢测量系统.制造业自动化,2000,(8):8-11
    [55]朱国力,谢耀辉,段正澄等.基于激光测距的三维激光切割加工法矢获取系统.中国机械工程,2001,(2):205-207
    [56]陈继民,左铁钏.CO2激光三维方位切割的人工神经网络分析.中国激光2004,(2):245-248
    [57]陈继民,左铁钏.三维激光加工的加工轨迹生成.应用激光,2001,(2):1-3
    [58]陈继民,鲍勇,肖荣诗等.三维激光加工自动编程系统的研究.激光技术, 2001,(3):217-220
    [59]陈继民,肖荣诗,左铁钏.激光三维加工轨迹的计算机仿真.北京工业大学学报,2000,(9):86-88
    [60]陈继民,鲍勇,肖荣诗等.三维激光加工的轨迹规则的研究.应用激光,2002,(4):220-222
    [61]陈继民,肖荣诗,左铁钏等.激光切割工艺参数的智能选择系统.中国激光,2004,(6):758-760
    [62]陈继民,左铁钏.激光切割中入射角对切割质量的影响.中国激光,2001,(11):1037-1040
    [63]黄开金,谢长生,许德胜.空间曲率半径对三维物体激光切割质量的影响.中国激光,2001,(5):471-475
    [64]谢耀辉,朱国力,段正澄.基于激光测距的三维激光加工示教编程系统.中国激光,2001,(6):565-569
    [65]王春明,胡伦骥.激光切割前沿辐射与切割质量关系的初探.中国机械工程,2001,12(7):812-814
    [66]张永强,吴艳华.激光束姿态对三维激光切割质量的影响.中国激光,2006,33(1):124-127
    [67]吴艳华,张永强等.径向基神经网络在三维激光切割中的应用.中国机械工程,2006,17(12):1234-1237
    [68]陈根余,黄丰杰,刘旭飞等.三维激光切割技术在车身覆盖件制造中的应用与研究[J].激光杂志,2008,29(4):67-69
    [69]A.Ribolla, G.L.Damoulis, G.F.Batalha. The use of Nd:YAG laser weld for large scale volume assembly of automotive body in white [J]. Journal of Materials Processing Technology,2005,164-165:1120-1127
    [70]孟详文.AUDI A6L白车身制作工艺及数字化工厂的应用[J].汽车工艺与材料,2007,10:31-33
    [71]张若冰.车顶焊接工艺的发展与激光焊的应用[J].机械工人,2007,6:48-51
    [72]张海亮.帕萨特领驭车身激光焊接工艺研究[J].应用激光,2006,26(1):90-92
    [73]Fenggui Lu, Binfeng Lu, Xinhua Tang, Shun Yao. Study of influencing factors and joint performance of laser brazing on zinc-coated steel plate[J]. Int J Adv Manuf Technol,2008,37(9-10):961-965
    [74]封小松,陈彦宾,倪加明等.双光束激光钎焊工艺[J].焊接报,2006,27(9):17-20
    [75]封小松,陈彦宾,李俐群.镀锌板激光钎焊钎缝成形和接头质量研究[J].应用激光,2005,25(1):23-26
    [76]Weichiat Chen, Paul Ackerson, Pal Molian. CO2 laser welding of galvanized steel sheets using vent holes [J]. Materials and Design,2009,30(2):245-251
    [77]A. K. Dasgupta, J. Mazumder. Laser welding of zinc coated steel:an alternative to resistance spot welding [J]. Science and Technology of Welding and Joining, 2008,13(3):289-293
    [78]黄海军,席升印,丁健君.降低镀锌层影响的汽车用镀锌钢板激光焊接工艺研究[J].应用激光,2005,25(5):306-309
    [79]Fabbro. R, Coste. F, Goebels et al. Study of CW Nd-YAG laser welding of Zn-coated steel sheets [J]. Journal of Physics D:Applied Physics,2006,39: 401-409.
