多尺度铁氧体和纳米壳铁核复合粒子的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸波材料是一种能够衰减电磁波能量的功能材料,广泛用于军事、微电子等领域。M型铁氧体和羰基铁是两种研究程度最高、性能优异、应用广泛的吸波剂,但均存在无法克服的局限性,均不能多频谱、宽频带吸收电磁波。目前,球磨处理对微米级M型铁氧体的结构和性能影响、化学共沉淀法合成亚微米级M型铁氧体的共沉淀机理及其影响因素、钡过量M型铁氧体的结构和性能、稳定结构单相纳米级M型铁氧体的合成条件、晶粒尺寸效应对M型铁氧体吸波性能的影响是M型铁氧体尚需深入研究的基础性问题,羰基铁/M型铁氧体复合体系中电、磁相互作用机制及其对吸波性能的影响并不清楚且尚无报道,羰基铁易氧化而影响吸波性能仍是有待解决的应用问题。
     本文的研究内容包括两个部分:(1) 微米、亚微米和纳米级单相BaCoTiFe_(10)O_(19)(即“多尺度M型铁氧体”)的合成、表征和性能研究,(2) SiO_2/M型铁氧体纳米壳铁核复合粒子的合成、表征和性能研究。前者系统研究了M型铁氧体目前尚需深入研究的基础性问题,同时探索在羰基铁和SiO_2纳米壳铁核复合粒子表面建造M型铁氧体纳米壳的工艺条件;后者首次研究了羰基铁/M型铁氧体复合体系中电、磁相互作用规律,并为提高羰基铁的抗氧化能力提供了新的方法。得到的主要结论如下:
     一、多尺度M型铁氧体的合成、表征和性能研究
     1.首次系统地研究了Fe~(3+)、Ti~(4+)、Co~(2+)和Ba~(2+)离子的共沉淀机理,发现化学共沉淀法制备BaCoTiFe_(10)O_(19)前驱体的共沉淀反应中同时存在阳离子的协同共沉淀效应和阴离子(或络合离子)的配位效应。这一发现对研究其它多离子的共沉淀条件具有重要的指导意义。
     2.采用化学共沉淀法首次在900℃煅烧2 h条件下合成出了一系列单相钡过量非化学计量M型铁氧体Ba_(1+x)CoTiFe_(10)O_(19+x)(x=0.00,0.05,0.10,0.15,0.20),发现x=0.05时σ_s几乎不变而σ_r,和H_c出现极大值,x=0.10时以过量钡离子为中心的“带电畴结构”极化共振可在12.48和15.28 GHz附近产生共振型介电损耗。这些结果对在GHz频段开发具有多频带吸收电磁波功能的吸波材料具有重要的意义。
     3.采用陶瓷法、化学共沉淀法和溶胶-凝胶工艺分别合成出了微米、亚微米和纳米级单相BaCoTiFe_(10)O_(19)。2-18GHz频段的介电谱表明:BaCoTiFe_(10)O_(19)在2-8GHz频段的内储藏电能与晶粒尺度成反比关系,纳米级BaCoTiFe_(10)O_(19)在
    
    武权理工大学博士论文
     15只GF比附近出现共振型极化峰,并认为该极化峰和微米级BaCO石Fe:。O,9
     球磨48h后在1 6.24 GHz附近的共振型极化峰都是BaCoTIFeloo:,纳米粒子
     极化共振形成的.与微米级BacOTIFel0O19相比,亚微米级和纳米级
     BaCoTIF。:。019在4-6 GHz附近的自然共振损耗峰几乎消失,在2一12 GHz频
     段的磁损耗稳定;在12一18GHz频段的吸波性能受纳米粒子极化共振影响。
    4:优化了纳米级Bac。五Fel0O:9的溶胶一凝胶合成工艺,并在900℃缎烧Zh的条
     件下合成出了结构稳定、粒径为5压65nm的单相BaC。五Fe:。ol,.工艺研究
     表明,采用消除cl.和Na+离子的共沉淀预处理工艺可大大提高BaConFe:。ol,
     柠株酸盐溶胶的稳定性,600℃下形成的纳米级M型铁氧体实际是多种原子
     构成的具有一定内在联系的亚稳原子团簇,700℃下可形成粒径为3小35 nm
     的单相BaCo五Fe一0019。
    二、5102月吐型铁叙体纳米壳铁核复合粒子的制备、表征和性能研究
    1.成功制备出了510:纳米壳和5102刀以型铁氛体纳米壳两种铁核复合粒子,并
     首次采用XPS技术研究了5102纳米壳和M型铁氛体纳米壳的电子结构。5102
     纳米粒子的si和0元素化学状态的定t分析表明,与Fe键合的盆为Q3硅
     签团中的叙,叙与Fe键合后会导致电子结合能降低;BaCoTIFelool,纳米粒
     子的Fe、Ti和。元素化学状态的定t分析表明,co2+、Ti’+离子取代了
     BaCOT扭el.ol,中自旋向上的12k磁晶位和自旋向下的4fl与4几磁晶位上的
     F产离子,且12k磁晶位上的F产离子被取代t最大.这些结果坟补了510:
     和BaCOT扭eloo:,纳米粒子电子结构方面的研究空白.
