氩弧焊磁控电源研制及工艺试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氩弧焊在焊接领域中应用的较为广泛,为了提高焊接质量及焊接生产率,人们在焊接过程中引入磁场,利用磁场来改善焊焊缝组织,改善一次结晶,细化晶粒,提高焊接质量。本文应用逆变技术研制了一种新型的氩弧焊磁控电源,能够使激磁电流与焊接电流在一定程度上达到匹配,输出间歇交变的方波脉冲,且具有体积小、重量轻、电路简单、调节方便等特点。
     本文对氩弧焊磁控电源的同步电路、脉冲发生电路、放电电路等进行了设计,并对反馈电路、保护电路进行了改进。所设计的同步电路涉及元器件数量少,实现起来非常方便,同时设计的放电电路可以将线圈中的能量完全释放,从而解决因线圈过热导致设备受损的问题。本文还对氩弧焊磁控电源进行了调试,给出了测试的波形。试验表明,所设计的氩弧焊磁控电源能够输出与焊接电流相匹配的激磁电流交变方波脉冲波形,同时可以连续稳定工作,满足了焊接试验的需求。课题还设计了磁头结构,并对其进行磁场分布的模拟,在不改变激磁线圈结构的情况下,分析了焊接材料对磁场分布的影响。
     将所研制的磁控电源对MIG焊焊接过程施加同步磁场,利用高速摄像技术研究同步磁场对焊接电弧及熔滴过渡运动特征的影响,并比较有无磁场两种情况下母材的焊缝成形及焊缝区组织。结果表明:外加同步磁场作用下能够实现熔滴的顺利过渡,获得稳定的熔滴过渡形式;焊缝表面成形良好、焊缝组织得到有效的细化。同时也进一步验证了所研制的氩弧焊磁控电源的实用性。
The applications of argon arc welding is wide in the welding range, in order to improve the quality of welding and welding productivity, people introduce magnetic field in the welding process, using the magnetic field to improve the welding seam microstructure and the first crystallization, refine grain, heighten the quality. This paper applies inverter technology to develop a new kind of argon arc welding magnetic control power, which should enable the exciting current and welding current to match in a certain extent, and output intermittent alternating square-wave pulse. It has the characteristics of small volume, light weight, simple circuit, convenient adjustment etc.
     In this paper, it designs synchronous circuit, pulse generating circuit, discharging circuit of argon arc welding magnetron power, and the feedback circuit, protection circuit are improved. The design of synchronous circuit involves components number less, and design of discharging circuit makes the energy released fully in coil, which solutes problems that coil overheat cause equipment damage. Magnetic control power is debugged, the test waveforms is given. Experimental results show that magnetic control power can output alternating intermittent square-wave pulse that is matched with welding current, and can continuously steady working, meet the demand of welding experiments. Topics also devise head structure, and simulate the magnetic field distribution, show the factors which affect the distribution of the magnetic field.
     Using the developed magnetic control power, synchronous magnetic field is applied in MIG welding. It analyzes synchronous magnetic field influences on metal transfer and the characteristic of arc motion with the advanced high-speed video camera technology. Comparing with the welding seam and microstructure, the result shows that applying synchronous magnetic field can make the melt drops transition smooth, obtain the stable transition form, and refine grain effectively. It's tested the practicability of the developed magnetic control power successfully.
引文
[1]殷树言,张九海.气体保护焊工艺[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [2]殷咸青,罗键,李海刚等.纵向磁场参数对LD10CS铝合金TIG焊焊缝组织的影响[J].西安交通大学学报.1999,33(7):71-74.
    [3]Selyanenkov V N. Formation of the weld in a longitudinal magnetic field in argon-arc welding [J]. Welding Production,1975,22(11):50-53.
    [4]Hicken, Jackson. The Effects of Applied Magnetic Fields on Welding Arcs [J]. Welding Journal, 1966(11):515-525.
    [5]贾昌申,殷咸青,贾涛.纵向磁场中的焊接电弧行为[J].西安交通大学学报,1994,28(4):7-13.
    [6]张忠典,李冬青,尹孝辉等.外加磁场对焊接过程的影响[J].焊接,2002,(3):10-13.
    [7]罗键,贾昌申,王雅生等.外加纵向磁场GTAW焊接熔池流动机理[J].机械工程学报,2001,37(4):29-32.
    [8]阿勃拉格夫MA.电磁作用焊接技术[M].韦福水译,北京:机械工业出版社,1998.
    [9]江淑园.外加磁场对CO2焊飞溅的控制机理[J].焊接学报,2004,(2):50-53
    [10]徐鲁宁.磁控高熔敷率MAG焊的研究[D].北京:北京工业大学,2002:20-25.
    [11]许超魏,齐龙,曹天玮.磁场控制技术在焊接中的应用[J].新技术新工艺,2007,(11):51-53.
    [12]江淑园,陈焕明.刘志凌.磁控技术在焊接中的应用及进展[J].中国机械工程,2002,13(21).
    [13]常云龙,李多,李大用等.纵向磁场作用下MIG焊熔滴过渡过程的分析[J].焊接学报,2009,30(3):21-24.
    [14]安藤弘平,长谷川光雄.焊接电弧现象(增补版)[M].北京:机械工业出版社,1985.341-348
    [15]唐慕尧.焊接测试技术[M].北京:机械工业出版社,1988,321-331.
    [16]王宗杰.熔焊方法及设备[M].北京:机械工业出版社,2006.
    [17]杨修荣.超薄板的MIG/MAG焊——CMT冷金属过渡技术[J].电焊机,2006,36(6):5-7.
