低维氧化锌结构调控及熔盐辅助技术在纳米材料合成中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维结构纳米材料因其独特的光、电、磁和机械性能,在纳米器件和功能材料等领域具有潜在的应用前景。通过大量文献调研发现,低维纳米材料的结构、维度、形貌、尺寸等因素对其性能有着直接影响。本文探索通过液相法,选择适当的反应体系和工艺,避免加入常用的表面活性剂、有机溶剂等模板或诱导剂,仅仅利用晶体自身结构的生长特性或在煅烧体系中加入易于去除的无机熔盐作为液相介质以实现对纳米材料结构的有效调控。
     1.通过水相化学沉淀法,不加入任何有机添加剂,利用晶体自身的结构特征,成功合成出一维ZnO纳米棒。以氨水作为沉淀剂,通过控制反应温度80℃或以上直接沉淀反应,不经煅烧就得到了直径为120nm、长度为800nm~1μm、截面为六边形的ZnO纳米棒。研究了反应条件如反应温度、氨水用量和煅烧温度等对产物形貌和性能的影响。同时在一定的氨水用量和煅烧温度范围内,产物呈现人体肤色。对一维ZnO纳米棒的生长机理和着色机理进行了讨论。
     2.采用熔盐辅助技术,分别在纯水体系或醇水混合体系中,制备了粒径可控、分散性较好的零维ZnO颗粒。以氨水作为沉淀剂,纯水体系中70℃以下合成了不同粒径的Zn0颗粒,研究了不同反应条件对ZnO颗粒尺寸大小影响的规律;添加低共熔混合物可以有效减小颗粒粒径,提高产物的分散性。讨论了水相中ZnO的形成机理;通过反应体系中加入一定配比低介电常数的乙醇,在醇水混合体系中获得的前驱物辅以不同熔盐进行煅烧,可以对ZnO纳米颗粒形貌进行有效调控,研究表明纳米ZnO颗粒粒径随着乙醇和熔盐配比的增大而减小,同时分散性更好。对醇水体系和熔盐辅助在ZnO颗粒合成中的作用机理进行了探讨。
     3.采用硬脂酸和硅烷偶联剂KH-570分别对纳米ZnO颗粒进行有机表面修饰,ZnO表面由亲水性变为疏水性,且疏水性随修饰量的增加而增强。对修饰后的表面键合状态和表面性质进行了分析。硬脂酸与纳米ZnO的表面羟基发生类似于羧酸与醇的酯化反应,并以桥连的形式结合在ZnO表面;KH-570以化学键结合方式接枝在ZnO表面。
     4.基于零维ZnO颗粒的形貌可控合成,深入研究了熔盐辅助这一共性技术在纳米材料制备中的应用,取得了一定的新颖性结果。采用不同一元熔盐、低共熔混合物或反应副产物熔盐辅助煅烧,成功合成了In_2O_3、ZrO_2、NiO、Al_2O_3、MgO、Mg(OH)_2、TiCN及BP等其它多种纳米材料。在常压下,不添加任何表面活性剂和有机溶剂,创新性地采用无机ZnCl_2熔盐辅助煅烧得到了高压相六方刚玉型纳米In_2O_3,并采用低共熔混合物KCl-ZnCl_2辅助制备了高温稳定相立方纳米ZrO_2,同时研究了熔盐辅助煅烧对前驱物分解的影响规律。讨论了熔盐辅助技术在纳米材料合成中的作用机理。
Low-dimensional nanostructured materials have received a worldwide interest because of their unique electronic, optical, and mechanical properties and their potential applications in nanodevices and functional materials. We find that the structure, dimension, shape and size of dimensional nanomaterials have important effects on their performances according to a lot of literatures. In the thesis, structure-controlled products were synthesized using a simple solution method according to the crystals growth behavior or inorganic molten salts as reaction media. The approach required neither complex apparatus and sophisticated procedures nor metal catalysts, templates or regulating surfactants.
     1. 1D ZnO nanorods were successfully synthesized by a simple chemical precipitation method in aqueous solution at 80℃using ammonia water as precipitant. The method utilized the crystals growth behavior and hexagonal ZnO nanorods with 120 nm in diameter and 800 nm~1μm in length were achieved without subsequent calcinations in oven. The effects of reaction conditions on the morphologies and performances of ZnO nanorods, including reation temperature, ammonia water amount, calcination temperature and so on, were studied. Furthmore, skin-colored ZnO nanorods were obtained with appropriate amounts of ammonia water or in a certain range of calcination temperature. The growth mechanisms and pigmentation mechanisms of ZnO nanorods were finally developed.
     2. The size-controlled and better-dispersed ZnO nanoparticles were obtained in aqueous solution and water-ethanol mixed solvent using molten salts assisted approach, respectively. Submicron- and nano-sized ZnO were synthesized in aqueous solution below 70℃using ammonia water as precipitant. The effects of reaction conditions on the diameter size of ZnO nanoparticles were studied, and the addition of eutectic could improve the dispersibility of the products. The formation mechanisms of ZnO nanoparticles in aqueous solution were also discussed. ZnO nanoparticles were synthesized in water-ethanol mixed solution. The diameter size and dispersion of the products were easy to control with the addition of low dielectric constant ethanol and subsequently calcination with an appropriate amount of molten salts. And the formation mechanisms in mixed solution and the effect of molten salts were investigated.
     3. ZnO nanoparticles were grafted by steric acid and silane coupling agent, respectively. The surface of nanosized ZnO changed from hydrophilicity to hydrophobicity after organic modification, and the hydrophobicity was impoved with the increase of agent amount. Surface bonding characteristics and surface characteristics were analyzed. The reaction of steric acid with surface hydroxyl of ZnO was similar to esterification reaction between carboxylic acids and alcohol. And steric acid could bridge with ZnO nanoparticles. KH570 silane coupling agent grafted onto the surface of ZnO nanoparticles in the form of chemical bond.
     4. Based on the general molten salts assisted technique, the others nanomaterials were also prepared and many novel achievements were developed. Different nanomaterials, such as In_2O_3, ZrO_2, NiO, Al_2O_3, MgO, Mg(OH)_2, TiCN and BP, were successfully prepared with adding molten salts or by-products. Under ambient pressure, the so-called high pressure phase, corundum type In_2O_3 nanocrystals were firstly prepared using ZnCl_2 as additive, the method required neither surfactants nor organic solvents. And the high temperature phase, c-ZrO_2, was also obtained in the presence of KCl-ZnCl_2 eutectic. Furthermore, the decomposition of precursor was adjusted with the addition of molten salts. Finally, the formation mechanisms of molten salts in the synthesis of nanomaterials were investigated in detail.
引文
[1] Kim K K, Koguchi N, Ok Y Y, Seong T Y, Park S J. Fabrication of ZnO quantum dots embedded in an amorphous oxide layer [J]. Appl Phys Lett 2004, 84(10): 3810-3812.
    [2] Jose J, Khadar M. Role of grain boundaries on the electrical conductivity of nanophase zinc oxide [J]. Mater Sci Eng A 2001, 304-306: 810-813.
    [3] Jeong W J, Kim S K, Park G C. Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell [J]. Thin Solid Films 2006, 506-507: 180-183.
    [4] Benetti M, Cannatá D, Di Pietrantonio F, Verona E, Verardi P, Scarisoreanu N, Matei D, Dinescu G, Moldovan A, Dinescu M. Structural and piezoelectric properties of pulsed laser deposited ZnO thin films [J]. Superlattice Microst 2006, 39(1-4): 366-375.