    2.5102纳米壳铁核复合粒子的静磁特性和2一18 GHz频段的介电、磁谱表明,随
     着5102纳米壳厚度增大,氏降低,价、Hc和凡均在△R=8 nm时出现极大值;
     si仇纳米壳的隔离作用不仅导致si仇纳米壳铁核复合粒子之间的磁相互作用
     减弱,而且使复合粒子之间产生类似于超交换作用的磁偶合共振效应;在8.72
     和10.72 GHz附近的弛豫型极化峰与拨基铁在6 GHz附近的弛豫型极化峰均
     是固有电偶极子的取向极化形成的,在巧.04和14.48 GHz附近的弛豫型极
     化峰与拨基铁在15.68 GHz附近的弛豫型极化峰均是界面极化形成的.
    3.5102舰型铁氧体纳米壳铁核复合粒子的静磁特性和2一18 GHz频段的介电、
     磁谱表明,随着M型铁氧体纳米壳厚度的增大,几减小,ar和Hc呈反“S”
     型变化趋势,由此推断拨基铁微米核与M型铁氧体纳米壳之间存在超交换作
     用:产在13 GHz附近的谐振峰与M型铁氧体Bac。五Fe:。O:9的自然共振无关,
     可能是拨基铁微米核和M型铁氧体纳米壳之间的超交换作用形成的。
    关锐词:多尺度M型铁氧体,共沉淀机理?
Electromagnetic-wave absorbing materials. are functional materials that may attenuate electromagnetic-wave energy, have been widely used in military and micro-electronic industries. M-type hexaferrite and carbonyl iron are two kinds of electromagnetic-wave absorbers with excellent property, which have been extensively studied and widely applied. However, they both have some insuperable disadvantages and cannot intensively absorb multi-frequency electromagnetic waves in a broad frequency band. There are some basic issues for M-type hexaferrite to need to study systematically such as effects of ball-milling on the structure and properties of micro-sized M-type fexaferrite, precipitation mechanism and its affecting factors during synthesizing submicro-sized M-type hexaferrite by chemical coprecipitation method, structure and properties of non-chiometric M-type hexaferrite with barium surplus, synthesis condition of single-phase nano-sized M-type hexaferrite with stable structure, and effects of crystal grain size on electromagnetic-wave absorbing property of M-type hexaferrite. In addition, it is also an unclear and unreported issue that electric and magnetic interaction mechanisms take place in the composite of M-type hexaferrite and carbonyl iron and how they affect electromagnetic-wave absorbing property of the composite. At the same time, how to improve the oxidation resistance of carbonyl iron is still not resolved.The thesis has investigated above-mentioned basic issues by two special studies: (1) Synthesis, characterization and properties of micro-, submicro- and nano-sized single-phase BaCoTiFe10O19 (namely multi-scale M-type hexaferrite), (2) Synthesis, characterization and properties of iron-SiO2/M-type hexaferrite core-nanoshell composite particles. The first one has mainly discussed some basic issues relative to M-type hexaferrite microwave absorber, and searched for process conditions of fabricating M-type hexaferrite nanoshell on the surface of carbonyl iron and iron-SiO2 core-nanoshell composite particles. The second one has for the first time studied the electric-magnetic interaction mechanism in the composite of carbonyl iron and M-type hexaferrite. The main results from these studies are summarized as following:1. Synthesis, characterization and properties of multi-scale M-type hexaferrite (1) The synergetic coprecipation effect of cations and coordination effect of
    
