形貌可控纳米永磁铁氧体的软化学法制备及其磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了永磁铁氧体磁性材料以及SrFe_(12)O_(19)纳米粒子的发展历史和典型的制备方法。确定生成粒径较小且分散均匀的硬磁铁氧体纳米粒子时,Fe3+与络合剂的最佳摩尔比和pH,水用量等各因素。在此基础上利用联合络合法和加入无机盐制备出形貌可控的纳米SrFe_(12)O_(19),并分析其形成机理,优化工艺提高各种形貌SrFe_(12)O_(19)磁性能。对SrFe_(12)O_(19)掺杂,并与α-Fe2O3或γ-Fe2O3的交换耦合,研究掺杂和交换耦合对SrFe_(12)O_(19)磁性的影响。
     (1)采用柠檬酸法制备SrFe_(12)O_(19)纳米粒子,考虑用水量,PH值,柠檬酸:金属离子摩尔比,煅烧温度,煅烧时间对柠檬酸法制备SrFe_(12)O_(19)的影响,得出柠檬酸法制备纯的粒径较小且分散均匀的纳米SrFe_(12)O_(19)的最佳工艺为柠檬酸与金属离子的摩尔比为1:1,pH值为6,用水量为120 ml,并且在900℃下煅烧2 h。
     (2)在最佳制备工艺的基础上,采用联合络合法以草酸、硬脂酸和EDTA为辅助络合剂与柠檬酸进行联合络合制备出球形、纺锤体、棒状、针状的纳米SrFe_(12)O_(19),并得出纺锤体、棒状、针状SrFe_(12)O_(19)的最佳制备工艺,重点研究辅助络合剂对SrFe_(12)O_(19)的形貌、粒径、分散性以及磁性能的影响,结果表明:针状SrFe_(12)O_(19)的矫顽力最大,其次为棒状,纺锤体,球形的最小。
     (3)在柠檬酸法制备纳米SrFe_(12)O_(19)的基础上,在煅烧过程中加入KCl、KBr和KI等无机盐制备出针状、棒状和空心球的纳米SrFe_(12)O_(19),并控制KCl、KBr和KI的用量得出最佳制备条件。重点研究了在制备过程中无机盐对SrFe_(12)O_(19)的形貌、粒径、分散性以及磁性能的影响。
     (4)在EDTA-柠檬酸联合络合法制备SrFe_(12)O_(19)的基础上进行掺杂,研究掺杂物质对SrFe_(12)O_(19)磁学性能的影响,最终制得了矫顽力为6052.5 Oe,饱和磁化强度和剩余磁化强度分别为71.8 emu·g-1和42.5 emu·g-1的M型锶铁氧体,保证了矫顽力和磁化强度的同高。
     (5)对SrFe_(12)O_(19)与α-Fe2O3或γ-Fe2O3进行复合,研究复合后M铁氧体磁性能的变化规律,通过控制煅烧温度,最终制得了矫顽力为6198.3 Oe,比饱和磁化强度和比剩余磁化强度分别为71.5 emu·g-1和42.3 emu·g-1的γ-Fe2O3/ SrFe_(12)O_(19)复合Sr-M型铁氧体,使样品的综合磁性能得到进一步的提高。
In the paper, the development history and typical preparation method of permanent magnetic ferrite material were introduced. The factors (optimistic mol ratio of Fe3+ to precursor, pH, water volume and so on) to obtain fine and dispersing homogeneously permanent magnetic ferrite particles were determined. At the base of craft, co-completion method and inorganic salt were used to prepare controllable morphology nano-SrFe_(12)O_(19).The mechanism was analyzed. The craft was optimized to improve the magnetic properties of various morphologies.SrFe_(12)O_(19) was doped, cross coupled withα-Fe2O3 orγ-Fe2O3.The influence of doping and cross coupling to magnetic properties were studied.
