利用磷矿石、钾长石同步提取磷和钾的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的磷矿资源丰富,高品位的富矿却越来越少。随着磷化工的快速发展以及对磷矿石的无序开采和严重浪费,我国的高品位磷矿石的储量正在锐减,中低品位磷矿石的资源化应用技术开发问题已成为制约磷化工企业发展的关键。与此同时,我国由于可溶性钾资源储量严重不足致使钾肥仍依赖进口。然而我国的非水溶性钾资源储量却十分丰富而且分布广泛,以钾矿石为原料单一生产可溶性钾肥,由于能耗高、经济效益差而推广困难。本文将钾长石提钾和中低品位磷矿石的利用相结合,同步提取有效磷和有效钾,实现钾长石与磷矿资源的合理利用,具有重大的经济价值和科学意义。
     本文以磷矿粉、焦炭和钾长石为主要原料,经研磨、计量、混合,在高温下焙烧。以磷的反应率和钾的溶出率为主要指标,考察了还原剂用量、焙烧温度、焙烧时间、摩尔钙硅比、助剂种类及助剂添加量对反应指标的影响。
     本文通过实验研究得出以下结论:
     (1)在磷矿粉-焦炭体系中,磷的反应率随还原剂添加量的增加而提高,当还原剂用量为磷矿质量的45%时,适宜的焙烧温度为1250℃C,焙烧时间2.0h,此时磷的反应率最大,为86.97%。
     (2)在确定出磷矿粉-焦炭体系反应条件的基础上,加入钾长石到体系中。通过考察摩尔钙硅比对实验结果的影响,得出:当钙硅比为2.0时枸溶性钾的生成率最高为54.64%,此时磷的反应率为82.83%。
     (3)通过正交实验,得出磷矿粉-焦炭-钾长石反应体系的优方案为:焙烧温度1250℃C、焙烧时间1.5小时、钙硅比2.0和还原剂用量为磷矿粉质量的40%。
     (4)在磷矿粉-焦炭-钾长石反应体系优方案的基础上,具体考察助熔剂种类及掺量对磷矿粉-焦炭-钾长石体系钾溶出率的影响。结果表明:钾的反应率随着助剂用量的增加而提高。在助剂添加量相同的情况下,确定最优的助熔剂为CaCl2,添加量为钾长石质量的40%适宜。
     (5)最终研究结果表明,磷矿粉-焦炭-钾长石体系中,钙硅比选择2.0、焙烧温度为1250℃C、焙烧时间1.5小时,助熔剂CaCl2添加量为钾长石质量的40%,磷的反应率平均为90%,钾的总反应率>96%,以气态的形式挥发逸出的>93%,炉渣中钾含量仅占0.18%,避免了传统矿石提钾的水萃工艺流程长、能耗高的缺点。
The phosphorous ore resources of our country are abundant, but high-rich grade ores are few. As the fast development of the phosphorus chemical industry and phosphorus ore exploited disorderly and wasted seriously, the reserve volume of premium phosphorous ore of our country are falling sharply, the utilization of middle or low grade phosphorous ore has already become the key of industrial development, which restrict the development of phosphorous chemical industry. Meanwhile, in China, serious lacking of soluble potassic resource, potassic fertilizer still depends on import. However, the reserve volume of insoluble potassium resource in our countries is very abundant and widespread. Because the high consumption of energy and poor benefits, the popularization of potassic fertilizer, which are prepared solely based on potassium ore, become very difficult. Using combination of the K-feldspar potassium extraction with the uses of middle or low grade phosphorus of ore, soluble potassium salt and phosphoric salt are produced synchronously, the rational utilization of K-feldspar and phosphorus ore resource has come true, which has great economic value and scientific meaning.
     This text use ground phosphate rock, coke and potash feldspar as main materials, through grinding, measuring and mixing, then roast under the high temperature. Regard reactivity ratio of phosphor and dissolving rate of potassium as the major indicator, it also investigates reductant consumption, calcination temperature, roasting time, mol-ration of silicon divided calcium, assistant kind and assistant addition level impacting on reaction index.