    [80]H. Bley, L. Weyand, A. Luft. An Alternative Approach for the Cost-efficient Laser Welding of Zinc-coated Sheet. Annals of the CIRP,2007,56(1):17-20
    [81]S. Iqbal, M. M. S. Gualini, F. Grassi. Laser welding of zinc-coated steel with tandem beams:Analysis and comparison [J]. Journal of Materials Processing Technology,2007,184:12-18
    [82]A. Loredo, B. Martin, H. Andrzejewski, D. Grevey. Numerical support for laser welding of zinc-coated sheets process development[J]. Applied Surface Science, 2002,195(1-4):297-303
    [83]Xie.J. Dual beam laser welding [J]. Welding Journal,2002,81(10):223-230
    [84]Roland-Lee F. Laser welding with dual wavelength technology[M]. USA: Newsletter of Fraunhofer,2001
    [85]熊建钢,胡伦骥,刘建华等.镀锌板激光焊接工艺及锌行为研究.激光技术,1998,22(1):27-30
    [86]张林杰,张建勋,段爱琴.侧吹辅助气流对激光深熔焊接光致等离子体的影响[J].焊接学报,2006,27(10):37-41
    [87]Dominique Grevey, Pierre Sallamand, Eugen Cicala et al. Gas protection optimization during Nd:YAG laser welding[J]. Optics & Laser Technology, 2005,37(8):647-651
    [88]李明星,胡治华,陈铠.保护气体种类对镀锌板激光焊接性的影响[J].激光杂志.2006,27(6):72-73
    [89]李国华,贾时君,Douglas Steyer等.侧吹气流方向对大功率CO2激光焊缝成形的影响[J].热加工工艺,2007,36(19):23-25
    [90]Qiang Wu, Jinke Gong, Genyu Chen, Lanying Xu. Research on laser welding of vehicle body [J]. Optics & Laser Technology,2008,40 (2):420-426
    [91]M.Schmidt, A.Otto, C.Kageler. Analysis of YAG laser lap-welding of zinc coated steel sheets [J]. CIRP Annals-Manufacturing Technology,2008,57: 213-216
    [92]魏伟,姚远,陈明等.车身镀锌钢板激光搭接焊焊缝成形及焊接性能研究[J].汽车工艺与材料,2009,(3):12-17
    [93]席升印.搭接接头激光焊接工艺参数试验及其稳健性分析[J].应用激光,2008,28(4):297-300
    [94]陈俐,胡席远,胡伦骥.高强钢的激光焊接性研究[J].应用激光,2003,23(1):19-21
    [95]任芝兰.汽车用高强度钢的激光焊焊接性研究[J].机械制造,2006,44:72-73
    [96]Steve Shi, Steve Westgate,车晓玲(译).车用高强钢的激光焊接[J].金属加工,2008,14:22-26
    [97]王鹏,辛立军,黄涛等.车用高强钢板的光纤激光焊接实验研究[J].2009,29(4):286-289
    [98]王承伟,曲仕尧,王新洪.铝合金激光焊接的研究现状和发展趋势.金属加工,2008.8:38-40
    [99]Kutsuna Muneharu, Shido Keiichiro, Okada Takeshi. Fan shaped cracking test of aluminum alloys in laser welding [J]. The International Society for Optical Engineering,2002,4831:230-234.
    [100]宋东风,胡绳荪,马力.铝合金激光焊接技术的发展现状[J].电焊机,2004,34(9):1-3
    [101]Huntington C A, Engar T W. Laser welding of aluminum and aluminum alloys [J]. Welding Journal,1983, (4):105-107.
    [102]肖荣诗,左铁钏,Ambrosy G等.电流强化铝合金CO2激光焊接[J].中国激光,2004,31(3):360-361.
    [103]巩水利,姚伟,Steve Shi.铝合金激光深熔焊气孔形成机理与控制技术.焊接学报,2009,30(1):60-62
    [104]Sarady I, Nilsson K, Magnusson C et al. Investigations into the welding of superalloys with a CW Nd:YAG laser and dual-focusing optics[C]. In:Section F-ICALEO. USA,1998,87-93
    [105]Muneharu Kutsuna, Qu Yan. Study on porosity formation in laser welds of aluminum alloy[C]. In:International Institute of Welding. USA,1998,683-697
    [106]Akira Matsunawa. Dynamics of keyhole and molten pool in high power laser welding [J]. Journal of Laser Applications,1998,10(6):247-254
    [107]F. Shigeki, O. Ryoji, K. Seiji. Improvement s of welding characteristics of aluminum alloys wit h YAG laser and TIG arc hybrid system [C]. SPIE,2003, 4831:301-308
    [108]张旭东,陈武柱,双元卿.C02激光-MIG同轴复合焊方法及铝合金焊接的研究[J].应用激光,2005,25(1):1-3
    [109]苗玉刚,李俐群,陈彦宾等.铝合金激光-电弧双面焊接头特征分析[J].焊接学报,2007,28(12):85-88
    [110]陈彦宾,苗玉刚,李俐群等.铝合金激光-钨极氩弧双面焊的焊接特性[J].中国激光,2007,34(12):1716-1720
    [111]Li Y Q, Zhao X H, Zhao H, et al. Study on the effect of welding current during laser beam-resistance seam welding of aluminum alloy 5052 [J]. China Welding,2008,17(2):42-46.