     (1)The water volume, pH value, the mol ratio of citric acid to metal ion, calcination temperature was determined to prepare pure fine well-dispersed nano-SrFe_(12)O_(19) with citric acid method. The optimum craft was as follow: the molar ratio of citric acid to metal ion was 1:1,the pH value was 6,the volume of water was 120 ml, calcinated 900℃at 2 h.
     (2)As the optimum preparation craft, ethanedioic acid、stearic acid and EDTA were used as co-complex agent to obtain spherical、spindle、rod-like、needle-like nano-SrFe_(12)O_(19) respectively. The influence of co-complex agent to the morphology, diameter, dispersion character, magnetic properties of SrFe_(12)O_(19) was studied. The result indicated that the coercivity of needle-like samples was maximum, the coercivity of rod-like samples spindle samples spherical samples decreased gradually.
     (3)At the base of preparation of nano- SrFe_(12)O_(19), KCl、KBr and KI were added in the calcination process to prepare needle-like、rod-like and bubble nano-SrFe_(12)O_(19) respectively. The optimum quantity of KCl、KBr and KI was determined. The influence of inorganic salt to the morphology, diameter, dispersion character, magnetic properties of SrFe_(12)O_(19) was studied.
     (4)The SrFe_(12)O_(19) were doped at the base of EDTA-citric acid co-complex method. The influence of the doped agent to the magnetic properties of SrFe_(12)O_(19) was studied. The coercivity, saturation magnetization and remanent magnetization of prepared samples were 6052.5 Oe,71.8 emu·g-1and 42.5 emu·g-1 respectively.
     (5)α-Fe2O3 orγ-Fe2O3 was recombined with SrFe_(12)O_(19),the change mechanism of M-ferrite was analyzed. The coercivity, saturation magnetization and remanent magnetizationγ-Fe2O3/ SrFe_(12)O_(19) Sr-M style ferrite composite were6198.3 Oe,71.5 emu·g-1 and 42.3 emu·g-1 respectively. The comprehensive magnetic properties of samples was improved.
引文
[1] 龙毅, 张正义, 李守卫. 新功能磁性材料及其应用[M]. 北京: 机械工业出版社. 1997
    [2] 周志刚. 铁氧体磁性材料[M]. 北京: 科学出版社, 1981. 55-57
    [3] 李国栋. 磁性功能材料研究和应用新进展[J]. 功能材料, 1998 , 29 (5) : 449-451
    [4] 郑昌琼,冉均国. 新型无机材料[M]. 北京:科学出版社, 2003: 43-45.
    [5] 徐如人,庞文琴. 无机合成与制备化学[M]. 高等教育出版社, 523-525.
    [6] 曹建新,张煜,聂登攀. 磁性氧化铁纳米粒子制备技术的最新进展[J]. 现代机械,2003, 4: 80-82.
    [7] 严东生, 冯瑞. 纳米新星-纳米材料科学[M]. 长沙:湖南科学技术出版社,1997: 17.
    [8] 刘世伟. 纳米材料和纳米技术[J]. 国外科技动态,1995, 8: 3-6.
    [9] 徐春旭. W 型铁氧体的制备及磁性研究.工学硕士学位论文[NH]. 哈尔滨工程大学, 2004.
    [10] 赵丽君. 掺杂稀土尖晶石型铁氧体纳米晶的结构和磁性能的研究[NH]. 博士学位论文. 吉林:吉林大学, 2006
    [11] 周寿增,董清飞. 超强永磁体 稀土铁系永磁材料[M]. 第二版. 北京:冶金工业出版社, 1999: 506-508
    [12] 奚新国, 张耀金. 粉体流动性能的测试研究[J]. 盐城工学院学报(自然科学版). 2003, 16(1): 4-7.
    [13] Jenike A W. Storage and flow of solids[M]. Utah. Eng. Exp. Stn. Bull, 1964, 123: 1-194.
