脉冲MIG焊熔滴过渡控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代生产中,焊接技术已经得到了广泛的应用,它已经成为一种重要的生产手段。而脉冲MIG (Metal Inertia Gas)焊是一种高质量的焊接方法,在生产上已经越来越被重视。脉冲MIG焊是通过熔滴过渡实现焊接过程的,研究熔滴过渡的机理并加以控制,对稳定焊接过程、改善焊缝成形、减少飞溅等方面起到非常重要的作用。
     在分析了熔滴过渡的机理后,从熔滴过渡的控制目标出发,采用了双闭环控制方案对焊接电流及电弧电压进行控制。考虑到内环电流环能通过控制焊接电流波形来调节实现精确的熔滴过渡电流波形的功能,采用自适应控制算法对电流环进行控制。通过对电流环对象进行详细分析,建立了电流环被控对象的等效离散数学模型,在此基础上,设计了自校正调节器。
     根据焊接系统对象的动力学特征和控制性能,建立了脉冲MIG焊的数学模型,基于MATLAB/Simulink平台,构建了控制系统的仿真模型。通过分析焊接参数对熔滴过渡的影响,提出了一种保证熔滴尺寸稳定的熔滴过渡控制方案,并对这种方案和常用方案进行了仿真比较,验证了保证熔滴尺寸稳定的控制方案能减少能量的损耗。以DSP为控制核心,设计了脉冲MIG焊控制系统的硬件,采用模块化设计方法,利用汇编语言完成了软件设计。
In modern production, the jointing technology has been widely applied, and it has become a vital production tool.As a high quality welding method, the pulsed MIG welding has become more and more important in industry production. Because the pulsed MIG welding complete the welding process through the metal transfer process, studying and controlling the metal transfer's mechanism have fairly important affects to balance the welding process, improve the shaped welding slot and reduce the splash.
     After analyzing the mechanism of metal transfer, a double closed loop control scheme is adopted to control the welding current and electric-arc voltage based on control target of metal transfer. As the inner loop can acquire accurate metal transfer current graph by controlling the welding current graph, the adaptive control is adopted to control the welding current. After particular the inner loop is analyzed, an equivalent discrete math model of the current loop is established and a self-adjust adjustor based on the model is designed.
     A pulsed MIG welding math model is established by analyzing dynamics characters and control performances of the welding system, and a simulation model of the control system is conducted based on MATLAB/Simulink platform. At the end, after the welding parameters of the metal transfer process are analyzed, an improved metal transfer control scheme is put forward to guarantee drop size stabilization, and the simulation model was used to compare the improved scheme with the normal scheme. The simulation results show that the improved scheme can reduce wasted energies.A pulsed MIG welding hardware control system is designed by choosing DSP as the control core, and a pulsed MIG welding soft control system is designed based on assemble language by adopting modularize design method.
引文
[1]胡胜钢.脉冲MIG焊熔滴过渡光谱控制法的研究[D].天津:天津大学,1999.
    [2]李宪政,张友权.逆变焊机的现状及可靠性[J].焊接技术,1995,(1):38-40
    [3]马忠科.一种单端反激式开关电源的改进[D].大连:大连交通大学,2007.
    [4]陈芳雷,李艳.电弧焊焊接材料的发展现状及趋势[J].太原科技大学学报,2005,26(2):140-143
    [5]尹显华.电焊机行业现状及发展趋势[J].电器工业,2005,(5):12-20
    [6]刘必得,谢颂京,姚建华.激光焊接技术应用及其发展趋势[J].激光与光电子学进展,2005,42(9):43-47
    [7]李芳,华学明,吴毅雄.脉冲熔化极气体保护焊研究现状与发展[J].热加工工艺,2007,36(15):84-87
    [8]Wu C S,Chen M A, Lu Y F. Effect of current waveforms on metal transfer in pulsed gas metal arc welding[J].Measurement Science and Technology,2005, 16:2459-2465
    [9]Joseph A, Parson D,Harwing D.Influence of GMAW-P current waveform on heat input and weld bead shape[J].Science and technology of welding and joining,2005,10(3):311-318
    [10]陈茂爱,吕云飞,武传松.基于Labview的熔滴过渡过程参数检测系统的方案设计[J].山东大学学报,2005,35(6):103-107
    [11]王宗宇.熔焊方法及设备[M].北京:机械工业出版社,2006.