    [18]Allum C J. MIG welding-time for a reassessment [J]. Metal construction,1983, (6):347-353.
    [19]Allum C J. Welding technology data-pulsed MIG welding [J]. Welding and metal fabrication, 1985, (1):24-30.
    [20]Uegurl s. Study of metal transfer in pulsed GMA welding [J]. Welding research Supplement,1985,(8):242-250.
    [21]栗卓新,张征,刘海云GMAW焊接熔滴过渡模型的研究进展[J].中国机械工程,2007,18(12):1501-1504.
    [22]吴开源.基于DSP的GMAW-P焊熔滴过渡模糊控制的研究[D].广东广州:华南理工大学,2005.
    [23]姚屏,薛家祥,李晋等.三种脉冲MIG焊中值波形控制方法研究[J].焊接,2008,(11):59-63.
    [24]薛家祥,姚屏,董匕等.脉冲MIG焊前中值波形控制工艺参数[J].焊接学报,2008,29(01),73-80.
    [25]柯利涛,黄石生,蒋东等.中值时间对脉冲M IG焊熔滴过渡过程的影响[J].焊接,2006,(08),18-21.
    [26]刘会杰,张九海,熊志强等.脉冲MIG焊熔滴过渡最佳方式的控制[J].材料科学与工艺,1992,11(Z1):130-134.
    [27]孙栋,赵举东,赵家瑞等.智能控制MIG焊熔滴过渡[J].电焊机,1996,26(2):11-14.
    [28]殷树言,李涛.脉冲MIG焊Synergic控制法的由来与发展[J].焊接技术,1990,(5):35-39.
    [29]陈强,潘际銮,大岛健司等.焊接过程的模糊控制[J].机械工程学报,1995,43(4):86-91
    [30]杨运强,李俊岳,张晓囡等.脉冲MIG焊熔滴过渡控制的新进展[J].机械工程学报,2002,38(11):12-16
    [31]Sklar B.数字通信基础与应用[M].第2版.北京:电子工业出版社,2002:458-494.
    [32]王海波.新一代移动通信系统中的同步技术研究[J].通信技术,2007,40(10):50-58.
    [33]赵为春,刘丹谱,乐光新.一种多径超宽带系统符号同步方案的实现[J].通信学报,2004,25(12):158-165.
    [34]陈启兴,任国强,吴钦章.基于脉宽调制技术的位同步[J].通信技术,2008,41(09):1-2,5.
    [35]邹雪城,尹璐,刘政林等.采用阶段控制技术的DC/DC开关电源软启动电路[J].华中科技大学学报:自然科学版,2008,36(3):65-68.
    [36]李演明,来新泉,袁冰等.一种DC-DC开关电源片上软启动电路[J].半导体学报,2008,29(6):1210-1215.
    [37]王海永,李永明,陈弘毅.一种采用电压补偿技术的DC-DC开关电源软启动电路[J].微电子学,2002,32(1):20-22.
    [38]Penzin S H, Crain W R, Crawford K B, et al. The SEU pulse width modulation controllers with soft start and shutdown circuits [C]//IEEE Radiation Effects Data Workshop. Snowmass Village: IEEE Press,1997:73-79.
    [39]Shih F Y, Chen Y T, Chen D Y, et al. A pspice-compatible model of PWM IC for switching power converters with soft-start characteristic [C]//Proceedings of 1995 International Conference on Power Electronics and Drive Systems. Singapore:IEEE Press,1995:335-340.
    [40]Lai Xinquan, Guo Jianping. A novel digital soft-start circuit for DC-DC switching regulator[C]// 6th Inter-national Conference on ASIC Proceedings. Shanghai:IEEE Press,2005:554-558.
    [41]Farrenkopf D R. Switching controller chip with internal but not external soft start circuitry and DC to DC converter including such a controller chip:United State, US 6100677[P].2000-08-20.
    [42]王学震.磁控焊接电弧旋转磁场发生装置的设计[D].北京:北京工业大学,2006.
    [43]王学东,张伟强,时海芳.旋转磁场电磁搅拌数值模拟[J].辽宁工程技术大学学报.2000,Vo1.19(5):543-545.
    [44]房蔓楠,魏福玉,陈听.螺线管磁场分布特征及应用[J].长春邮电学院学报.1994,Vol.2(2):11-14.
    [45]韦尚戟.载流无限长螺线管磁场的分析[J].河池师专学报.1994,Vol.4(3):39-41.
    [46]郎成,丁力,路大勇.任意形状螺线管磁场的研究[J].吉林化工学院学报.1997,Vol.1(4):79-80.
    [47]祁贵云.旋转磁场作用下电弧特性和电弧行为的研究[D]:(硕士学位论文).北京:北京工业大学,2004.
    [48]杨运强,张晓琪,李俊岳等.焊接电弧高速摄影技术及其同步装置[J].电焊机,2003,33(01):11-14.
    [49]陈树军,王军,王会霞等.纵向磁场作用下的旋转射流过渡的机理[J].焊接学报,2005,26(3):45-49.
    [50]Villafuerte J C, Kerr H W. Electromagnetic stirring and grain refinement in stainless steel GTA welds. Welding Journal,1990,69(1):1-13.
    [51]Malinowski M, Ouden G, Vink P W J. Effect of electromagnetic stirring on GTA welds in austenitic stainless steel. Welding Research Supplement,1990, (2):52-59.
    [52]Asai S. Recent development and prospect of electromagnetic processing of materials. Science and Technology of Advanced Materials,2000,1(4):191-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700