    anions or complex ions, occurring during the coprecipitation reaction of preparing BaCoTiFe10O19 precursor, was for the first time discovered by systemically investigating the coprecipitation mechanism of Fe3+, Ti4+, Co2+ and Ba2+ cations. The conclusion has important guiding significance in studying coprecipitation condition of other multi-cations system.(2) A series of single-phase non-chiometric M-type hexaferrite with barium surplus Ba1+xCoTiFe10O19+x(x=0.00, 0.05, 0.10, 0.15, 0.20) have been for the first time successfully synthesized at 900℃ heating for 2 h by chemical coprecipitation method. It was discovered that specific saturation magnetization value (σs) of Ba1+xCoTiFe10O19+x are almost no change and remnant magnetization (σr) and coercivity (Hc) reach maxima when x=0.05, and that the electric domain polarization around excess barium may result in resonance dielectric loss at about 12.48 and 15.28 GHz. These results have important significance in manufacturing new electromagnetic-wave absorbing materials with multi-frequency bands in the range GHz.(3) Micro-, submicro-, and nano-sized single-phase BaCoTiFe10O19 were synthesized by conventional ceramic method, chemical coprecipiation method, and sol-gel process, respectively. The dielectric properties in the range 2-18 GHz show that the intrinsic electric energy of BaCoTiFe10O19 is inversely proportional to grain diameter in the range 2-8 GHz, and that a polarization resonation peak of BaCoTiFe10O19 nanoparitcles, whose formation mechanism is the same as that of micro-sized BaCoTiFe10O19 at about 16.24 GHz after having been ball-milled for 48 hours, occurs at ab
引文
1. Stonier RA. Stealth aircraft and technology from world Ⅱ to the gulf. Sampe Journal, 1992, 27(5): 1-6
    2.王海.雷达吸波材料的研究现状和发展方向.上海航天,1999,(1):55-59
    3.徐生求,段永法.新型吸波材料的研究现状与展望.空军雷达学院学报,2001,15(1):45-48
    4.王智勇,刘俊能.超细金属粉微波电磁性能的研究.航空材料学报,1994,14(3):7-13
    5.宋保钢,赵晖.金属磁粉微波吸收材料.金属功能材料,1994,(1):21-23
    6.陈利民,亓家钟,朱雪琴,葛副鼎.纳米γ-(Fe,Ni)合金颗粒的微观结构及其微波吸收特性.兵器材料科学与工程,1999,22(4):3-6
    7.赵振声,张秀成,冯则坤,何华辉.六角晶系铁氧体吸收剂磁损耗机理研究.功能材料,1995,25(5):401-404
    8. Shengping Ruan, Baokun Xu, Hui Suo, Fengqing Wu, Siqing Xiang, Muyu Zhao. Microwave absorptive behavior of ZnCo substituted W-type Ba hexaferrite nanocrystalline composite material. J. magnetism and magnetic materials, 2000, 212: 175-177
    9. S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato. M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range. IEEE Transactions on Magnetics, 1999, 35(5): 3154-3156
    10. Han-Shin Cho and Sung-Soo Kim. M-hexaferrites with plannar magnetic anisotropy and their application to high-frequency microwave absorbers. IEEE Transactions on magnetics. 1999, 35(5): 3151-3153