    [5] Jung J P, Lee J B, Kim J S, Park J S. Fabrication and characterization of high frequency SAW device with IDT/ZnO/AlN/Si configuration: role of AlN buffer [J].Thin Solid Films 2004, 447-448: 605-609.
    [6] Mitzner K D, Sternhagen J, Galipeau D W. Development of a micromachined hazardous gas sensor array [J]. Sensor Actuat B 2003, 93: 92-99.
    [7] Tomchenko A A, Harmer G P, Marquis B T, Allen J W. Semiconducting metal oxide sensor array for the selective detection of combustion gases [J]. Sensor Actuat B 2003, 93: 126-134.
    [8] Yi G C, Wang C R, Park W Ⅱ. ZnO nanorods: synthesis, characterization and applications [J]. Semicond Sci Technol 2005, 20(4): S22-S34.
    [9] Pearton S J, Norton D P, Ip K, Heo Y W, Steiner T. Recent progress in processing and properties ofZnO [J]. Prog.Mater Sci 2005, 50(3): 293-340.
    [10] Guo L, Yang S H, Yang C L, Yu P, Wang J N M, Ge W K, Wong G K L. Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties [J]. Appl Phys Lett 2000, 76(20): 2901-2903.
    [11] Dijken A, Meulenkamp E A, Vanmaekelbergh D, Meijerink A. Influence of adsorbed oxygen on the emission properties of nanocrystalline ZnO particles [J]. J Phys Chem B 2000, 104(18): 4355-4360.
    [12] Li J F, Yao L Z, Ye C H, Mo C M, Cai W L, Zhang Y, Zhang L D. Photoluminescence enhancement of ZnO nanocrystallites with BN capsules [J]. J Cryst Growth, 2001, 223(4): 535-538.
    [13] Ng H T, Han J, Yamada J, Nguyen P, Chen Y P, Meyyappan M. Single crystal nanowire vertical surround-gate field-effect transistor [J]. Nano Lett 2004, 4(7): 1247-1252.
    [14] Tang C C, Fan S S, Marc Lamy de la Chapelle, Li P. Silica-assisted catalytic growth of oxide and nitride nanowires [J]. Chem Phys Lett 2001, 333(1-2): 12-15.
    [15] Zhou J, Xu N S, Wang Z L. Dissolving behavior and stability of ZnO wires in biofluids-a study on biodegradability and biocompatibility of ZnO nanostructures [J]. Adv Mater 2006, 18: 2432-2435.
    [16] 王中林.氧化物纳米结构的科学技术[J].纳米科技,2006,6:5-12.
    [17] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science 2001, 291(5510): 1947-1949.
    [18] Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D. Room-temperature ultraviolet nanowire nanolasers [J]. Science 2001, 292(5523): 1897-1899.
    [19] Huang M H, Wu Y Y, Feick H, Tran N, Weber E, Yang P D. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Adv Mater 2001, 13 (2): 113-116.
    [20] Yang P D, Yan H Q, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R R, Choi H J. Controlled growth of ZnO nanowires and their optical properties [J]. Adv Funct Mater 2002, 12(5): 323-331.
    [21] Ding Y, Gao P X, Wang Z L. Catalyst-nanostrucmre interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO [J]. J Am Chem Soc 2004, 126(7): 2066-2072.
    [22] Gao P X, Ding Y, Mai W J, Hughes W L, Lao C S, Wang Z L. Conversion of zinc oxide nanoblet into superlattice-structured nanohelices [J]. Science 2005, 309: 1700-1704.
    [23] Buchine B A, Hughes W L, Degertecin F L, Wang Z L. Bulk acoustic resonator based on piezoelectric ZnO belts [J]. Nano Lett 2006, 6(6): 1155-1159.
    [24] Li Y, Meng G W, Zhang L D, Phillipp F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties [J]. Appl Phys Lett 2000, 76(15): 2011-2013.
    [25] 陶新永,张孝彬,孔凡志,林森,程继鹏,黄宛真,李昱,刘芙,许国良.PEG辅助氧化锌纳米棒的水热法制备[J].化学学报,2004,17(62):1658-1662.
    [26] 郭敏,刁鹏,蔡生民.一种在固体基底上制备高度取向氧化锌纳米棒的新方法[J].化学学报,2003,61(8):1165-1168.
    [27] Herrera-Zaldívar M, Valenzuela-Benavides J, Pal U. STM and STS characterization of ZnO nanorods [J]. Opt Mater 2005, 27(7): 1276-1280.
    [28] Li Z Q, Xiong Y J, Xie Y. Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route [J]. Inorg Chem 2003, 42(24): 8105-8109.
    [29] 陈友存,张元广,周根陶.棒状和球状氧化锌微晶的控制合成及其表征[J].无机材料学报,2004,19(5):1173-1176.
    [30] Yin M, Gu Y, Kuskovsky I L, Andelman T, Zhu Y M, Neumark G F, O'Brien S. Zinc oxide quantum rods [J]. J Am Chem Soc 2004, 126(20): 6206-6207.
    [31] Tak Y, Yong K. Controlled growth of well-aligned ZnO nanorod array using a novel solution method [J]. J Phys Chem B 2005, 109(41): 19263-19269.
    [32] Wu J, Liu S. Catalyst-free growth and characterization of ZnO nanorods [J]. J Phys Chem B 2002, 106(37): 9546-9551.
    [33] Jie J S, Wang G Z, Wang Q T, Chen Y M, Han X H, Wang X P, Hou J G. Synthesis and characterization of aligned ZnO nanorods on porous aluminum oxide template [J]. J Phys Chem B 2004, 108(32): 11976-11980.
    [34] Ajayan P M, Stephan O, Redlich P, Colliex C. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures [J]. Natures 1995,375: 564-567.
    [35] Kim H, Sigmund W. Zinc oxide nanowires on carbon nanotubes [J]. Appl Phys Lett 2003, 81(11): 2085-2087.
    [36] Guo L, Ji Y L, Xu H B. Regularly shaped single-crystalline ZnO nanorods with wurtzite structure [J]. J Am Chem Soc 2002, 124(50): 14864-14865.
    [37] Xu C K, Xu G D, Liu Y K, Wang G H. A simple and novel route for the preparation of ZnO nanorods [J]. Solid State Commun 2002, 122(3-4): 175-179.
    [38] Tao D L, Qian W Z, Huang Y, Wei F. A novel low-temperature method to grow single-crystal ZnO nanorods [J]. J Cryst Growth 2004, 271(3-4): 353-357.
    [39] 刘秀兰,李佳,赵晓鹏.ZnO纳米棒的低温湿化学制备[J].功能材料,2005,36(4):636-638.
    [40] Liu B, Zeng H C. Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructure [J]. Langmuir 2004, 20(10): 4196-4204.
    [41] 石礼伟,李玉国,王强,薛成山,王书运.热氧化磁控溅射金属锌膜合成一维ZnO纳米棒[J].半导体学报,2004,25(10):1211-1214.
    [42] Park W I, Kim D H, Jung S W, Yi G C. Metalorganic vapor-phase epitaxial growth of vertically well-alligned ZnO nanorods [J]. Appl Phys Lett 2002, 80(22): 4232-4234.
    [43] 张旭东,邢英杰,奚中和,薛增泉,张蔷,俞大鹏.类单晶氧化锌纳米棒的制备与表征[J].真空科学与技术学报,2004,24(1):16-18.
    [44] 艾仕云,金利通,周杰,路福绥.均一形貌的ZnO纳米棒的制备及其光催化性能研究[J].无机化学学报,2005,21(2):270-273.
