以氯化镁与不同钙源制备氧化镁粉体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究开展了以氯化镁和碳酸钙(氧化钙、白云石)为原料制备氧化镁粉体的新工艺研究,为利用我国丰富的卤水资源制备高纯氧化镁奠定基础。
     实验以无水氯化镁、六水氯化镁和碳酸钙、氧化钙、白云石为原料,氯化锂为辅助熔盐,采用固相法和熔盐法制备出了不同形貌的氧化镁。使用热重/差热仪(TG/DSC)和高温XRD对原料热分解过程以及合成氧化镁的反应机理行了分析。通过X衍射分析仪、场发射扫描电镜等对产物进行了表征,并对原料种类、合成温度、保温时间、熔盐含量对氧化镁产物性能的影响进行了研究。
     研究结果表明,分别采用固相法和熔盐法以MgCl2和CaCO3,CaMg(CO3)2为原料制备的氧化镁粉体形貌不一,大小分布不均匀;以MgCl2和CaO为原料制备的氧化镁粉体大小分布较均匀,主要由近似八面体形貌和球状的颗粒组成;以MgCl2·6H2O和CaCO3、CaO、CaMg(CO3)2为原料制备的氧化镁粉体形貌不一,大小分布不均匀;在浸泡与洗涤的过程中加入表面活性剂聚乙二醇(PEG)、十六烷基三甲基溴化铵(CTAB)、十二烷基苯磺酸钠(SDBS)后制备的氢氧化镁前躯体形态各异,其中加入PEG的氢氧化镁形貌为片状;加入CTAB后的氢氧化镁形貌为三角形堆积体;加入SDBS后的氢氧化镁形貌为球状聚集体。所有原料体系中以MgCl2·6H2O和CaCO3原料制备的氧化镁活性相对较好,同时粉末的合成温度越低,其烧结活性越高,氧化镁粉体越易于烧结致密化;热处理温度的升高和保温时间的延长以及增大LiCl的加入量均有利于氧化镁晶体的生长,而氧化镁晶体的结晶度增大,其活性降低。
     采用熔盐法对氧化镁粉体进行提纯可以除去其中的氧化硼杂质和少量的氧化硅、氧化铝杂质。
This paper is about the new technics to prepare the MgO powders using the materials of magnesium chloride and calcium carbonate(calcium oxide,dolomite). This research has laid a solid foundation for using our abundant brine resources to prepare high purity MgO powders. MgO was synthesized via solid state reaction and molten salt methods by using MgCl2,
     MgCl2·6H2O and CaCO3, CaO, CaMg(CO3)2 as starting materials, and LiCl as flux. Thermo-decomposing process of starting materials, synthetic reaction of MgO was studied by using TG/DSC and high temperature XRD analysis. The product powders were characterized with XRD and SEM. The influenc of different raw materials, synthesis temperature, holding time and the relative content of molten salt on the performances of the products have been studied.
     The results show that using MgCl2 and CaCO3, MgCl2 and CaMg(CO3)2 as raw materials respectively, the prepared magnesium oxides had the mixed morphologies and uneven size distributions. Using MgCl2 and CaO as raw materials, the prepared magnesium oxides were characterized with a uniform size distribution and a near sphere-like and octahedron morphology. Whereas using MgCl2·6H2O and CaCO3, MgCl2·6H2O and CaO, MgCl2·6H2O and MgCa(CO3)2 as raw materials, all of products had the mixed morphologies and uneven size distributions, in which the product has a relatively better reactive activity when MgCl2·6H2O and CaCO3 has been used as raw materials. Using PEG, SDBS and CTAB as surfactant in experiment, the prepared Mg(OH)2 precursor have different morphologies. The prepared Mg(OH)2 precursor have flake morphologies when PEG has been used as surfactant. Whereas using SDBS and CTAB as surfactant respectively, the prepared Mg(OH)2 precursor have globular aggregates morphologies and triangle aggregates morphologies. Lower synthesis temperature of MgO powders not only has better sintering activity, but also could improve the sintering densification of MgO powders. A higher heat treatment temperature, longer holding time and the increase of LiCl addition content were favorable for the growth of magnesium oxide crystals, resulting in the decrease of crystal cell volume and reactive activity.
     The B2O3 impurities and a small amount of SiO2, Al2O3 impurities could be removed by molten salt method to purify MgO powders.
引文
[1]胡庆福.镁化合物生产与应用[M].北京:化学工业出版社,2004
    [2]于乾.四川汉源菱镁矿[J].建材地质,1995,(1):47-48
    [3]王兆中.浅谈海水镁砂的研制与发展[J].海湖盐与化工,1998,27(1):7-11
    [4]黄西平,张琦,郭淑元,王功伟.我国镁资源利用现状及开发前景[J].海湖盐与化工,2004,33(6):1-6.