    11.罗辉华.六角铁氧体的电磁波吸收特性研究.电子科技大学硕士论文,2002
    12.邓龙江,谢建良,梁迪飞,过璧君.磁性材料在RAM中的应用及其进展.功能材料,1999,30(2):118-121
    13. Ferandez A, Valenzuela A. General design theory for single-laryer homogeneous absorbers. IEEE Trans., 1996, AP4(7): 822-826
    14. Maosheng C, Jie Y. An intelligent CAD system for multiplayer absorber. Materials and Design, 1998, 19(3): 113-120
    15.袁杰,王荣国,李颖慧,张义,王彪.多层吸波材料的计算机辅助优化设计.哈尔滨工程大学学报,2000,21(2):51-54
    16.张秀成,何华辉.遗传算法在涂层吸波材料设计中的应用.磁性材料及器件,1999,30(5):11-14
    17.甘治平,官建国,邓惠勇,袁润章.用遗传算法设计宽带薄层微波吸收材料.电子学报,2003,31(6):918-920
    18.甘治平,官建国,王维.单层均匀吸波材料电磁参数的匹配研究.航空材料学报,2002,22(2):37-40,61
    19.EF Knott, JF Shaeffer, MT Tuely著(阮颖铮,陈海等译).雷达散射截面——预估、测量和减缩.电子工业出版社,1988,189~197
    
    20.王维.铁纳米(复合)粒子微波吸收剂的研究.武汉理工大学硕士论文.2002
    21.陈利民,金成海,亓家钟,朱雪琴,刘森英,陈兆定.毫米波-厘米波双功能伪装材料的研究.高技术通讯,1999,(8):35-38
    22.何华辉,吴明忠,赵振声.多晶铁纤维吸收剂微波电磁参数的各向异性研究.物理学报,1999,48(Sup):S138-S143
    23.张秀成,何华辉.多晶铁纤维铺层的雷达波反射特性研究.功能材料,2001,32(5):461-463
    24.赵振声,张秀成,聂彦,何华辉.多晶铁纤维吸波材料的微波磁性研究.磁性材料及器件,2000,31(1):18-20,38
    25.邓惠勇,官建国,甘治平.环氧树脂包裹超微铁磁性复合粒子电磁参数的研究.功能材料,2003,34(6):719-720
    26. Went J. J, et al. Ferroxdure, a class of new permanent magnet materials, Philips Tech. Rev., 13(1952/1953), 194-208
    27.李荫远,李国栋.铁氧体物理学,科学出版社,1978
    28.廖绍彬著.铁磁学(下册).北京:科学出版社,1998
    29.张永祥,耿香月等.六角结构磁铅石铁氧体吸波机制的设计与研究.天津大学学报,1999,32(5):611-615
    30.鲍元恺等.六角磁铅石型铁氧体材料微波吸收剂性能的理论分析.宇航材料工艺,1989,(4~5):16
    31.周志刚等.铁氧体磁性材料.北京:科学出版社,1981
    32. Mitsuo Sugimoto. The past, present, and future of ferrites. J. Am. Ceram. Soc., 1999, 82(2): 269-280
    33. Zhang H. G., Li L. T., Zhou J., Yue Z. X., and Gui Z. L. Low-temperature sintering, densification, and properties of Z-type bexaferrite with Bi_2O_3 additives. J. Am. Ceram. Soc., 2001, 84(12): 2889-2894
    34. I. Ndekov, A. Pcckov, and V. Karpov. Microwave absorption in Sc- and CoTi- substituted Ba hexaferrite powder. IEEE Trans. Magn., 1990, 26(5): 1483-1484
    35.曹健,谢嘉宁,张业风.熔盐法合成BaFe_(11)Co_(0.5)Ti_(0.5)O_(19)磁性粉体及其性能分析.功能材料,1996,27(5):446-448
    36. Shengping Ruan, Baokun Xu, Hui Suo, Fengqing Wu, Siqing Xiang, Muyu Zhao. Microwave absorptive behavior of ZnCo substituted W-type Ba hexaferrite nanocrystalline composite material. J. magnetism and magnetic materials, 2000, 212: 175-177
    37. T. Yamamoto, M. Kikuchi, S. Hikichi, and S. Otsuki. Development of electromagnetic wave absorber by use of Y-type ferroxplana. Tokin Technical review, 1974, 7(1): 40-48
    38.张秀成,赵振声,何华辉,微波铁氧体吸收剂复磁导率和复介电常数的温度物性研究,功能材料,1994,25(2):169-171
    39. Singh P, Babber VK, et. al. Microwave absorption of Ca-NiTi hexaferrite composites in X-band. Materials Science and Engineering B-Solid State Materials for Advanced Technology. 2000, 78(2-3): 70~74