     Through the experiment, conclusions can be listed as follows:
     (1) In the ground phosphate rock-coke system, with the increase of the addition level of reductant consumption and reactivity ratio of phosphorus have improved, when reductant consumption is 45% of the phosphorous ore, the suitable calcination temperature is 1250℃and roast time is 2.0 hour, at this moment,86.97% is the greatest rate to the reactivity ratio of phosphor.
     (2) On the basis of determining the ground phosphate rock-coke system reaction condition, adding the K-feldspar to the system. Through investigating the impact of on the experiment, result is obtained:when mol-rate of calcium and silicon is 2.0, 54.64% is the highest rate as the intersection of soluble potassium citrate. At this moment, the reactivity ratio of phosphor is 82.83%.
     (3) Through orthogonal, the excellent scheme of the ground phosphate rock-coke-K-feldspar reaction system is:calcination temperature is1250℃, roast time is 1.5 hour, calcium/silicon ratio is 2.0, and reductant consumption is 40% of the phosphorous ore.
     (4) On the basis of excellent scheme of reaction system of ground phosphate rock-coke-potash feldspar, influence of producing rate to potassium on flux type and dosage to ground phosphate rock-coke-potash feldspar system is investigated specifically. The result shows:with the increase of the addition level of assistant consumption, the reactivity ratio of potassium have improved. Under the situation of identical addition of assistant, confirming optimal flux is CaCl2, suitable addition level is 40% of the K-feldspar quality.
     (5) The ultimate consequence point out:for the reaction system of phosphate rock-coke-potash feldspar, calcium/silicon ratio is 2.0, calcination temperature is 1250℃, roast time is 1.5 hour, and reductant consumption is 40% of the phosphorous ore, then the reactivity ratio of phosphor exceed 90%, the total reactivity ratio of potassium near 96%, and the 93% of total potassium is escaped on gaseous state. The potassium content is only 0.18% in remainder. This circuit can simplify the extract course with water or citrate acid, and reduce the consumption of energy comparatively.
引文
[1]化学工业部化肥司,中国磷肥工业协会.磷肥和复合肥料生产分析规程[M].第一版.北京:化学工业出版社,1993.
    [2]上海化工研究院.钾长石及明矾石土法生产钾肥[M].第一版.北京:石油化学工业出版社,1978.
    [3]DENG Jian,BIAN Li.Investigation and characterization of mining subsidence in Kaiyang Phosphorus Mine[J]. J. Cent. South Univ. Technol,2007,14(3):413~ 417.
    [4]CHEN Shu,LIAN Bin,LIU Congqiang. Effect'of Bacillus mucilaginosus on weathering of phosphorite and a preliminary analysis of bacterial proteins [J]. Chin. J. Geochem,2008,27:209~216.
    [5]张伟,黄京生.磷肥生产工[M].第一版.北京:化学工业出版社,2005.
    [6]鲁如绅.我国的磷矿资源和磷肥生产消费[J].土壤,2004,36(1):1-4.
    [7]吴佩芝.湿法磷酸[M].第一版.北京:化学工业出版社,1987.
    [8]张允湘,钟本和,李家利等.磷铵生产中的零排放机理及流程[C].第一届国际绿色化学高级研究讨论会论文集.合肥:中国科技大学出版社,1998.
    [9]陈善继.磷矿组分对黄磷产品电炉能耗的影响[J].硫磷设计与粉体工程,2002,13(5):13~17.
    [10]Arthur D F Toy, Edward N Walsh. Phosphorus. Chemistry in Everyday Living[M].2nd ed. Washington DC:American Chemical Society,1987.
    [11]陈五平.无机化工工艺学[M].第三版.北京:化学工业出版社,2001.
    [12]曾繁端.窑法磷酸的基本原理及工业化生产的意义[J].云南化工,1999,3:10-13.
    [13]朱玉平.窑法磷酸工艺的工业化前景[J].磷肥与复肥,2008,23(5):25-28.
    [14]江善襄.提高窑法磷酸还原率的探讨[J].磷肥与复肥,1995,1:13-17.