    [5]郭如新.轻烧氧化镁和氢氧化镁在环保领域中的应用[J].化工环保,1997,17(4):206-209
    [6]冯立成,易泽明.烟气镁法脱硫技术研究[J].四川环境,1996,l5(4):49-50
    [7]刘天齐.三废处理工程技术手册(废气卷)[M].北京:化学工业出版社,1999,32-34
    [8]魏巍.烟气氧化镁法脱硫技术研究[J].山西能源与节能,2004.9,34(3):20-21
    [9] Torii M,Shimzaki H,Endo T,et al. Operation results IHI flue gas desulfurization system for coal fired boiler of IPP[J]. IHI Engineering Review,2001,34(4):114-117
    [10] Bishop P,WuQingzhong. Application of recovered magnesium hydroxide from a flue gas desulfurization system for wastewater treatment[C]. Proceedings Annual International Pittsburgh Coal Conference,1999,16th:477-486
    [11]郑荣光,王芳.氢氧化镁处理含铬废水的研究[J].无机盐工业,2000,32(1):26-27
    [12]邵磊,陈建峰,母伟等.水镁石脱除酸性废水中重金属的研究[J].非金属矿,2002,25(4):52-54
    [13] Cao Zhonghua. Use of magnesium for treatment of wastewater from tanning operations[J]. Vodosnabzhenic Sanitamaya Tekhnika,1999.(5):29-30
    [14]王晖.碳酸镁净化含铬废水的溶液化学[J].中南工业大学学报,2000,31(5):429-432
    [15] Forman. R. T.. The Application of Magnesium Hydroxide to Effluent Treament and Benefits Effered in Seperation Processes for Metal Removal[M]. 2nd.International Conference on Advances in Water and Effluent Treatment,1993,121-135
    [16] Soldatkina L M. Adsorption of magnesium hydroxide[J]. Adsorption Science and Technology,2001,19(4):267-272
    [17] Boon H T,Yjoon T T,Mohd Dmar A K. Removal of dyes and industrial dye waste by magnesium chloride[J]. Water Research,2000,34(2):597-601
    [18]张旭华,刘勇,秦建明,张西峰.氧化镁去除污水中磷元素的研究[J].河南科学,1998,16(3):302-305
    [19] Wu Q,Bishop L P,Keener T C. Sludge digestion enhancement and nutrient removal from anaerobic supernatant by Mg(OH)2 application[J]. Water science and Technology,2001,44(1):161-166
    [20] Stark J V,Klabunde K J. Nanoscale magnesium oxide used to adsorb SO2 and CO:NATO ASI Series[J]. Appiled sciences,1994,(1):260-260
    [21] Stark J V,Klabunde K J. Nanoscale metal oxide particles/clusters as chemical reagents Unique surface chemistry on magnesium oxide as show by enhanced adsorption of acid gases[J]. Chemical Materials,1996.8(8):1904-1912
    [22] Klabunde K J,Stark J V. Nanocrystals as stooichiometric reagent with unique surface chemistry[J]. Journal Physical Chemistry,1996,100(30):12142-12153
    [23]张芳.电熔镁砂市场分析及发展趋势[J].包钢科技,2003,29(1):87-89
    [24]高心魁.熔融耐火材料[M].北京:冶金工业出版社,1995
    [25]宗巍等. 600MW核电站管状电热元件用防潮氧化镁的研制,第八次全国镁盐技术信息交流会论文汇编,1995
    [26]孔平,谢玫,聂冬锐.轻烧镁、重烧镁、电熔镁中氧化镁晶体结构的XRD分析[J].中国非金属矿工业导刊,2004,(1):31-33
    [27]陈太增,陈国功,贾世祥.生产电熔镁砂主要工艺参数的确定[J].耐火材料,1994,28(1):32-34
    [28]王庆贤,李庆伟.优质电熔镁白云石的生产及应用[J].耐火材料,1995,29(4):207-209
    [29]胡庆福.我国轻质碳酸镁、轻质氧化镁生产现状及其发展[J].化工科技市场,2001,(6):19-22