    40. El-Saadawy, M; Murakhowskii, AA. Magnetic properties of Co_(2-x)Mn_xW hexagonal ferrites. Interceram, 2000, 49(5): 344-346
    
    41. Park, YM; Choi, GM. Electrical properties of Y-type hexagonal ferrite. Ceramics - Charting the Future. Proc.8th CIMTEC. Florence, 28 June-4 July 1994, Techna Srl, 1995, p.2665-2670. Adv.Sci.Technol.3D
    42.冯全源,任朗.毫米波用六角铁氧体多晶材料.功能材料,2000,31(1):48-49
    43.冯全源.毫米波用锌钛取代BaM六角铁氧体.磁性材料及器件,1997,28(2):16-18
    44.冯全源,任朗.Zn-Ti取代的BaFe_(12)O_(19)铁氧体.功能材料,2000,31(4):363-365
    45. S. Sugimoto, K. Okayama, S. Kondo, et al.. Barium M-type ferrite as an electromagnetic microwave absorber in the GHz range. Mater. Trans., JIM, 1998,39(10): 1080-1083
    46. T.Yamamoto, M.Kikuchi, S.Hikichi, and S.Otsuki. Development of electromagnetic wave absorber by use of Y-type ferroxplana. Tokin Technical review, 1974, 7(1): 40-48
    47. J.Y.Shin. Thesis for PhD degree. Inha University, Korea, 1995
    48. Deng Longjiang, Guo Bijun. Proceedings of the 2nd International Symposium on Physics of Magnetic Materials, Beijing, 1992, 232-233
    49. G.H.Jonker, H.P.J.Wijn, and P.B.Braun. Ferroxplana, hexagonal ferromagnetic Iron-oxide compounds for very high frequencies. Philips Technical Review, 1956-57, 18(6): 145-180
    50. S.S.Kim,S.B.Jo, K.I.Kwon, K.K.Chni, J.M.Kim, and K.S.Churn. Complex permeability and permittitvity and microwave absorption of ferrite-rubber composite in X-band frequencies. IEEE Trans. Magn., 1991, 27(6): 5462-5464
    51.邵元智,张介立.钡铁氧体Fe_(11-x-y)Co_(0.5)Ti_(0.5)Ni_xZn_yO_(19-r)的制备及其磁性.功能材料,1992,23(4):230-233
    52.Bhattacharyya, S; Das, AR. Study on coprecipitated barium hexaferrite. Indian Ceram. 1995,38(2): 38205-38216
    53.郑宗瑜,刘治国.共沉淀与高温助熔相结合的制造单晶钡铁氧体粉末工艺.磁性材料及器件,1986,(1):27-33
    54.Lin C H, Shih Z W, Chiu T S, et al. Hydrothermal processing to produce magnetic particulates. IEEE Transactions on Magnetics, 1990, MAG-36(1):15-17
    55.司新文,刘建中.杨正,耿胜利.钡铁氧体超微磁粉颗粒的表面磁特性.化工冶金,1997,18(3):197-201
    56.张密林,周铭,辛艳风,景晓燕.柠檬酸法合成SrFe_(12)O_(19)超微粉末.硅酸盐学报,1996,24(6):685-688
    57. P. Gomert, E. Sinn, W. Schuppel, et al. Structure and magnetic properties of BaFe_(2-2x)Co_xFe_(16)O_(27) powders prepared by the glass crystallization method. IEEE Trans. Magn., 1990, 26(1): 12-14
    58. Bogdanovich, MP. Glass-added strontium ferrite of high coercivity. Glass Ceram. 1995,52(7/8): 194-196
    59. Muller, R; Ulbrich, C; Schuppel, W; Steinmetz, H; Steinbeiss, E. Preparation and properties of barium ferrite containing glass ceramics J. Eur. Ceram. Soc. 1999, 19(6/7): 1547-1550
    60.白建民,刘小晰,逯迈,魏福林,杨正.玻璃陶瓷法制备的BaFe_(12-2x)(CoSn)_xO_(19)微粉的磁性.磁性材料及器件,1999,30(3):13-17
    61. S. Bhaduri, S. B. Bhaduri, J. B. Zanotti. Microwave induced combustion synthesis of ultrafine barium bexaferrite powders. Ceram. Eng. Sci. Proc., 1999, 20(4): 199-206
    