    [112]李永强,赵熹华,赵贺等.预热温度对铝合金搭接激光焊焊缝成形及组织的影响[J].吉林大学学报(工学版),2008,38(5):1065-1068.
    [113]李永强,赵贺,赵熹华等.铝合金5754的激光束/电阻缝焊特性.上海交通大学学报,2009,43(9):1489-1493
    [114]A. Haboudou, P. Peyre, A. B. Vannes. Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA 5083 aluminum alloys [J]. Materials Science and Engineering,2003,363:40-52
    [115]I. Takakuni. Dual focus technique for high-power Nd:YAG welding aluminum alloys[C]. SPIE,1999,3888:348-358
    [116]李俐群,陈彦宾,陶汪.铝合金双光束焊接特性研究.中国激光,2008,35(11):1783-1788
    [117]Rosennthal D. The theory of moving Sources of heat and its application to metal treatments[J]. Trans Amer Soc Mech Eng,1946,68:849-66
    [118]Swift-Hook DT, Gick AEF. Penetration welding with lasers[J]. Weld Res Suppl, 1973,492-498
    [119]廖建宏,激光深穿透焊的理论模型[J].激光技术,1997,21(3):164-166
    [120]Gratzke U, Kapadia P, Dowden J. Heat Conduction in High Speed Laser Welding [J]. J. Phys. D:Appl Phys,1991,24(12):2125-2134
    [121]Lankalapalli K. Model-based laser weld penetration depth estimation [J]. Welding.in the World,1997,39(6):304-313
    [122]Lankalapalli K, Tu JF, Leong KH. Laser weld penetration estimation using temperature measurement[J].J Manu Sci Eng Trans ASME,1999,121:179-188
    [123]Mazumder J, Steen W. Heat transfer model for CW laser materials processing [J]. J. Appl.Phys,1980,52(2):941-947
    [124]Osami Ichiko, Naoya Hamada, Hiomu Soga. Development of simulation model for 15kW CO2 laser materials processing[C]. In:Proceedings of LAMP. Osaka, 1987.31-36
    [125]金湘中,李力钧.激光加工的计算机模拟[J].湖南大学学报,1991,18(4):9-14
    [126]Wisanu Pechrapa, Aarvinda Kar. Effects of phase changes on weld pool shape in laser welding [J]. J.Phys.D:Appl. Phys,1997,30:3322-3329
    [127]黄天泽.汽车车身结构与设计[M].北京:机械工业出版社,1992,191
    [128]梅丽芳,陈根余,刘旭飞等.车身覆盖件的三维激光切割工艺研究[J].中国激光,2009,36(12):3308-3312
    [129]陆斌锋,芦凤桂,唐新华等.激光焊接工艺的现状与进展.见:第十二次全国焊接学术会议论文集.合肥:合肥工业大学出版社,2008,(4):53-57
    [130]游德勇,高向东.激光焊接技术的研究现状与展望[J].焊接技术,2008,37(4):5-9
    [131]彭彪.光纤激光器在工业加工领域的全方位表现.激光技术与应用,2008,(2):5-7
    [132]海目激光公司.光纤激光器在焊接中的应用.光机电信息,2006,10:38-39
    [133]chiaweld焊接机器人www.chinaweld.com.cn,2007-03-27
    [134]盛步云,张进军,杨明忠.柔性焊接夹具设计[J].汽车技术,2001,01:31-33
    [135]陈苗海.国内外激光加工产业和市场发展概况.激光技术与应用,2004,(9):1-11
    [136]张国顺.现代激光制造技术.北京:化学工业出版社,2006,137-139
    [137]Rofin-sinar laser. Introduction to industrial laser materials processing [J]. Hamburg,2000,113
    [138]李力钧.现代激光加工及其装备.北京:北京理工大学出版社,1993,87-164
    [139]陈继民.大功率CO2激光三维智能加工CAM的研究:[北京工业大学博士学位论文].北京:北京工业大学,2001,95-100
    [140]B.S.Yilbas. Laser cutting quality assessment and thermal efficiency analysis. Journal of Materials Processing Technology,2004,155:2106-2115.