    [14] 段红珍,李凤生,李巧玲. 棒状纳米钡铁氧体的制备及镧掺杂对其性能的影响[J]. 材料科学与工程学报. 2007, 25(2):179-183
    [15] XU Hai-Tao, YANG Hua, XU Wei, et al. J. Mater. Process. Tech. 2007, 6: 2-7
    [16] Astia G, Bolzonib F, Lebreton J. M, et al. J. Magn . Magn. Mater. 2004, e1845: 272-276
    [17] Kalia R K. Multiresolution algorithms for massively parallel molecular dynamics simulations of nanostructured materials[J]. Computer PHysics Communication, 2000, 128: 245.
    [18] Ekimov A I, Efros AL, Onushchenko A A. Quantum size effect in semicondoctormicrocrystals[J]. Solid State Communications. 1985, 56(11):921.
    [19] Niklasson G A. Optical properties of square lattices of gold nanoparticles[J]. Nanostructured Materials, 1999, 11(12): 725.
    [20] Landau L D. Lifshits EM Quantum Mechanics: Nonrelativistic Theory[M]. New York: Pergamon Press, 1977: 178.
    [21] 徐国财, 张立德. 纳米复合材料[M]. 北京:化学工业出版社, 2002: 1-5.
    [22] 王素娜, 江国庆, 白俊峰. 无机分子纳米材料的研究进展[J]. 无机化学学报, 2005,1(21): 1-11.
    [23] 张泰. 纳米材料的制备技术及进展[J]. 辽宁化工, 1999, 1(28): 3-8.
    [24] 文自立. 新兴纳米功能材料[J]. 青岛科技. 1995, 4(2): 18-20.
    [25] 张密林, 赵华, 李茹民. M型超微铁氧体粉末合成方法的进展[J]. 功能材料.1997, 27(3): 202-205
    [26] 王琦洁, 黄英, 熊佳. 钡铁氧体超微颗粒制备技术的研究进展[J]. 磁性材料及器件. 2005, 36(3): 16-20
    [27] 赵九蓬, 韩杰才, 赫晓东. 铁氧体粉料制备工艺的新进展[J]. 粉末冶金技术, 2000, 18(1): 51-55
    [28] 梁丽萍, 刘玉存, 王建华. 自蔓延高温合成的发展前景[J]. 应用化工. 2006, 35(9): 716-718
    [29] 李瑞. 掺杂锶铁氧体的磁学特性研究[NH]. 安徽大学, 2005, 5: 33-38
    [30] 钟润牙, 王皓, 颜学敏. 自蔓延高温合成SrFe12O19的工艺研究[J]. 陶瓷科学与艺术. 2004, 16(4): 8-11
    [31]Haneda K,Miyakawa C,Goto K. Preparation small particles of SrFe12O19 with high coercivity by hydrolysis of metal-organic complexes[J]. IEEE Transactions on Magnetics. 1987, 23(5): 3134-3136
    [32] A Ataie, S Heshmati-Manesh. Synthesis of ultra-fine particles of strontium hexaferriteby a modified co-precipitation method[J]. Journal of the European Ceramic Society. 2001, 21(6): 1951-1955
    [33] 刘海涛, 杨郦, 张树军. 无机材料合成[M]. 北京. 化学工业出版社, 2003, 284-287
    [34] 薛更生, 张军利, 杨永珍. 溶胶-凝胶法制备纳米粉体[J]. 机械管理开发. 2001, (2):81-82
    [35] 任书霞, 杨丹. 溶胶-凝胶法在纳米粉体制备中的应用[J]. 中国粉体技术, 2006, (1):48-50
    [36] 张密林, 周铭, 辛艳凤. 柠檬酸法合成SrFe12O19超微粉末[J]. 硅酸盐学报. 1996, 24(6): 685-688