    62. T. Tsuchiya, T. Sei, M. Takenaga. Preparation and properties of thin films exhibiting magnetic, optomagnetic effects from sol-gel process. Sol-Gel Processing of Advanced Materials. Ceram. Trans., 1997, 81:191-197
    63. J. Bursik, D. Niznansky, J. Subrt, V. Perina, V. Matejec. Sol-gel thin films of BaFe_(12)O_(19) from chemically modified alkoxide precursors. J. Sol-Gel Sci. Technol., 1997, 8(1/2/3): 941-946
    64. Choy J. H, Hart Y. S, Song S. W. Preparation and magnetic properties of ultrafine SrFe_(12)O_*(19) particles derived from a metal citrate complex. Mater. Lett., 1994, 19(5/6): 257-262
    65. V. I. Arkharov, Z. A. Sarnoilenko, V. P. Pashchenko, E. I. Pushenko, V. M. Vintonyak, V. N. Ivanova. Mesoscopic clusterisation in strontium hexaferrites SrO(?)nFe_2O_3 with a magnetoplumbite structure. Inorg. Mater., 1993, 29(4): 475-479
    66. J. H. Fenstermacher. Preparation and characterization of hexagonal ferrite films from organometallic precursors (ferrite films). TUFTS University 1991-doctor dissertations database
    67.丁子文,翁文剑.溶胶-凝胶技术制备材料的进展.硅酸盐通报,1993,21(5):443-450
    68.王零森.特种陶瓷.长沙:中南工业大学出版社,1994.51-60
    69.李飞跃.用聚丙烯酰胺凝胶法制备钡铁氧体超细颗粒.功能材料,1992,23(3):157-159
    70.张密林,周铭,辛艳风,景晓燕.柠檬酸法合成SrFe_(12)O_(19)超微粉末.硅酸盐学报,1996,24(6):685-688
    71.姜玉梅.溶胶组成对钡铁氧体生成过程的影响.扬州大学学报·自然科学版,1999,2(1):26-28
    72. C. Sürig, K. A. Hempel, D. Bonnenberg. Formation and microwave absorption of barium and strontium ferrite prepared by sol-sel technique. Appl. Phys. Lett. 1993, 63(20): 2836-2838
    73.李丹,王晓慧,徐永锋,陆路德,杨绪杰,汪信.硬脂酸凝胶法合成纳米钡铁氧体的红外吸收光谱研究.功能材料,1996,27(4):332-334
    74.姚志强,王琴,钟炳.超临界流体干燥法制备钡铁氧体超细粉末Ⅱ.红外吸收光谱的研究.功能材料,1998,29(5):471-473
    75.姚志强,王琴,钟炳.超临界流体干燥法制备钡铁氧体超细粉末Ⅰ.制备参数对产品物相的影响.功能材料,1998,29(5):468-470
    76. Castro S, Gayoso M, Rivas J, Geneche J. M, and Mira J. J. Mag. Magn. Mater., 1996, 152:61
    77.张洪国,周济,岳振星,等.凝胶自燃烧法制备低温烧结Z型铁氧体材料.功能材料,2000,31(Sup):36-38
    78. T. Gonzélez-Carreno, M. P. Morales, C. J. Sema. Materials Letters, 2000, 43: 97-101
    79. K. Shafi, A. Gedanken. Sonochemical approach to the preparation of barium hexaferrite nanoparticles. NanoStructured Materials, 1999, 12: 29-34
    80. V. Pillai. Magnetic properties of barium ferrite synthesized using a microemilsion mediated process. J. Magn Magn Mater, 1992, 116: 299-304
    81. J. Fang, J. Wang, L. M. Gan, S. C. Ng, J. Ding, X. Y. Liu. Fine strontium ferrite powders from an ethanol-based microemulsion. J. Am. Ceram. Soc., 2000, 83(5): 1049-1055
    82. Pillai V, Kumar P, Multani P. S, and Shah D. O. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 80: 69
    83. V. Chhabra, M. Lal, A. N. Maitra, P. Ayyub. Nanophase BaFe_(12)O_(19) synthesised from a nonaqueous microemulsion with Ba- and Fe-containing surfactants. J. Mater. Res. 1995, 10(11): 2689-2692.