    [45] Bae S Y, Seo H W, Choi H C, Park J, Park J. Heterostructures of ZnO nanorods with various one-dimensional nanostructures [J]. J Phys Chem B 2004, 108(33): 12318-12326.
    [46] Wang Y W, Zhang L D, Wang G Z, Peng X S, Chu Z Q, Liang C H. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties [J]. J Cryst Growth 2002, 234(1): 171-175.
    [47] Liu X, Wu X H, Cao H, Chang R P H. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition [J]. J Appl Phys 2004, 95(6): 3141-3147.
    [48]Hingorani S, Pillai V, Kumar P, Multani M S, Shah D O. Microemulsion mediated sythesis of zinc-oxide nanoparticles for varistor studies [J]. Mater Res Bull 1993, 28:1303-1310.
    [49] Viswanath R N, Ramasamy S, Ramamoorthy R, Jayavel P, Nagarajan T. Preparation and characterization of nanocrystalline ZnO based materials for varistor applications [J]. Nanostruct Mater 1995, 6: 993-996.
    [50]Park S B, Kang Y C. Photocatalytic activity of nanometer size ZnO particles prepared by spray pyrolysis [J]. J Aerosol Sci 1997, 28: S473-S474.
    [51]Inubushi Y, Takami R, Iwasaki M, Tada H, Ito S. Mechanism of formation of nanocrystalline ZnO particles through the reaction of [Zn(acac)2] with NaOH in EtOH [J]. J Colloid Interf Sci 1998, 200(2): 220-227.
    [52] Jose J, Khadar M A. Impedance spectrodcopic analysis of ac response of nanophase ZnO and ZnO-Al_2O_3 nanocomposites [J]. Nanostruct Mater 1999, 11: 1091-1099.
    [53]Deng H M, Ding J, Shi Y, Liu X Y, Wang J. Ultrafine zinc oxide powders prepared by precipitation/mechanical milling [J]. J Mater Sci 2001, 36: 3273-3276.
    [54]Dierstein A, Natter H, Meyer F, Stephan H O, Kropf C H, Hempelmann R.Electrochemical deposition under oxidizing conditions (EDOC): a new synthesis for nanocrystalline metal oxides [J]. Scripta Mater 2001, 44(8-9): 2209-2212.
    [55] Ali H A, Iliadis A A, Mulligan R F, Cresce A V W, Kofinas P, Lee U. Properties of self-assembled ZnO nanostructures [J]. Solid-State Electron 2002, 46: 1639-1642.
    [56]Panatarani C, Lenggoro W I, Okuyama K. Synthesis of single crystalline ZnO nanoparticles by salt-assisted spray pyrolysis [J]. J Nanoparticle Research 2003, 5:47-53.
    [57]Damonte L C, Mendoza Zelis L A, Mari Soucase B, Hernandez Fenollosa M A.Nanoparticles of ZnO obtained by mechanical milling [J]. Powder Technol 2004, 148(1): 15-19.
    [58]Kukreja L M, Barik S, Misra P. Variable band gap ZnO nanostructures grown by pulsed laser deposition [J]. J Cryst Growth 2004, 268(3-4): 531-535.
    [59] 王佑龄,赵文宽.超微粉末氧化锌的制备[J].精细化工,1991,8:42-45.
    [60] 朱勇,沈辉,刘佩田,李宗全,吴希俊.激光加热制备ZnO纳米粉[J].无机材料学报,1993,8(1):111-113.
    [61] 张丽华,王子忱,李熙,徐宝琨,赵慕愚.氧化锌纳米晶敏感材料的制备[J].吉林大学自然科学学报,1993,2:116-118.
    [62] Kang K X, Wang T D, Han Y, Tao M D, Tu M J. Sol-gel process doped ZnO nanopowders and their grain growth [J]. Mater Res Bull 1997, 32:1165-1171.
    [63] Lin H M, Tzeng S J, Hsiau P J, Tsai W L. Electrode effects on gas sensing properties of nanocrystalline zinc oxide [J]. Nanostruct Mater 1998, 10: 465-477.
    [64] 宋红艳,赵纯寅,王华年,李传华.超细氧化锌粉末的研制[J].涂料工业,1998.3:20-23.
    [65] 李汶军,施尔畏,王步国,夏长泰,仲维卓.水热法制备氧化锌粉体[J].无机材料学报,1998,13(1):27-32.
    [66] 俞建群,贾殿赠,郑毓峰,忻新泉.纳米氧化镍、氧化锌的合成新方法[J].无机化学学报,1999,15(1):95-98.
    [67] 崔若梅,张文礼,徐中理,牛秀华,孙先红.纳米氧化锌的制备与表征[J].化学世界,1999,12:630-633.
    [68] 刘超峰,胡行方,祖庸.以尿素为沉淀剂制备纳米氧化锌粉体[J].无机材料学报,1999,14(3):391-396.
    [69] 郁平,房鼎业.纳米氧化锌的制备[J].化学世界,2000,6:293-294.
    [70] Shi G, Mo C M, Cai W L, Zhang L D. Photoluminescence of ZnO nanoparticles in alumina membrane with ordered pore arrays [J]. Solid Sate Commun 2000, 115: 253-256.
    [71] 石晓波,李春根,汪德先.制备纳米氧化锌的新方法[J].合成化学,2002,10(2):183-185.
    [72] 佘云川,张会臣,刘世永,许晓磊,季世军.氧化锌纳米微粒的制备与表征[J].大连海事大学学报,2002,28(3):93-96.
    [73] 徐甲强,王焕新,张建荣,沈嘉年.微波水解法制备纳米ZnO及其气敏特性研究[J].无机材料学报,2004,19(60):1441-1445.
    [74] 王华清,周上祺,陈昌国.纳米ZnO的固相合成及其对锌电极的改性作用[J]. 化学通报,2005,3:204-208.
    [75] Zhang Y C, Wu X, Hu X Y, Guo R. Low-temperature synthesis of nanocrystalline ZnO by thermal decomposition of a "green" single-source inorganic precursor in air [J]. J Cryst Growth 2005, 280(1-2): 250-254.
    [76] 葛岭梅.纳米氧化锌粉的表面改性研究[J].湘潭矿业学院学报,2002,(12):31-34.
    [77] 王国宏.纳米的表面改性研[J].湖北师范学院学报(自然科学版),2004,(1):10-14.
    [78] 李剑锋,姚连赠,蔡维理,牟季美.氮化硼包覆氧化锌体系的光致发光特性研究[J].物理学报,2001,50(8):1623-1626.
    [79] 伊春雷,袁方利,黄淑兰.纳米氧化锌包覆氧化铝复合粉体制备及其光催化活性[J].过程工程学报,2003,3(4):346-350.
    [80] 宇海银,杜俊,顾家山,关明云,吴正翠,凌青,孙益民.纳米ZnO的表面化学修饰及其分析表征[J].光谱学与光谱分析,2004,24(12):177-179.
    [81] 洪若瑜,钱建中,缪晨晨,李洪钟.纳米ZnO粉体的制备及其表面SiO_2包覆改性[J].精细石油化工,2005,2:1-4.
    [82] Grasset F, Saito N, Li D, Park D, Sakaguchi I, Ohashi N, Haneda H, Roisnel T, Momet S, Duguet E. Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane [J]. J Alloy Compd 2003, 360(1-2): 298-311.