    [12]贺剑锋,黄石生.脉冲MIG焊焊缝质量控制的研究和展望[J].焊接技术,1994,5:38-41
    [13]陈日波.脉冲MIG焊控制方法及其应用[D].四川:西华大学,2007.
    [14]Amin M. Synergic Pulse MIG Welding[J].Metal Construction,1981,6:349-353
    [15]潘际銮.现代弧焊控制[M].北京:机械工业出版社,2000.
    [16]甘洪岩.脉冲MIG焊控制系统的研究[D].沈阳:沈阳工业大学,2006
    [17]Shi Y, Xue C, Fan D, et al. Visual-based Intelligent Control System for Robotic Gas Metal Arc Welding[J].IEEE,2009,421:253-257
    [18]刘会杰.脉冲MIG焊镕滴过渡最佳方式的控制[J].金属科学与工艺,1992,11(3):126-130
    [19]Chen S B,Cao J M, Xu C M, et al.Visual sensing and real-time control of weld pool dynamics in pulsed GMAW[J].Transactions of The China Welding Institution,2002,23(4):17-20
    [20]Sha D H, Liao X Z. Digital Control of Switch-mode Pulsed GMAW Welding Power[J].IEEE,2009,72(6):2746-2749
    [21]柳刚.熔化极气体保护焊熔滴过渡的光谱信息及其检测的研究[D].天津:天津大学,1998.
    [22]杨立军,李桓,胡胜钢.光谱控制的逆变脉冲MIG焊电源及控制系统[J].焊接学报,2001,22(1):41-44
    [23]张立斌.弧焊质量自动控制基础[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [24]Sha D H, Liao X Z. Full digital control strategy for soft-switching gas metal arc welding machine[J].Pro.Int. Conf. Electrical Mach. Syst.,2008,16:1059-1062
    [25]傅孝韬,刘玉生,王静.双电极电弧焊系统的非线性鲁棒自适应控制[J].微计算机信息,2009,25(8):11-13,48
    [26]王静,刘玉生,付孝韬.DE-GMAW电弧焊系统的建模及自适应控制[J].微计算机信息,2009,25(6):11-12,23
    [27]胡庆贤,孙俊生,武传松,等.基于BP神经网络的GMAW焊接工艺参数设计[J].山东工业大学学报,2001,31(4):325-330
    [28]栗继魁,刘兆魁,朱锦宏.基于DSP的逆变弧焊电源的模糊控制系统研究[J].电气世界,2007,26(3):82-85
    [29]蒙永民.GMAW-P焊熔滴过渡模糊控制的研究[D].广州:华南理工大学,2001.
    [30]李亚江.气体保护焊工艺及应用[M].北京:化学工业出版社,2005
    [31]何建萍,华学明,吴毅雄.GMAW短路过渡动态模型的建立[J].焊接学报,2006,27(9):77-80
    [32]武传松,陈茂爱,李士凯.GMAW焊熔滴长大和脱离动态过程的数学分析[J].机械工程学报,2006,42(2):76-81
    [33]吴其芬.磁流体力学[M].长沙:国防科技大学出版社,2007.
    [34]陈茂爱,武传松,廉荣.GMAW焊接熔滴过渡动态过程的数值分析[J].金属学报,2004,40(11):1227-1232
    [35]韩国明.焊接工艺理论与技术[M].北京:机械工业出版社,2007.
    [36]吴开源,陆沛涛,李阳.脉冲MIG焊控制的研究现状与展望[J].电焊机,2003,33(2):1-4
    [37]Balfour C, Smith J S,Ai-shamma A I.Novel edge feature correlation algorithm for real-time computer vison-based molten weld pool measurements[J].Welding journal,2006,85(1):1-8
    [38]彭海燕,黄石生,蒋东,等.脉冲MIG焊熔滴过渡控制的发展现状[J].焊接技术,2007,36(1):6-9
    [39]Gunaraj V, Murugan N. Prediction and control of weld bead geometry and shape relationships in submerged arc welding of pipes[J].Mater Process Technol, 2005,168:478-487
    [40]Li K H, Zhang Y M. Interval Model Control of Consumable Double-Electrode Gas Metal Arc Welding Process[J].IEEE,2009,203:1-14
    [41]Nouri M, Abdollah-zadehy A, Malek F. Effect of welding parameters on dilution and weld bead geometry in cladding[J].Mater Sci Technol,2007,23(6):817-822
    [42]Kannan T, Yoganandh J. Effect of process parameters on clad bead geometry and its shape relationships of stainless steel claddings deposited by GMAW[J].Int J Adv Manuf Technol,2010,47:1083-1095
    [43]胡胜钢,李俊岳,李桓.脉冲MIG焊熔滴过渡光谱控制法的研究[J].机械工程学报,2001,37(9):18-23,29
    [44]李俊岳,杨运强,李桓.焊接电弧光谱信息测控技术及其应用[J].中国工程科学,2001,(3):21-29
    [45]杨运强,李俊岳,胡胜钢,等.熔化极脉冲电弧焊熔滴过渡特征光谱信息及其应用[J].焊接学报,2001,22(4):36-38.