    [37] L A Garcia-Cerda, O S Rodriguez-Fernandez, P J Reséndiz-Hernández. Study of SrFe12O19 synthesized by the sol–gel method[J]. Journal of Alloys and Compounds, 2004, 369: 182-184
    [38] 段红珍, 李巧玲, 蔺向阳. 溶胶-凝胶自燃烧合成法制备纳米锶铁氧体及红外光谱研究[J]. 分析测试技术与仪器. 2004, 10(2): 72-74
    [39] 彭龙, 徐光亮, 刘莉. 水热法制备磁性材料粉体的研究进展[J]. 磁性材料及器件. 2005, 36(3): 13-16
    [40] Kyung-Hee, Lee Byung-He, Lee Myong-Ji Univ. Preparation of Sr-Ferrite Powders by Hydrothermal[J]. Journal of the Korean Ceranic Society. 1987, 28(6): 17-22
    [41] 李雪冬,朱伯铨,汪厚植. 熔盐法在无机材料粉体制备中的应用[J]. 材料导报. 2006, 20(3): 44-47
    [42] Arendt R H. Liquid-pHase sintering of magnetically isotropic and anise by the reaction of BaFe2O4 with Fe2O3 [J]. Solid State Chem. 1973, 8(4): 339-341
    [43] Zai-Bing Guo, Wei-Ping Ding, Wei Zhong. Preparation and magnetic properties of SrFe12O19 particlesprepared by the salt-melt method[J]. Journal of Magnetism and Magnetic Materials, 1997: 333-336
    [44] 王永飞, 李巧玲, 张存瑞. 形貌可控纳米 SrFe12O19 的溶胶-凝胶法制备及磁性能研究[J]. 无机化学学报. 2007, 23(11): 1984-1987.
    [45] 陈俊明. 湿法制备铁氧体磁粉的新途径[M]. 北京: 国防工业出版社. 2001:75-103
    [46] N. Gokon, A. Shimada, H. Kaneko, et al. Magnetic Coagulation and Reaction rate for the Aqueous Ferrite Formation Reaction [J]. J. Magn. Magn. Mater. 2006, 8(4): 339-341
    [47] 沈国柱, 徐政, 李轶. 纳米级M型铁氧体的溶胶–凝胶法制备和形貌控制. 材料科学与工程学报. 2005, 5(23): 521-524
    [48] 肖复勋. 添加剂对锶铁氧体永磁磁性能的影响规律及机理探讨[NH]. 四川大学,2003
    [49] 刘先松, 都有为. M型永磁铁氧体的现状与进展[J]. 磁性材料及器件. 2001, 32(1): 27-33
    [50] Birringer R, Gleiter H, Klein H Pet al. Nanocrystalline materials an approach to a novel solid structure with gas like disorder[J]. PHys.Lett. 1984, 102(A): 365.
    [51] 赵文俞, 张清杰. 柠檬酸法合成SrFe12O19磁铅石型铁氧体的晶化过程研究[J]. 硅酸盐学报. 2003, 1 (31): 20-25
    [52]黄剑锋. 溶胶-凝胶原理与技术. 北京: 化学工业出版社. 2005, 2-12
    [53] Gama L, Hernandez E P, Cornejo D R. J. Magn. Magn. Mater. 2007, 317: 29~33
    [54] Zhong Wei-zhuo, Surface Structures Dominated by the Growth Units of Anionic Coordination Polyhedra[J]. Journal of synthetic crystals. 2001, 30(3): 222-224
    [55] P rywer J. On the M echanism of Crystal Grow th from So lution[J]. Journal of Crystal Growth. 1998, 192: 200-214.
    [56] Sangwal K. Kinetic Effects of Impurities on the Grow th of Single Crystals from So lution [J]. Journal of Crystal Growth. 1999, (203): 197- 212.