    [83] Guo L, Yang S H, Yang C L, Yu P, Wang J N, Ge W K, Wong G K L. Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide Nanoparticles [J]. Chem Mater 2000, 12(8): 2268-2274.
    [1] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science 1996, 271(5251): 933-937.
    [2] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes [J]. Science 1997,277(5334): 1971-1975.
    [3] Hu J T, Ouyang M, Yang P D, Lieber C M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires[J]. Nature1999,399:48-51.
    [4] Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D. Room-temperature ultraviolet nanowire nanolasers [J]. Science 2001,292(5523):1897-1899.
    [5] Ng H T, Han J, Yamada T, Nguyen P, Chen Y P, Meyyappan M. Single crystal nanowire vertical surround-gate field-effect transistor [J]. Nano Lett 2004, 4(7):1247-1252.
    [6] Huang M H,Wu Y Y, Feick H, Tran N, Weber E, Yang P D. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Adv Mater 2001,13(2):113-116.
    [7] Wang Y W, Zhang L D, Wang G Z, Peng X S, Chu Q, Liang C H. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties [J]. JCryst Growth, 2002,234: 171-175.
    [8] YangP D, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R,Choi H. Controlled growth of ZnO nanowires and their optical properties [J]. Adv Funct Mater 2002,12(5): 323-331.
    [9] Li S Y, Lee C Y, Tseng T Y. Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process [J]. J Cryst Growth 2003,247: 357-362.
    [10] Ding Y, Gao P X, Wang Z L. Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO [J].J Am Chem Soc 2004,126(7): 2066-2072.
    [11] Klimovskaya A I, Ostrovskii I P, Ostrovskaya A S. Influence of growth conditions on morphology, composition and electrical properties of n-Si wires [J]. Phys Statu Solidi A 1996,153(2): 465-472.
    [12] Iwao Y, Hajime S. Vapor phase growth of alumina whiskers by hydrolysis of aluminum fluoride [J]. J Cryst Growth 1978, 45: 511-516.
    [13] Zhang R Q, Lifshitz Y, Lee S T. Oxide-assisted growth of semiconducting nanowires [J]. Adv Mater 2003,15(7-8): 635-640.
    [14] Park W I, Kim D H, Jung S W, Yi G C. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods [J]. Appl Phys Lett 2002, 80(22):4232-4234.
    [15] Park W I, Yi G C, Kim M Y, Pennycook S J. ZnO nanoneedles grown vertically onSi substrates by non-catalytic vapor-phase epitaxy [J]. Adv Mater 2002, 14(24):1841-1843.
    [16] Lee W, Sohn H G, Myoung J M. Prediction of the structural performances of ZnO nanowires grown on GaAs(OOl) substrates by metalorganic chemical vapour deposition (MOCVD) [J]. Mater Sci Forum 2004, 449-452: 1245-1248.
    [17] Liu X, Wu X H, Cao H, Chang RPH. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition [J]. J Appl Phys 2004, 95(6): 3141-3147.
    [18] Maejima K, Ueda M, Fujita S, Fujita S. Growth of ZnO nanorods on a-plane(120) sapphire by metal-organic vapor phase epitaxy [J]. Jpn J Appl Phys 2003, 42(5A):2600-2604.
    [19] Zhang B P, Binh N T, Segawa Y, Wakatsuki K, Usami N. Optical properties of ZnO rods formed by metalorganic chemical vapor deposition [J]. Appl Phys Lett 2003,83(8): 1635-1637.
    [20] Han W Q, Fan S S, Li Q Q, Hu Y D. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction [J]. Science 1997, 277 (5330): 1287-1289.
    [21] Wang C R,Tang K B, Yang Q, Hai B, Shen G Z,An C H,YuW C, Qian Y T.Synthesis of novel SbSI nanorods by a hydrothermal method [J]. Inorg Chem Commun 2001, 4(7): 339-341.
    [22] Jiang Y, Wu Y, Mo X, Yu W C, Xie Y, Qian Y T. Elemental solvothermal reaction to produce ternarysemi conductor CuInE_2 (E — S, Se) nanorods [J]. Inorg Chem 2000,39(14): 2964-2965.
    [23] Wang C R, Tang K B, Yang Q, Qian Y T. Preparation and photoluminescence of CaS/Bi, CaS/Ag, CaS/Pb and Sr_(1-x)Ca_xS nanocrystallites [J]. J Electrochem Soc 2003, 150(3): G163-G166.
    [24] 顾达,顾燕芳,胡黎明.超细肤色ZnO制备的新工艺研究[J].中国粉体技术,1996,2(3):27-30.
    [25] 晋传贵,朱伟长.肉色ZnO超微粒子的制备[J].华东冶金学院学报,1999,16(1):31-33.
    [26] 高相东,李效民,于伟东.连续离子层吸附与反应法(SILAR)生长ZnO多晶薄膜的研究[J].无机材料学报,2004,19(3):610-616.
    [27] 王步国,仲维卓,施尔畏,夏长泰,李汶军,华素坤,殷之文.ZnO晶体的极性生长习性与双晶的形成机理[J].人工晶体学报,1997,26(2):102-107.
    [28] 洪广言.无机固体化学[M].北京:科学出版社,2002,81-82.
    [29] Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A, Gnade B E. Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. J Appl Phys 1996, 79(10): 7983-7990.
    [30] Van Dijken A, Meulenkamp E A, Vanmaekelbergh D, Meijerink A. The luminescence of nanocrystalline ZnO pparticles: the mechanism of the ultraviolet and visible emission [J]. J Lumin 2000, 87-89: 454-456.
    [31] Dai L, Chen X L, Wang W J, Zhou T, Hu B Q. Growth and luminescence characterization of large-scale zinc oxide nanowires [J]. J Phys-Condens Mat 2003, 15(13): 2221-2226.
    [32] Hu J Q, Ma X L, Xie Y, Wong N B, Lee C S, Lee S T. Characterization of zinc oxide crystal whiskers grown by thermal evaporation [J]. Chem Phys Lett 2001, 344(1-2): 97-100.
    [33] Lin B X, Fu Z X, Jia Y B. Green luminescent cemer in undoped zinc oxide films deposited on silicon substrates [J]. Appl Phys Lett 2001, 79(7): 943-945.
    [34] Huang H H, Wu Y Y, Feick H, Tran N, Weber E, Yang P D. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Adv Mater 2001, 13(2): 113-116.
    [35] 李汶军,施尔畏,郑燕青,陈之战,殷之文.氧化物晶体的成核机理与晶粒粒度[J].无机材料学报,2000,15(5):777-786.
    [36] Guo L, Ji Y L, Xu H B, Simon P, Wu Z Y. Regulary shaped single-crystalline ZnO nanorods with wurtzite structure [J]. J Am Chem Soc 2002, 124(50): 14864-14865.
    [37] Wang Z L. Zinc oxide nanostructures: growth, properties and applications [J]. J Phys-Condens Mat 2004, 16: R829-R858.
    [38] 王步国,施尔畏,仲维卓,殷之文.水热法制备的ZnO微晶的形态特征[J].科学通报,1997,42(10):1113-1117.
    [39] 李汶军,施尔畏,仲维卓,殷之文.负离子配位多面体生长基元的理论模型与晶粒形貌[J].人工晶体学报,1999,28(2):117-125.
    [1] Pampach R, Haberke K. Caremic powders [M]. Amsterdam: Elsevier scientific publish company, 1983.
    [2] 李凤生.超细粉体技术[M].北京:国防工业出版社,2000.