    [141]Trumpf Werkzeugmaschinen GmbH+Co.KG. Criteria for the evaluation of laser cuts.2000
    [142]Thermal cutting. Classification of thermal cuts. Geometrical product specification and quality tolerances (ISO 9013:2002). German version EN ISO 9013,2002
    [143]黄开金.三维物体(管材)CO2激光切割的研究:[华中理工大学博士学位论文].武汉:华中理工大学,1999,2-3
    [144]Zhang Yongqiang, Chen Wuzhu, Zhang Xudong et al. Synthetic evaluation and neural-network prediction of laser cutting quality. SPIE,2005,5629:237-236
    [145]宝山钢铁股份有限公司企业标准.连续热镀锌/锌铁合金钢板及钢带,2003
    [146]阎启,刘丰.工艺参数对激光切割工艺质量的影响.应用激光,2006,(6):151-153
    [147]李良福.4130钢的C02激光切割质量.国外金属热处理,2005,(12):41-47
    [148]Mills K C, Keene B. Factors affect variable weld penetration [J].International Materials Reviews,1990,25(4):185-216.
    [149]Wei P.S, Ho C.Y, Shian M.D, et al. Three dimensional analytical temperature field and its application to solidification characteristics in high or low power density beam welding [J]. J. Heat Mass Transfer,1997,40(10):2283-2292.
    [150]徐济进,陈立功,倪纯珍等.厚板对接多道焊温度场的三维数值模拟[J].上海交通大学学报,2006,40(10):1687-690.
    [151]Zhu X K. Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel [J]. Journal of Material Processing Technology,2004,146(2):263-272.
    [152]金湘中.激光深熔焊接小孔效应的理论和试验研究:[湖南大学博士学位论文].长沙:湖南大学机械与运载工程学院激光研究所,1995,115-117
    [153]Y. F. Hsu, B. Rubinsky. Two-dimensional heat transfer study on the keyhole plasm welding processing[J]. Int. J. Heat Mass Transfer,1988,31(7):1409-1421
    [154]Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources [J]. Metallurgical Transaction B,1984,15(6):299-305
    [155]Kaplan A. A model of deep penetration laser welding based on calculation of the keyhole profile[J]. J. Phys. D:Appl. Phys,1994,27:1805-1814
    [156]Kim T H, Albright C E and Chiang S. The energy transfer efficiency in laser welding process[J]. J. Laser. Appl,1990,42:23-28
    [157]武传松.焊接热过程与熔池形态[M].北京:机械工业出版社,2204,192-193
    [158]Matsunawa A, Semak V. The simulation of front keyhole dynamics during laser welding[J]. J. Phys. D:Appl. Phys,1997,30:798-809
    [159]Kar A, Mazumder J. Mathematical modeling of keyhole laser welding[J]. J. Laser. Appl,1995,78:6353-6360
    [160]粱超,郑安波Audi A6L的车身材料和连接技术[J].汽车与配件,2007,12(6):34-35
    [161]Rich Hall. Profile of Kentucky's Aluminum Industry.Office of Research and Information Technology Kentucky Cabinet for Economic Development,2005
    [162]Seiji Katayama, Yousuke Kawahito. Interpretation of laser weld penetration and welding phenomena [J]. Chinese Journal of Lasers,2009,36(12):72-80
    [163]H. Zhan, D. R. White, T. DebRoy. Current issues and problems in laser welding of automotive aluminium alloys [J]. International Materials Reviews, 1999,44(6):238-266
    [164]陈彦宾.现代激光焊接技术[M].北京:科学出版社,2005
    [165]Lifang Mei, Genyu Chen, Xiangzhong Jin et al. Research on laser welding of high-strength galvanized automobile steel sheets. Optics and Lasers in Engineering,2009,47:1117-1124
    [166]李天奇,姚培京.车身焊接的设计标准.工艺材料,2005,5:37-39
    [167]朱正行,严向明.电阻焊技术[M].北京:机械工业出版社,2001,49-50
    [168]杲绍风,唐新华,席升印.三层镀锌钢板激光焊接工艺[J].焊接,2006,(1):52-55
    [169]上海交通大学编写组.金相分析[M].北京:国防工业出版社,1982,214-224.
    [170]杨雄飞.高强度钢的焊接[J].汽车工艺与材料,2008,10:1-5
    [171]龚敏,张远声,唐彦.电镀Zn-Fe合金[J].表面技术,1996,25(5):6-8
    [172]曾祥德.电镀锌-铁合金与热浸镀锌比较[J].电镀与环保.2003,23(1):18-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700