    [30]司徒杰生主编.化工产品手册─无机化学产品[M].第3版.北京:化学工业出版社,1999。
    [31]徐日瑶等著.有色金属提取冶金手册─镁[M].第1版.北京:冶金工业出版社,1992。
    [32]李俊梅,张志刚,宋玉军.轻质氧化镁制备新工艺条件优化[J].化工冶金,1998,19(1):68
    [33]何良惠,王祖森.用菱镁矿生产优质轻质氧化镁的研究[J].四川有色金属,1990,(4):17-21
    [34]代厚全,骆开均,张万成.从蛇纹石制备轻质碳酸镁和轻质氧化镁的扩试研究[J].四川师范大学学报,1998,21(2):192
    [35]姜运田,张振伟,林瑛,李业新.老卤─碳铵法制备轻质氧化镁的研究[J].济南大学学报,2004,18(3):246-248
    [36]彭振超.氧化镁煅烧炉的技术改造[J].镁盐工业,2000,(1):70-72
    [37]白朝洪.用氯化镁生产氢氧化镁和氧化镁的方法[J].无机盐工业,2002,34(6):22-23
    [38]山口胜郎等.方向性硅素钢板用烧钝分离剂,(特许出愿公开,平4-56781),公开日1992年2月24日)
    [39]秦时云.国产第二代硅钢氧化镁通过上海市科委产品技术鉴定[J].无机盐工业,2000,32(1):44
    [40]徐旺生,宣爱国.由白云石制备特种硅钢级氧化镁工艺研究[J].化工矿物与加工,2002,(1):4-6
    [41]胡庆福,胡晓湘,宋丽英.中国专用氧化镁开发现状及其发展建议[J].化工进展,2005,24(1):28-31
    [42]天津化工研究院等编.无机盐工业手册[M].第二版.北京:化学工业出版社,1996
    [43]中国药物大词典编委会编.中国药物大词典[M].下册.北京:中国医药科技出版社,1991
    [44]郭如新.印度镁盐产品生产现状[J].海湖盐与化工,1999,28(4):43-46
    [45]崔玉红,张桂香,孙会芳.医药氧化镁的研制[J].苏盐科技,1993,(1):1-2
    [46]全跃,刘德禄.颗粒体积密度3.4g/cm3高纯镁砂的生产研制[J].中国非金属矿工业导刊,2002,(4):21-22
    [47]王兆中.浅谈海水镁砂的研制与发展[J].海湖盐与化工,1998,27(1):7-11
    [48]高心魁.熔融耐火材料[M].北京:冶金工业出版社,1995
    [49]吴万伯.用菱镁矿生产轻质碳酸镁和氧化镁[J].非金属矿,1997,118(4):45-46
    [50]王关清.纯碱法生产氧化镁[J].无机盐工业,1987,(4):13-15
    [51]侯让坤,李学楼.白云石硝铵法生产氧化镁工艺[J].河南科技,1994,(8):24-25
    [52] Mishra B,Olson D L. Molten Salt Applications in Materials Processing[J]. Journal of Physics and Chemistry of Solids,2005,66(2):396-401
    [53]谢刚.熔融盐理论与应用[M].北京:冶金工业出版社,1998:1-7
    [54] Arendt R H. Liquid—phase sintering of magnetically isotropic and anise by the reaction of BaFe2O4 with Fe2O3[J]. Journal Sofid State Chem,1973,8(4):339-347
    [55] Thirumal M,Jain P A. Ganguli K. Molten salt synthesis of complex perovskite -related dielectric oxides[J]. Materials Chemistry and Physics,200l,70(1): 7-l1
    [56] Singh N B. Preparation of metal oxides and chemistry of oxides ions in nitrate[J]. Progress in Crystal Growth and Characterization of Materials,2002:l83-188
    [57]崔鑫,邓敏.氧化镁制备方法、活性与水化测定方法综述[J].硅酸盐通报,2008,27(1):136-141.
    [58]李文超.冶金与材料物理化学[M].北京:冶金工业出版社,2001
    [59]陈建军,马培华,陈关城等.示差扫描量热法研究水氯镁石脱水过程的动力学[J].海湖盐与化工,2000,29(5):4-7.
    [60]翟学良等.活性氧化镁水化动力学研究[J].无机盐工业,2002,32(4)16-18
    [61] Maxim SM,VladimirB F,ElenaAM,et al. Textural Changes duringTopochemical Decomposition of Nanocrystalline Mg(OH)2 to MgO[J]. Phys Chem B,2003,107(11):2427-2434.
    [62] Zhang Z,Sun H,Shao X,et a1. Three dimensionally Oriented Aggregation of a Few Hundred Nanopartieles into Monocrystalline Architectures[J]. Adv. Mater,2005,17:42-47
    [63] Si R,Zhang Y W,You L P,et a1. Rare·earth Oxide Nanopolyhedra,Nanoplates and Nanodis&s[J]. Angew. Chem Int Ed,2005,44:32-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700