    [3] Subero J, Ning Z, Ghadiri M, Thomton C. Effect of interface energy on the impact strength of agglomerates [J]. Powder Technol 1999, 105(1-3): 66-73.
    [4] Singhal A, Skandan G, Wang A, Glumac N, Kear B H, Hunt R D. On nanoparticle aggregation during vapor phase synthesis [J]. Nanostruct Mater 1999, 11(4): 545-552.
    [5] Cammarata R C. Surface and interface stress effects on interfacial and nanostructured materials [J]. Mater Sci Eng A 1997, 237(2): 180-184.
    [6] Scherer G W. Drying gels: I General theory [J]. J Non-Cryst Solids 1986, 87(1-2): 199-225.
    [7] Jing L Q, Xu Z L, Shang J, Sun X J, Cai W M, Guo H C. The preparation and characterization of ZnO ultra.fine particles [J]. Mate Sci Eng A 2002, 332: 356-361.
    [8] Xu Z L, Shang J, Liu C M, Kang C L, Guo H C, Du Y G. The preparation and characterization of TiO_2 ultrafine particles [J]. Mater Sci Eng B 1999, 63(3): 211-214.
    [9] Wang Y G, Ma J F, Tao J T, Zhu X Y, Zhou J, Zhao Z Q, Xie L J, Tian H. Morphology-controlled synthesis of CdWO_4 nanorods and nanoparticles via a molten salt method [J]. Mater Sci Eng B 2006, 130(1-3): 277-281.
    [10] 张立德,牟季美.纳米材料和纳米结构[M].科学出版社,2001,81.
    [11] 冯端,师昌绪,刘治国.材料科学导论[M].化学工业出版社.2002,142-143.
    [12]Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A, Gnade B E.Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. J Appl Phys 1996, 79(10): 7983-7990.
    [13] Van Dijken A, Meulenkamp E A, Vanmaekelbergh D, Meijerink A. The luminescence of nanocrystalline ZnO pparticles: the mechanism of the ultraviolet and visible emission [J]. J Lumin 2000, 87-89: 454-456.
    [14] Dai L, Chen X L, Wang W J, Zhou T, Hu B Q. Growth and luminescence characterization of large-scale zinc oxide nanowires [J]. J Phys-Condens Mat 2003,15(13): 2221-2226.
    [15] Hu J Q, Ma X L, Xie Y, Wong N B, Lee C S, Lee S T. Characterization of zinc oxide crystal whiskers grown by thermal evaporation [J]. Chem Phys Lett 2001, 344(1-2):97-100.
    [16] Huang H H, Wu Y Y, Feick H, Tran N, Weber E, Yang P D. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Adv Mater 2001, 13(2): 113-116.
    [17] Burger K. Solvation, ionic and complex formation reactions in non-aqueous solvents [M]. Elsevier, Amsterdam, 1983.
    [18]Israelachvili J N. Intermolecular and surface forces [M]. London: Academic Press,1992.
    
    [19]Mullin J W. Crystallization, butterworth-heinemann [M]. Boston, USA, 1993.
    [20] Manoli F, Kanakis J, Malkaj P, Dalas E. The effect of aminoacids on the crystal growth of calcium carbonate [J]. J crystal growth 2002, 236: 363-370.
    [21]Myerson A S. Molecular modeling applications in crystallization [M]. Cambridge,1999.
    [22]Akerlof G. Dielectric constants of some organic solvent-water mixtures at various temperatures [J]. J Am Chem Soc 1932, 54(11): 4125-4139.
    [23] Feng X, Shi L Y, Wang S F, Ma S R. Effect of NaNO_3-KNO_3 Eutectic in Fabricating ZnO Nanocrystals. Solid State Ionics. Accepted.
    [1] 徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [2] 施利毅,等.纳米材料[M].上海:华东理工大学出版社,2006.
    [3] 毋伟,陈建峰,卢寿慈.超细粉体表面修饰[M].北京:化学工业出版社,2004.
    [4] Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds [M]. New York: Wiley, 1986.
    [5] Mehrotra R C, Bohra R. Metal Carboxylates [M]. New York: Academic press, 1983.
    [6] 高濂,陈锦元,黄军华,严东生.醇水水解法制备二氧化钛纳米粉体[J].无机材料学报,1995,10(4):423-427.
    [7] Deacon G B, Philips R J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination [J]. Coord Chem Rev 1980, 33: 327-250.
    [8] 黄伟,黄英,余云照.原硅酸乙酯的水解缩聚[J].有机硅材料及应用.1999,3:10-12.
    [9] Noll W. Chemistry and technology of silicones [M]. London: Academic Press, 1968.
    [10] 周燕,邓建成,管小艳.硅烷偶联剂对纳米氧化锌表面改性的机理研究[M].湘潭大学自然科学学报,2006,28(4):53-56.
    [1] Anastas P T, Warner J C. Green chemistry: theory and practice [M]. Oxford University Press, New York, 1998.
    [2] Hyeon T, Lee S S, Park J, Chang Y, Na H B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process [J]. J Am Chem Soc 2001, 123(51):12798-12801.
    [3] Jana N R, Chen Y, Peng X. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach [J].Chem Mater 2004, 16 (20): 3931-3935.
    [4] Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles [J]. J Am Chem Soc 2002, 124: 8204-8205.
    [5] Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G. Monodisperse MFe_2O_4 (M = Fe, Co, Mn) nanoparticles [J] J Am Chem Soc 2004, 126 (1): 273-279.
    [6] Shim M, Guyot-Sionnest P. Organic-capped ZnO nanocrystals: synthesis and n-type character [J]. J Am Chem Soc 2001, 123(47): 11651-11654.
    [7] Kang E, Park J, Hwang Y, Kang M, Park J, Hyeon T. Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals [J]. J Phys Chem B 2004, 108(37): 13932-13935.
    [8] 李雪东,朱伯铨,汪厚植.熔盐法在无机材料粉体制备中的应用[J].材料导报,2006,20(3):44-47.
    [9] Docters T, Chovelon J M, Herrmann J M, Deloume J P. Syntheses of TiO_2 photocatalysts by the molten salts method: Application to the photocatalytic degradation of prosulfuron [J]. Appl Cata B: Environ 2004, 50(4): 219-226.
    [10] Hashimoto S, Zhang S W, Lee W E, Yamaguchi A. Synthesis of magnesium aluminate spinel platelets from alpha-alumina platelet and magnesium sulfate precursors [J]. J Am Cream S oc 2003, 86(11): 1959 - 1961.
    [11] Choo H S, Lee K Y, Kim Y S, Wee J H. Synthesis ofNi_3Al intermetallic powder in eutectic molten salts [J]. Intermetallics 2005, 13(2): 157-162.
    [12] Baranov A N, Panin G N, Kang T W, Oh Y J. Growth of ZnO nanorods from a salt mixture [J]. Nanotechnology 2005, 16(9): 1918-1923.
    [13] Yian H, Ma J F, Huang X, Xie L J, Zhao Z Q, Zhou J, Wu P W, Dai J H, Hu Y M, Zhu Z B, Wang H F, Chen H Y. Nano-sized coupled photocatalyst (Sn_(0.25),Ti_(0.75))O_2 powders synthesized by a low temperature molten salt method [J]. Mater Lett 2005, 59(24-25): 3059-3061.
    [14] Wang Y G, Ma J F, Tao J T, Zhu X Y, Zhou J, Zhao Z Q, Xie L J, Tian H. Synthesis of CaWO_4 nanoparticles by a molten salt method [J]. Mater Lett 2006, 60(2): 291-293.