    84
    
    84.张立德.牟季美著.纳米材料和纳米结构.北京:科学出版社,2001
    85.赵文俞,张清杰,李鹏,官建国.柠檬酸法合成SrFe_(12)O_(19)磁铅石型铁氧体的晶化过程研究.硅酸盐学报,2003,31(1):20-24,30
    86. Nae-Lih Wu, Sze-Yen wang, I. A. Rusakova. Inhibition of crystallite growth in the Sol-Gel synthesis of nanocrystalline metal oxides. Science. 1999, 285(27): 1375-1377
    87.冯全源,任朗.BaAl_xFe_(12-x)O_(19)铁氧体的微波特性.磁性材料及器件,1999,30(6):6~7
    88.冯全源,杨政伟.铝取代的SrM六角晶系铁氧体.磁性材料及器件,1994,25(4):23-25
    89.赵福建.M型锶钙铁氧体的研究.贵州大学学报(自然科学版),1997,14(2):97-100
    90.过璧君,冯则坤,邓龙江.磁性薄膜与磁性粉体.成都:电子科技大学出版社,1994
    91. H. Vincent, E. Brando, B. Sugg. Cationic distribution in relation to the magnetic properties of new M-hexaferrites with planar magnetic anisotropy BaFe_(12-2x)Ir_xMe_xO_(19). J. Solid State Chem., 1995, 120: 17-22
    92. E. Brando, H. Vincent, J. Rodriguez-Carjaval. Synthesis, X-ray, neutron and magnetic studies of new in-plane anisotropy M-hexaferrites BaFe_(12-2x)A_xMe_xO_(19) (A=Ru,Ir; Me=Co,Zn). J. de Phys. Ⅳ. 1997, 7: C1303-306
    93.宏刚,李发伸.Co-Sn替代钡铁氧体的穆斯堡尔谱研究.甘肃工业大学学报,1994,20(3):104-107
    94.宏刚,李发伸.Co-Sn替代钡铁氧体的制备及其磁性.甘肃工业大学学报,1994,20(2):99-103
    95. H. C. Fang, Z Yang, C. K. Ong, Y. Li, C. S. Wang. Preparation and magnetic properties of (Zn-Sn) substituted barium hexaferrite nanoparticles for magnetic recording. Journal of Magnetism and Magnetic Materials, 1998, 187: 129-135
    96.焦洪震,叶英,都有为.BaCr_(2x)Fe_(12-2x)O_(19)的穆斯堡尔谱学研究.核技术,1994,17(12):737-741
    97. Praveen Singh, V. K. Babbar, Archana, S. L. Srivastava, T. C. Geol. Microwave absorption studies of Ca-NiTi hexaferrite composites in X-band. Mater. Sci. Engineer., 2000, B78:70-74
    98.郭睿倩,李洪桂,孙培梅,李运姣,赵中伟.轻稀土镧取代M型钡铁氧体超微粉末的合成与表征.稀有金属,2001,25(2):86-89
    99.郭睿倩,李洪桂,孙培梅,李运姣,赵中伟.不同稀土元素掺杂M型钡铁氧体超微粉末的磁性研究.功能材料,2001,32(6):598-599,605
    100.甘树才,洪广言,张军,车平.镧六方铁氧体La_xBa_(1-x)Fe_(12)O_(19)的制备与表征.应用化学,2000,17(2):119-221
    101.张密林,辛艳凤,周铭.高性能SrLa_xFe_(12-x)O_(19)超微粉的合成与表征.硅酸盐通报,1997,16(4):18-22
    102.杨熙珍,杨武.金属腐蚀电化学热力学电位-pH图及其应用.北京:科学技术文献出版社1991
    103. Smith R M, Martell A E. Critical stability constants. New York: Plenum Press, 1979
    104.李伯刚,尹光福,郑昌琼,韩纪梅.并加共沉淀制备软磁锰锌铁氧体粉末的新工艺.化工冶 金,1999,20(4):381-384
    10
    
    105.姚连增编.晶体生长基础.合肥:中国科学技术大学出版社,1995