    [15]黄鸿宁.加快窑法磷酸工业化[J].磷肥与复肥,1998,3:1-5.
    [16]陈善继.窑法磷酸生产工艺特点及展望[J].无机盐工业,2009,41(6):1- 4.
    [17]刘明理.立窑法利用中低品位磷矿石生产工业磷酸的研究[J].化学研究与应用,2009,21(1):131~134.
    [18]张允湘.磷肥及复合肥料工艺学[M].第一版.北京:化学工业出版社,2008.
    [19]南京化学工业公司磷肥厂,广东湛江化工厂.普通过磷酸钙生产工艺与操作[M].第一版.北京:化学工业出版社,1979.
    [20]《化肥工业大全》编辑委员会.化肥工业大全[M].第一版.北京:化学工业出版社,1998.
    [21]陈隆隆,潘振玉.复混肥料和功能性肥料技术与装备[M].第一版.北京:化学工业出版社,2008.
    [22]Thompson,I Parson,C M Graham.The breakdown of potassium feldspar at high water pressures[J]. Contrib Mineral petrol,1998,130:176~186.
    [23]Hanna A A, Youssef N S, Ali A F. Purification of wet-process phosphoric acid by solvent extraction[J]. Egyption Journal of Chemistry,1995,38(3):311~317.
    [24]刘代俊,邱礼有,蒋沼志等.利用磷铁尾矿直接生产复合肥的MUSP[J].磷肥与复肥,2009,24(4):18~20.
    [25]胡乔生,邱成洲,刘良先.用离子交换法从磷矿原料中直接制取磷酸的研究[J].磷酸盐工业,2003,3:22-24.
    [26]庄健君.不同品位磷矿制纯磷酸的新工艺[J].广西化工,1999,28(4):13~16.
    [27]孙志立.磷矿的合理使用对黄磷生产经济技术指标的影响分析[J].磷肥与复肥,2009,24(2):44-46.
    [28]黄康胜,周贵云.酸热烧结法制备饲料级脱氟磷酸钙的研究[J].磷肥与复肥,2009,24(1):23~25.
    [29]陈顺福,郑乾山,宋卫星.运用玻璃结构理论提高低品位磷矿的利用价值[J].磷肥与复肥,1990,2:23-25.
    [30]张文辉.部分酸化磷矿一步法制复肥研究[J].化工矿物与加工,2001,3:11-14.
    [31]韩效钊,刘荃,王忠兵等.钾长石与磷矿共酸浸制NPK复合肥研究[J].化肥工业,2009,36(1):30~33.
    [32]Wedepohl K H. Handbook of Geochemistry[M]. Springer-Verlag Berlin, Heidelberg,New York,1974,11(4):82-C-1~82-O-1.
    [33]Van Jaarsveld J G S, Van Deventer J S J. The effect of metal contaminants on the formation and properties of waste-based geopolymers[J]. Cement and concrete Res,1999,29:1189~1200.
    [34]QIAO Fan-sheng. The present status and suggestion of utilization of potash feldspar in China [J]. Hydrometallurgy of China,1998,2:22~28.
    [35]Katherine S Riggs,J Keith Syers and J Donald Appleton. Dissolution of Potassium Feldspar Rocks in Soils Open-Leaching and Closed-Incubation Systems[J]. Sci. Food Agric.1993,62(4):409~412.
    [36]M Y Bakr, A A Zatout, M A Mouhamed.Orthoclase, gypsum and limestone for production of aluminum salt and potassium salt[J]. Interceram,1979,28 (1): 34-35.
    [37]Mellor,E Saxena, D Datar. Extraction of potash from feldspars[J]. Trans Indian Cerama Soc,1956,19 (1):12.
    [38]Jacob K D.Fertilizer Technology and Resources [J]. Academic,1953,24 (2): 18-20.
    [39]Dasguta A. Fertilizer and cement from Indian orthoclase[J]. Indian J Technol, 1975,13 (8):10~13.
    [40]Varadachari C. Phosphoric Acid, Phosphates and Fertilizers for the Future[J]. Proc. Indian Natl. Sci. Acad,1992,58:119.