    [15] Yang Z H, Gu Y L, Chen L Y, Shi L, Ma J H, Qian Y T. Preparation of Mn_5Si_3 nanocages and nanotubes by molten salt flux [J]. Solid State Commun 2004, 130: 347-351.
    [16] Wang X, Gao L S, Zhou F, Zhang Z D, Ji M R, Tang C M, Shao T, Zheng H G. Large-scale synthesis of α-LiFeO_2 nanorods by low-temperature molten salt synthesis (MSS) method [J]. J Cryst Growth 2004, 265(1-2): 220-223.
    [17]Xie L J, Ma J F, Zhou J, Zhao Z Q, Tian H, Wang Y G, Tao J T, Zhu X Y.Morphologies-controlled synthesis and optical properties of bismuth tungstate nanocrystals by a low-temperature molten salt method [J]. J Am Ceram Soc 2006,89(5): 1717-1720.
    [18] Zhao Z Q, Ma J F, Xie L J, Tian H, Zhou J. A low-temperature molten salt synthesis of LiNiVO_4 cathode material for lithium ion batteries [J]. J Am Ceram Soc 2005, 88(9): 2622-2624.
    [19] Wang Y G, Ma J F, Tao J T, Zhu X Y, Zhou J, Zhao Z Q, Xie L J, Tian H. Morphology-controlled synthesis of CdWO_4 nanorods and nanoparticles via a molten salt method [J]. Mater Sci Eng B 2006,130(1-3): 277-281.
    [20]Bondioli F, Corradi A B, Leonelli C, Manfredini T. Nanosized CeO_2 powders obtained by flux method [J]. Mater Res Bull 1999, 34: 2159-2166.
    [21] Wang Y P, Zhu J W, Yang X J, Lu L D, Wang X. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate [J]. Thermochim Acta 2005, 437(1-2): 106-109.
    [22] Singh N B, Ojha A K. Preparation of NiO through NaNO_3-KNO_3 eutectic melt and its catalytic activity during the decomposition of polystyrene [J]. Thermochim Acta 2001,378:87-96.
    [23] Wang S F, Shi L Y, Feng X, Ma S R. Eutectic assisted synthesis of nanocrystalline NiO through chemical precipitation [J]. Mater Lett 2007, 61(7): 1549-1551.
    [24] Liu H, Hu C G, Wang Z L. Composite-hydroxide-mediated approach for the synthesis of nanostructures of complex functional-oxides [J]. Nano Lett 2006, 6(7):1535-1540.
    [25] Hu C G, Liu H, Dong W T, Zhang Y Y, Bao G, Liao C S, Wang Z L. La(OH)_3 and La_2O_3 nanobelts-synthesis and physical properties [J]. Adv Mater 2007, 19(3):470-474.
    [26] Hu C G, Liu H, Lao C S, Zhang L Y, Davidovic D, Wang Z L. Size-manipulable synthesis of single-crystalline BaMnO_3 and BaTi_(1/2)Mn_(1/2)O_3 nanorods/nanowires [J].J Phys Chem B 2006, 110(29): 14050-14054.
    [27] Zhang D H, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C. Detection of NO_2 down to ppb levels using individual and multiple In_2O_3 nanowire devices [J]. Nano Lett 2004,4(10): 1919-1924.
    [28] Li Y, Bando Y, Golberg D. Single-Crystalline In_2O_3 Nanotubes Filled with In [J]. Adv Mater 2003, 15(7-8): 581-585.
    [29] Gurlo A, Barsan N, Werimar U, Ivanovskaya M, Taurino A, Siciliano P. Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties [J]. Chem Mater 2003,15(23): 4377-4383.
    [30] Zhou H J, Cai W P, Zhang L D. Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica [J]. Appl Phys Lett 1999, 75(4):495-497.
    [31] Tang Q, Zhou W J, Zhang W, Ou S M, Jiang K, Yu W C, Qian Y T.Size-controllable growth of single crystal In(OH)_3 and In_2O_3 nanocubes [J]. Cryst Growth Des 2005, 5(1): 147-150.
    [32] Murali A, Barve A, Leppert V J, Risbud S H, Kennedy I M, Lee H W H. Synthesis and characterization of indium oxide nanoparticles [J]. Nano Lett 2001,1(6): 287-289.
    [33] Zhao Y B, Zhang Z J, Wu Z S, Dang X H. Synthesis and characterization of single-crystalline In_2O_3 nanocrystals via solution dispersion [J]. Langmuir 2004,20(1): 27-29.
    [34] Liu Q S, Lu W G, Ma A H, Tang J K, Lin J, Fang J Y. Study of quasi-monodisperse In_2O_3 nanocrystals: synthesis and optical determination [J]. J Am Chem Soc 2005, 127(15): 5276-5277.
    [35] Shannon R D. New high pressure phases having the corundum structure [J]. Solid State Commun 1966,4(12): 629-630.
    [36] Prewitt C T, Shannon R D, Rogers D B, Sleight A W. The C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure [J]. Inorg Chem 1969, 8(9): 1985-1993.
    [37] Atou T, Kusaba K, Fukuoka K, Kikuchi M, Syono Y. Shock-induced phase transition of M_2O_3 (M = Sc, Y, Sm, Gd, and In)-type compounds [J]. J Solid State Chem 1990, 89(2): 378-384.
    [38] Frank G, Olazcuaga R, Rabenau A. Occurrence of corundum-type indium(Ⅲ) oxide under ambient conditions [J]. Inorg Chem 1977, 16(5): 1251-1253.
    [39] Gurlo A, Ivanovskaya M, Barsan N, Wermar U. Corundum-type indium (Ⅲ) oxide: formation under ambient conditions in Fe_2O_3-In_2O_3 system [J]. Inorg Chem Commun 2003, 6: 569-572.
    [40] Yu D B, Yu S H, Zhang S Y, Zuo J, Wang D B, Qian Y T. Metastable hexagonal In_2O_3 nanofibers templated from InOOH nanofibers under ambient pressure [J]. Adv Funct Mater 2003, 13(6): 497-501.
    [41] Yu D B, Wang D B, Qian Y T. Synthesis of metastable hexagonal In_2O_3 nanocrystals by a precursor-dehydration route under ambient pressure [J]. J Solid State Chem 2004, 177(4-5): 1230-1234.
    [42] Epifani M, Siciliano P, Gurlo A, Barsan N, Weimar U. Ambient pressure synthesis of corundum-type In_2O_3 [J]. J Am Chem S oc 2004, 126(13): 4078-4079.
    [43] Lee C H, Kim M, Kim T, Kim A, Paek J, Lee J W, Choi S Y, Kim K, Park J B, Lee K. Ambient pressure syntheses of size-controlled corundum-type In_2O_3 nanocubes [J]. J Am Chem Soc 2006, 128(22): 7326-7327.
    [44] Chen C L, Chen D R, Jiao X L, Wang C Q. Ultrathin corundum-type In_2O_3 nanotubes derived from orthorhombic InOOH: synthesis and formation mechanism [J]. Chem Commun 2006, 44: 4632-4634.
    [45] Tao D, Wei F. New procedure towards size-homogeneous and well-dispersed nickel oxide nanoparticles of 30 nm [J]. Mater Lett 2004, 58(25): 3226-3228.
    [46] Han D Y, Yang H Y, Shen C B, Zhou X, Wang F H. Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion [J]. Powder Technol 2004, 147 (1-3): 113-116.
    [47] Wang Y P, Zhu J W, Yang X J, Lu L D, Wang X. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate [J].Thermochim Acta 2005, 437(1-2): 106-109.