    106. M. V. Rane, D. Bahadur, A. K. Nigam, C. M. Srivastava. Mssbauer and FT-IR studies on non-stoichiometric barium hexaferrites. Journal of Magnetism and Magnetic Materials, 1999, 192: 288-296
    107. Y. Bal, J. Zhou, Z. L. Gui, L. T. Li. Magnetic properties of non-stoichiometric Y-type hexaferrite. Journal of Magnetism and Magnetic Materials, 2002, 250: 364-369
    108.赵文俞,官建国,张清杰.并加共沉淀法合成钴钛取代M型钡铁氧体中的协同共沉淀效应和配位效应.功能材料,2004,35(1):25-27
    109.赵麦群,陈宇航,仝建锋,刘剑,符长镤.湿化学法制备纳米粉的热力学条件.粉末冶金技术,1999,17(2):83-8
    110.谢晶曦 编著.红外光谱在有机化学和药物化学中的应用.科学出版社,1987
    111. Zhong W, Ding W. P., Zhang N, Hong J. M., Yah Q. J., Du Y. W. Key step in synthesis of ultrafine BaFe_(12)O_(19) by sol-gel technique. Journal of Magnetism and Magnetic Materials, 1997, 168: 196-202
    112.李翰如.电介质物理导论.成都:成都科技大学出版社,1990
    113.邓惠勇,官建国,甘治平.环氧树脂包裹超微铁磁性复合粒子电磁参数的研究,功能材料,2003,34(6):719-720
    114. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg. Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation Physical Electronics Division, USA. 1979
    115. F. Caruso. Nanoengineering of Particle Surfaces. Adv. Mater., 2001, 13: 11-22
    116.余锡宾,吴虹.正硅酸乙酸的水解、缩合过程研究.无机材料学报,1996,11(4):703-707
    117. C. T. Kresge, M. E. Leonowicz, W.J. Roth, et al. Ordered mesoporous molecular sievers synthesized by a liquid crystal template mechanism. Nature, 1992, 359: 710-712
    118. J. S. Beck, J. C. Vartuli, W. J. Roth, et al. A new family of mesorporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc, 1992,114: 10834-10843
    119.袁鹏,吴大清,陈忠等.硅藻土表面羟基的~1H魔角旋转核磁共振谱.科学通报,2001,46(4):342-344
    120. N. A. Kachurovskaya, G. M. Zhidomirov, Y. I. Aristov. On the problem of differentiation of acetone adsorption species on the silica gel: molecular models of adsorption complexes. Journal of Molecular Catalysis A: Chemical, 2000, 158: 281-285
    121. J. Temuujin, K. Okada, K. J. D. MacKenzie, Ts. Jadambaa. Characterization of porous silica prepared from mechanically amorphized kaolinite by selective leaching. Powder Tech, 2001, 121: 259-262
    122. M. L. Pea, V. Dellarocca, F. Rey, A. Corma, S. Coluccia, L. Marchese. Elucidating the local environment of Ti(Ⅳ) active sites in Ti-MCM-48: a comparison between silylated and calcined catalysts. Micro-and Mesoporous Mater., 2001, 44-45: 345-356

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700