    [41]Varadachari C. Phosphoric Acid Polymerization and Its Role in Fertilizer Development [J]. In Indian Fertilizer Scene Annual,1992,23:278.
    [42]Chandrika Varadachari. Potash Fertilizer from Biotite[J]. Ind. Eng. Chem. Res, 1997,36:60-80.
    [43]朱鹏,黄成伟.我国化肥工业现状及发展趋势[J].化工矿物与加工,2004,33(7): 40.
    [44]吕一波.钾长石深加工及综合利用[J].中国非金属矿工业导刊,2001,22:23-25.
    [45]薛彦辉,张桂斋,潘兆科等.利用不溶性钾矿热法生产硅钾钙镁复合肥[J]. 化工矿产地质,2006,28(2):105-107.
    [46]邱龙会,金作美,王励生.钾长石热分解生成硫酸钾的实验研究[J].化肥工业,2000,27(3):19~21.
    [47]陈廷臻,米清海.利用不溶性钾矿生产钾肥的技术经济评价及发展前景[J].河南地质,1996,14(3):214~218.
    [48]Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Zeolites Molecular Sieves[M]. Beijing:Science Press,1978:53.
    [49]Griselda A Eimer,et al. Preparation and characterization of aluminium-containing MCM-41[J]. Catalysis Commun,2003,4:12-14.
    [50]张盼,马鸿文.利用钾长石粉体合成雪硅钙石的实验研究[J].岩石矿物学杂志,2005,24(4):333~338.
    [51]MA H W,YANG J,REN Y F,et al. Mineral polymer:current developments and prospects[J]. Earth Science Frontiers,2002,9 (3):75~91.
    [52]白立远,宋守志,姚淑华等.二氧化硫烟气治理与钾长石提钾共同促进亚钾法制浆造纸业的发展[J].有色矿山,2003,32(6):47~51.
    [53]刘代俊,蒋沼志,罗洪波等.中国磷矿资源贫化危机与挑战[J].无机盐工业,2005,37(5):1-4.
    [54]袁俊宏.对磷资源可持续发展的建议[J].化工矿物与加工,2009,1:40~41.
    [55]任清宇,姚金蕊.中国磷矿资源的特点与开发策略[J].矿业快报,2006,440:1-4.
    [56]祝庆生.应该加强对我国磷矿资源合理利用的研究[J].磷酸盐工业,2009,24(2):16~18.
    [57]李海延.我国磷矿资源的合理开发利用[J].中国石油和化工,2001,21(4):20-23.
    [58]王克功,余顺利,孙克萍.磷矿资源的综合利用技术研讨[J].现代机械,2009,1:90-92.
    [59]薛步高.昆明滇池周围磷矿资源现状及开发前景[J].化工矿产地质,2008,30(3):149-154.
    [60]刘颐华.我国与世界磷资源及开发利用现状[J].磷肥与复肥,2005,20(6):9-12.
    [61]胡波,韩效钊,肖正辉等.我国钾长石矿产资源分布、开发利用、问题与对策[J].华工矿产地质,2005,27(1):25~31.
    [62]韩效钊,姚卫棠,胡波等.离子交换法从钾长石提钾[J].应用化学,2003,20(4):373~375.
    [63]苗世顶,马鸿文,张盼等.煅烧分解钾长石提取碳酸钾的实验研究[J].非金属矿,2004,27(1):5-7.
    [64]刘渂.阴离子对熔盐浸取法从钾长石中提钾的影响[J].矿产保护与利用,2005,36(2):36-37.
    [65]FENG Wuwei, MA Hongwen. Thermodynamic analysis and experiments of thermal decomposition for potassium feldspar at intermediate temperatures [J]. Journal of the Chinese Ceramic Society,2004,32(7):789~799.
    [66]倪静安.无机及分析化学[M].北京:化学工业出版社,1998.
    [67]李兴友,吴永川.磷矿石直接生产水泥和磷酸的方法[P].中国.发明专利,2005年1月26日.
    [68]侯拥和,黄焯枢,薛生晖等.一种直接还原磷矿石生产磷酸的方法[P].中国.发明专利,1994年12月14日.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700