    [46]杨运强.脉冲焊熔滴过渡光谱在线控制的研究[D].天津:天津大学,2002.
    [47]殷树言.气体保护焊工艺基础[M].北京:机械工业出版社,2007.
    [48]杭争翔,殷树言,黄鹏飞.交流脉冲MIG弧焊电源及弧长控制[J].焊接学报,2003;24(2):83-86
    [49]孙咸,王红鸿,张汉谦.基于熔滴过渡理论的药芯焊丝工艺质量控制[J].电焊机,2006,36(11):5-10.
    [50]陈克选,朱艳红,李春旭,等.数字化脉冲MIG焊机送丝系统[J].机械与电子,2007,(3):37-39
    [51]李桓,曹文山,陈邦固,等.气保护药芯焊丝熔滴过渡的形式及特点[J].焊接学报,2000,21(1):13-16
    [52]Kang M J, Rhee S.Arc stability estimation and control for are stabilization in short circuit transfer mode of CO2 arc welding[J].Science and Technology of Welding and Joining,2001,6(2):95-102
    [53]Tnsek C, Janez D.Influence of wire extension length on the welding process[J]. International Journal for the Joining of Materials,1996,8(3):112-120
    [54]Zhu Z M, Bao Y J, Yu S T. Real-time control system of torch-height based on through-the-wire sensor[J].Transactions of the China Welding Institution,2002, 23(3):26-28
    [55]董宁.自适应控制[M].北京:北京理工大学出版社,2009.
    [56]胡绳荪.焊接自动化技术及其应用[M].北京:机械工业出版社,2007.
    [57]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2003.
    [58]杭争翔,宋政,常小芳.AC PMIG电源动态性能[J].沈阳工业大学学报,2006,26(3):254-257.
    [59]Moore K L, Naidu D S,Ozcelik S.Advanced welding control project:Annual report FY97[J].Technical Report, ISU, Pocatello, ID, July 1997.
    [60]Jesper Sandberg Thomsen. Advanced control methods for optimization of arc welding[D].Denmark:Aalborg University,2005.
    [61]Jae H C, Jinye L, Choong D Y. Dynamic force balance model for metal transfer analysis in arc welding[J].Journal of Physics:Applied Physics,2001,34: 2658-2664
    [62]王振民,黄石生,董飞,等.GMAW-P焊后中值脉冲波形控制工艺[J].电焊机,2007,37(1):42-45
    [63]包晔峰,周昀,吴毅雄.熔化极气体保护焊熔滴过渡研究[J].电焊机,2006,36(3):55-58
    [64]武传松,陈茂爱,李士凯.GMAW焊接熔滴长大和脱离动态过程的数学分析[J].机械工程学报,2006,42(2):76-81
    [65]In Q, Li X, Simpson S W. Metal transfer measurements in gas metal arc welding[J].J.Phys.D:App.Phys.,2001,4(3):347-353
    [66]黄石生,蒙永民,薛家祥,等.脉冲MIG焊动态过程的仿真[J].电焊机,2001,31(4):16-18
    [67]宋政,吴毅雄,华学明.GMAW-P焊接控制系统及熔滴过渡数值模拟研究[D].上海:上海交通大学,2007.
    [68]刘凤钢.单片机控制铝合金脉冲MIG焊接设备与工艺的研究[D].北京:北京工业大学,2007.
    [69]卢亚静.基于DSP的脉冲MIG焊数字控制系统的研究[D].天津:天津大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700