    [48] Dharmaraj N, Prabu P, Nagarajan S, Kim CH, Park J H, Kim HY. Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor [J]. Mate Sci Eng B 2006,128:111-114.
    [49] Wang Y D, Ma C L, Sun X D, Li H D. Preparation of nanocrystalline metal oxide powders with the surfactant-mediated method [J]. Inorg Chem Commun 2002,5(10): 751-755.
    [50] Liu K C, Anderson M A. Porous nickel oxide/nickel films for electrochemical capacitors [J]. J Electrochem Soc 1996,143 (1): 124-130.
    [51] Lenggoro I W, Itoh Y, Iida N, Okuyama K. Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis [J]. Mater Res Bull 2003,38(14): 1819-1827.
    [52] Garcia-Hipoloto M, Falcony C, Aguilar-Frutis M A, Azorin-Nieto J. Synthesis and characterization of luminescent ZrO_2: Mn, Cl powders [J] Appl Phys Lett 2001,79(26): 4369-4371.
    [53] Navio J A, Hidalgo M C, Colon G, Botta S G, Litter M I. Preparation and Physicochemical Properties of ZrO_2 and Fe/ZrO_2 Prepared by Sol-Gel Technique [J]. Langmuir 2001, 17(1): 202-210.
    [54] Kirsch B L, Tolbert S H. Stabilization of isolated hydrous amorphous and tetragonal zirconia nanoparticles through the formation of a passivating alumina shell [J]. Adv Funct Mater 2003, 13(4): 281-288.
    [55] Bohe A E, Andrade-Gamboa J, Pasquevich D M, Tolley A J, Pelegrina J L.Microstructural characterization of ZrO_2 particles prepared by reaction of gaseous ZrCl_4 with Fe_2O_3 [J]. J Am Ceram Soc 2000, 83: 755-760.
    [56] Shukla S, Seal S, Vij R, Bandyopadhyay S. Reduced activation energy for grain growth in nanocrystalline Yttria-stabilized zirconia [J]. Nano Lett 2003, 3(3):397-401.
    [57] Shukla S, Seal S, Vanfleet R. Sol-Gel synthesis and phase evolution behavior of sterically stabilized nanocrystalline zirconia [J]. J Sol-Gel Sci Technol 2003, 27:119-136.
    [58] Shukla S, Seal S. Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia [J]. Int Mater Rev 2005, 50: 45-64.
    [59] Somiya S, Akiba T. Hydrothermal zirconia powder: A bibliography [J]. J Eur Ceram Soc 1999, 19(1): 81-87.
    [60] Gulino A Delfa S L Fragala I Egdell R G. Low temperature stabilisation of tetragonal zirconia by bismuth [J]. Chem Mater 1996, 8(6): 1287-1291.
    [61] Mizuno M, Sasaki Y, Lee S, Katakura H. High-yield sol-gel synthesis of well-dispersed, colorless ZrO_2 nanocrystals [J]. Langmuir 2006, 22(17):7137-7140.
    [62] Zhao N, Pan D, Nie W, Ji X. Two-phase synthesis of shape-controlled colloidal zirconia nanocrystals and their characterization [J]. J Am Chem Soc 2006, 128(31):10118-10124.
    [63] Woudenberg F C M, Sager W F C, Sibelt N G M, Verweij H. Dense Nanostructured t-ZrO_2 Coatings at Low Temperatures via Modified Emulsion Precipitation [J]. Adv Mater 2001, 13(7): 514-516.
    [64] Ogihara H, Sadakane M, Nodasaka Y, Ueda W. Shape-Controlled Synthesis of ZrO_2, Al_2O_3, and SiO_2 Nanotubes Using Carbon Nanofibers as Templates [J]. Chem Mater 2006,18(21): 4981-4983.
    [65] Spijksma G I, Huiskes C, Benes N E, Kruidhof H, Blank D H A, Kessler V G,Bouwmeester H J M. Microporous zirconia-titania composite membranes derived from diethanolamine modified precursors [J]. Adv Mater 2006, 18(16): 2165-2168.
    [66] Julian B, Corberan R, Cordoncillo E, Escribano P, Viana B, Sanchez C. One-pot synthesis and optical properties of Eu~(3+)-doped nanocrystalline TiO_2 and ZrO_2 [J].Nanotechnology 2005, 16: 2707-2713.
    [67] Speghini A, Bettinelli M, Riello P, Bucella S, Benedetti A. Preparation, structural characterization, and luminescence properties of Eu~(3+)-doped nanocrystalline ZrO_2 [J]. J Mater Res 2005, 20(10): 2780-2791.
    [68] Chang S M, Doong R A. Chemical composition dependent metastability of tetragonal phase in the sol-gel-derived ZrO_2 thin films [J]. Chem Mater 2005,17(19): 4837-4844.
    [69] Lin C, Zhang C, Lin J. Phase Transformation and Photoluminescence Properties of Nanocrystalline ZrO_2 Powders Prepared via the Pechini-type Sol-Gel Process [J]. J Phys Chem C 2007, 111(8): 3300-3307.
    [70] Gitzen W H. Alumina as a ceramic materials [M]. Columbus: American Ceramic Society, 1970.
    [71] Pati R K, Ray J C, Pramanik P. A novel chemical route for the synthesis of nanocrystalline α-Al_2O_3 powder [J]. Mater Lett 2000, 44:299-303
    [72] George A M. Preparation of ultrafine spheroidized alumina powder by arc-evaporation [J]. Indian J Technol 1991, 29(12): 607-608.
    [73] Kim K H, Ho C H, Suh T G, Prakosh S, Bunshah R F. Ultrafine Aluminum-oxide powder prepared by chemical vapor-deposition of trimethylaluminum [J]. J Mater Eng 1991, 13(3): 199-205.
    [74] Lin C P, Wen S B, Lee T T. Preparation of nanometer-sized a-alumina powders by calcining an emulsion of beohrnite and oleic acid [J]. J Am Ceram Soc 2002, 85(1): 129-133.
    [75] Borsella E, Bottis S. Laser-driven synthesis of nanocrystalline alumina powder from gas-phase precursors [J]. Appl phys lett 1993, 63 (10): 1345-1347.
    [76] Borsella E, Bottis S, Alexanderescu R, Morjan I, Dikonimos-Makris T, Giorgi R, Martelli S. Nanocomposite ceramic powder production by laser-Induced gas-phase reactions [J]. Mater Sci Eng A 1993, 168 (2): 177-181.
    [77] 李春虎,朱淳礼.纳米MgO和MgAl_2O_4尖晶石的制备与表征[J].无机材料学报,1996,11(3):557-560.
    [78] 酒金婷,李立平,葛钥,张涑戎,屠凡,花智仁,聂凌.用高分子保护的纳米MgO的合成[J].无机化学学报,2001,17(3):361-365.
    [79] Wang J A, Novara O, Bokhimi X, López T, Gómez R, Navarrete J, Llanos M E, López-Salinas E. Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO [J]. Mater Lett 1998, 35(5-6): 317-323.
    [80] Jung H S, Lee J K, Kim J Y, Hong K S. Crystallization behaviors of nanosized MgO particles from magnesium alkoxides [J]. J Colloid Inter Sci 2003, 259: 127-132.
    [81] Du Y, Inman D. Synthesis of MgO powders from molten salts [J]. J Mater Sci 1997, 32: 2373-2379.
    [82] Zhang S Y. Titanium carbonitride-based cermets: processes and properties [J]. Mater SciEng A 1993, 163(1): 141-148.