    [57]孙艳. 晶间相对纳米硬磁材料各向异性的影响[J]. 功能材料. 2006, 11(37): 1733-1736
    [58] L A Garc′?a-Cerda, O S Rodr′?guez-Fernández, P J Reséndiz-Hernández. J. Alloys. Compd. 2004, 369: 182–184
    [59] 岳振星. 柠檬酸盐凝胶的自燃烧与铁氧体纳米粉合成[J]. 硅酸盐学报. 1999, 27(4): 466-470
    [60] 杜柯. 柠檬酸络合无焰燃烧法制备尖晶石型LiMn2O4[J]. 功能材料与器件学报,2002, 8(l): 31-34
    [61] 田民波. 磁性材料[M]. 北京: 清华大学出版社, 2000
    [62] 王晓慧. BaFe12-2x(TiCo)xO19超细粉的制备及磁性能的研究[J]. 功能材料, 1999, 30(l):13-14
    [63] Mo rih iko M atsumo to, Yo sh imo riM iyata. A gigahertzrange elect romagnet ic w aveabso rber w ith w ide band w idth made of hexagonal ferrite [J]. J App Phys. 1996, 79 (8): 5486-5488.
    [64] D ishovsk iD, Petkov A, Inedkovlv. Haxaferrite cont ribut ion to m icrow ave abso rber characteristics[J]. IEEE T ransact ions on M agnet ics, 1994, 30 (2): 969-971.
    [65] 甘树才. 溶胶-凝胶法合成稀土铁氧体过程中的相变与形成机制[J]. 中国稀土学报, 2001, 19(3): 278-280
    [66] 甘树才. 斓六方铁氧体LaxBa1-xFe12O19的制备与表征[J]. 应用化学, 2000, 17(2): 209-221
    [67] 都有为. W型六角铁氧体的研究[J]. 南京大学学报. 1984, 2: 221-225
    [78] 程福祥. COFe2-xRExO4纳米晶薄膜的化学合成及磁性[J]. 高等学校化学学报. 1999, 20(4): 503-506
    [69] 战可涛. 纳米BaFe12O19永磁铁氧体的制备、结构和磁性的研究[J]. 无机化学学报. 2002, 18(3): 294-297
    [70] 黄凯, 刘先松, 周圣强. La、Co取代对M 型锶铁氧体结构和磁性能的影响[J]. 磁性材料及器件. 2006, 4(137): 17-19
    [71] 鲍恒伟, 方庆清. La-Zn 代换M 型锶铁氧体纳米颗粒的磁性能与相变过程研究[J]. 磁性材料及器件. 2004, 5(124): 25-27
    [72] Komo ri H idek i, Konish i Yo sh ih iro1W ide band elect romagnet icw ave abso rber w ith th in magnet ic layers[J]. IEEE T ransact ions on B roadcast ing, 1994, 40 (4): 219-222.
    [73] 张密林. 水热法合成Sr-La铁氧体超微粉末[J]. 稀土, 1994, 15(1): 31-33
    [74] Kim s Kwonk, Gueonk, et al. Comp lex permeability and perm it t ivity and m icrow ave abso rp t ion of ferriterubber compo site in X - band frequencies [J]. IEEE T ransact ions onM agnet ics, 1991, 27 (5): 54622-54641
    [75] 郭睿倩. 不同稀土元素掺杂M型钡铁氧体超微粉末的磁性研究[J]. 功能材料, 2001, 32(6): 598-599
    [76] Han Sh incho, Sung Sook im. M-hexaferrites w ithp lannar magnet ic aniso t ropy and their app licat ion to h igh frequencym icrow ave abso rbers[J]. IEEE T ransact ions onMagnet ics, 1999, 35 (5): 3153.
    [77] 连利仙, 刘颖, 高升吉, 涂铭旌.交换耦合稀土永磁微观结构优化及其实现途径[J]. 中国稀土学报. 2003, 21(21): 121-124
    [78] 刘先松, 钟伟, 姜洪英. 纳米晶复合SrM永磁铁氧体的制备和交换耦合作用[J]. 中国粉体技术. 2001, 5(7): 6-9
    [79] 高汝伟, 代由勇, 陈伟. 纳米晶复合永磁材料的交换耦合相互作用和磁性能[J]. 物理学进展. 2001, 2(21): 131-135
    [80] 刘先松, 钟伟, 杨森, 姜洪英. 纳米晶复合永磁铁氧体的双相交换耦合作用[J]. 淮阴师范学院学报. 2001, 1(1): 57-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700