    [83] Pierson H 0. Handbook of chemical vapor deposition: principles, technology, and applications [M]. Noyes Publications, Westwood, New Jersey, USA, 1992,pp.222-226.
    [84] Shaviv R. Synthesis of TiN and TiN_xC_y: optimization of reaction parameters [J].Mater Sci Eng A 1996, 209(1-2): 345-352.
    [85] Ettmayer P, Kolaska H, Lengauer W, Dreyer K. Ti(C,N) cermets-Metallurgy and properties [J]. Int J Refract Met Hard Mater 1995, 13(6): 343-351.
    [86] Yoshimura M, Nishioka M, Somiya S. Synthesis of TiN and TiC powders by a reduction/nitridation method using arc image heating [J]. J Mater Sci Lett 1987,6(12): 1463-1465.
    [87] Weimer A W. Carbide, nitride and boride materials synthesis and processing [M].Chapman and Hall, 1997.
    [88] Pastor H. Titanium-carbonitride-based hard alloys for cutting tools [J]. Mater Sci Eng A 1988,105:401-409.
    [89] Eslamloogrami M, Munir Z A. The mechanism of combustion synthesis of titanium carbonitride [J]. J Mater Res 1994, 9: 431-435.
    [90] Jha A, Yoon S J. Formation of titanium carbonitride phases via the reduction of TiO_2 with carbon in the presence of nitrogen [J]. J Mater Sci 1999, 34(2): 307-322.
    [91] Kerr A, Welham N J, Willis PE. Low temperature gormation of titanium carbonitride [J]. Nanostruct Mater 1999, 11: 233-239.
    [92] Xiang J H, Xie Z P, Huang Y, Xiao H N. Synthesis of Ti(C,N) ultrafine powders by carbothermal reduction of TiO_2 derived from sol-gel process [J]. J Eur Ceram Soc 2000, 20(7): 933-938.
    [93] Lichtenberger O, Pippel E, Woltersdorf J, Riedel R. Formation of nanocrystalline titanium carbonitride by pyrolysis of poly(titanylcarbodiimide) [J]. Mater chem phys 2003, 81(1): 195-201.
    [94] Guemmaz M, Mosser A, Grob J J. Ion implantation processing of sub-stoichiometric titanium nitrides and carbonitrides: Chemical structural and micromechanical investigations [J]. Appl Phys A 1998, 64(4): 407-415.
    [95] Holzschuh H. Chemical-vapor deposition of wear resistant hard coatings in the Ti-B-C-N system: properties and metal-cutting tests [J]. Int J Refract Met Hard Mater 2002,20(2): 143-149.
    [96] Kuo D H, Liao W C. Ti-N, Ti-C-N, Ti-Si-N coatings obtained by APCVD at 650-800 °C [J]. Appl Surf Sci 2002,199(1-4): 278-286.
    [97] Rie K T, Wohle J. Plasma-CVD of TiCN and ZrCN films on light metals [J]. Surf Coat Tech 1999,112(1-3): 226-229.
    [98] Archer R J, Koyoma R Y, Loebner E E, Laucsa R C. Optical absorption,electroluminescence, and the band gap of BP [J]. Phys Rev Lett 1964, 12 (19):538-540.
    [99] Motojima S, Ohtsuka Y, Kawajiri S, Takahashi Y, Sugiyama Y. Boron phosphide coatings on molybdenum by chemical vapour deposition, and their composition and microhardness [J]. J Mater Sci 1979,14(2): 496-498.
    [100]Mizutani T, Asano H, Nishinaga T, Uchiyama S. Vapor etching of boron monophosphide by gaseous hydrogen chloride [J]. Jpn J Appl Phys 1977, 16:1629-1633.
    [101]Schroten E, Goossens A, Schoonman J. Photo- and electroreflectance of cubic boron phosphide [J]. J Appl Phys 1998, 83(3): 1660-1663.
    [102]Kumashiro Y. Refractory semiconductor of boron phosphide [J]. J Mater Res 1990 5(12): 2993-2947.
    [103]Schroten E, Goossens A, Schoonman J. Large-surface-area boron phosphide liquid junction solar cells [J]. J Electrochem Soc 1999, 146(6): 2045-2048.
    [104]Udagawa T, Shimaoka G. Heteroepitaxial growth of boron phosphide III-V semiconductor on silicon by organometallic chemical vapor deposition [J]. J Ceram Process Res 2003,4(2): 80-82.
    [105]Schroten E, Goossens A, Schoonman J. Synthesis of nanometer-scale boron phosphide whiskers by vapor—liquid-solid chemical vapor deposition [J]. J Appl Phys 1996, 79(8): 4465-4467.
    [106]Gu Y L, Zheng H G, Guo F, Qian Y T, Yan Z P. A benzene-thermal synthesis of cubic boron phosphide (BP) ultrafine powders [J]. Chem Lett 2002, 31(7): 724-725.
    [107] Gu Y L, Chen L Y, Qian Y T, Zhang W. Synthesis of nanocrystalline BP via benzene-thermal co-reduction of PCl_3 and BBr_3 [J]. Bull Chem Soc Jpn 2003, 76(7): 1469-1470.
    [108] 谢刚.熔融盐理论与应用[M].北京:冶金工业出版社,1998.
    [109] Duran C, Trolier-Mckinstry S, Messing G L. Fabrication and electrical properties of textured Sr_(0.53)Ba_(0.47)Nb_2O_6 ceramics by templated grain growth [J]. J Am Ceram Soc 2000, 83(9): 2203-2213.
    [110] Cheng H M, Ma J M, Zhao Z G, Qiang D. Hydrothermal synthesis of acicular lead titanate fine powders [J]. J Am Ceram Soc 1992, 72:1123-1128.
    [111] Cheng H M, Ma J M, Zhao Z G, Qi L M. Hydrothermal preparation of uniform nanosize rutile and anatase particles [J]. Chem Mater 1995, 7: 663-671.
    [112] Hu J Q, Lu Q Y, Tang K B, Yu S H, Qian Y T, Zhou G E, Liu X M, Wu J X. Synthesis and characterization of nanocrystalline boron nitride [J]. J Solid State Chem 1999, 148(2): 325-328.
    [113] Feng X, Bai Y J, Lü B, Zhao Y R, Yang J, Chi J R. A novel reduction-oxidation synthetic route to cubic zirconia nanocrystallite [J]. J Cryst Growth 2004, 262 (1-4): 420-423.
    [114] Feng X, Bai Y J, Lü B, Wang C G, Qi Y X, Liu Y X, Geng G L, Li L. Low temperature induced synthesis of TiN nanocrystals [J]. Inorg Chem 2004, 43 (12): 3558-3560.
    [115] Gillan E G, Kaner R B. Rapid, Energetic metathesis routes to crystalline metastable phases of zirconium and hafnium dioxide [J]. J Mater Chem 2001,11: 1951-1956.
    [116] Feng X, Shi L Y. Facile synthesis of nanocrystalline titanium carbonitride via a chemical metathesis route. Chem Lett 2005, 34 (7): 1002-1003.
    [117] Feng X, Shi L Y. Novel chemical metathesis route to prepare TiCN nanocrystallites at low temperature. Mater Chem Phys 2005, 94 (1): 58-61.
    [118] Feng X, Shi L Y, Hang J Z, Zhang J P, Fang J H, Zhong Q D. Low temperature synthesis of boron phosphide nanocrystals, Mater Lett 2005, 59 (8-9): 865-867.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700