铋系复合氧化物纳米晶光催化剂的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染和能源短缺是当今社会面临的两大问题,如何有效地解决这两大问题是众多科学工作者努力工作的方向。在众多的半导体光催化剂材料中,TiO_2以其强氧化性、光诱导超亲水性、无毒性和长期稳定性在净化环境方面表现出重要的应用前景。然而,TiO_2光催化材料因其光生电子-空穴对复合几率较高,禁带宽度较大等不利条件严重阻碍了其在光催化氧化技术领域中的推广应用。近年来,为了解决这个问题,有不少研究者提出Bi_2InNbO_7、Bi_4Ti_3O_(12)、Bi_2Ti_2O_7、Bi_(12)TiO_(20)、Bi_2WO_6和BiVO_4等含Bi的金属复合氧化物可作为具有可见光响应的新型光催化剂。然而,其中一些复合氧化物的制备方法因其本身固有缺陷严重影响了它们的光催化性能。因此,为了制备高活性的光催化材料,本文开展了以下几个方面的研究工作。
     1.以硝酸铋(Bi(NO_3)_3·5H_2O)和钛酸丁酯(Ti(OC_4H_9)_4)为原料,以氢氧化钾(KOH)为矿化剂,通过控制矿化剂浓度、反应温度和反应时间等条件等,采用水热方法首次制备出纯度高,结晶发育良好,分散性好,无团聚、大小为10μm Bi_(12)TiO_(20)正四面体微单晶,其最佳工艺条件为:[KOH]=4.5mol/L,反应温度为180℃,反应时间为4h。为得到Bi_(12)TiO_(20)纳米尺寸粉体,本论文中提出一种新颖的制备方法-异丙醇辅助水热法。采用硝酸铋(Bi(NO_3)_3·5H_2O)和硫酸钛Ti(SO_4)_2为原料,在反应温度为140℃,反应时间为1h,异丙醇浓度为20vol%的条件下,制备出了大小约为10nm并具有良好结晶度的Bi_(12)TiO_(20)纳米晶粉体,从而实现了Bi_(12)TiO_(20)纳米晶粉体的低温合成;UV-Vis分析结果显示,所合成的粉体在紫外光区和可见光区均具有较好的光吸收性能。
     2.以OP(聚乙烯醇壬基苯酚醚)为乳化剂,环己烷为油相,正丁醇为助剂,硝酸铋(Bi(NO_3)_3·5H_2O)和硫酸钛Ti(SO_4)_2为原料,采用反相微乳法成功地合成出Bi_4Ti_3O_(12)纳米晶粉体;并利用X-ray衍射(XRD)、透射电镜(TEM)、红外光谱(FT-IR)和紫外-可见分光光谱(UV-Vis)等分析技术对制备的样品进行了表征。结果显示,与传统共沉淀法所合成的粉体相比,此方法所合成的粉体颗粒不仅尺寸较小,约为35nm,而且形状规则,粒径分布均匀,在可见光区也具有较好的光吸收性能。
     3.以硝酸铋(Bi(NO_3)_3·5H_2O)和钨酸钠(Na_2WO_4·2H_2O)为原料,以硝酸锂(LiNO_3)和硝酸纳(NaNO3)的混合物为反应介质,混合比为27:23(重量比),采用低温熔盐法成
Environmental pollution and the shortage of energy sources are the most serious problems among recent environmental issues in the world. Many investigations have been focused on how to solve the two problems. Titania as an oxide semiconductor photocatalyst appears to take on a promising and important prospect in environmental purification due to its strong oxidizing power, photoinduced hydrophilicity, nontoxicity and long-term photostability. However, its large band gap and fast recombination rate of photogenerated electron/hole pairs hinder the commercialization of this technology in a certain extent. Recently, many compounds contained Bi ion have been well known as new photocatalysts, which could be used in a visible light region, such as Bi_2InNbO_7、Bi_4Ti_3O_(12)、Bi_2Ti_2O_7、Bi_(12)TiO_(20)、Bi_2WO_6 and BiVO_4. Nevertheless, there are still such inherent limitations as reduced photocatalysts’activity due to high synthesizing temperature and other shortcomings in the preparation process of photocatalysts. Therefore, this thesis, based on new ideas in synthesizing process, mainly focuses on the following research works to prepare highly active photocatalytic materials contained Bi ion:
     1. Bi_(12)TiO_(20) regular tetrahedron single crystals were successfully synthesized by a simple hydrothermal process for the first time with using Ti(OC_4H_9)_4 and Bi(NO_3)_3·5H_2O as raw materials, KOH as mineralizers and by adjusting the KOH concentration, reaction time and temperature. The powders obtained are of good quality such as high purity, high degree of crystallinity and well-controlled morphology. Their average particle size is about 10μm. The optimal processing condition: [KOH]=4.5M, reaction temperature is 180℃and reaction time 4h.
     Nearly spherical Bi_(12)TiO_(20) nanocrystals were synthesized at 140oC for 1h via a novel isopropanol–assisted hydrothermal method with using Bi(NO_3)_3·5H_2O and Ti(SO_4)_2 as reactants and introducing 20vol% of isopropanol. The resultant powders with a good crystallinity were about 10 nm in size. Their UV-Vis absorption spectra revealed that the
引文
[1] FujishimaA, RaoTN, TrykDA. Titanium dioxide photocatalysis. J. Photochem.Photobiol C:Photochem.Rev.,2000,1:1-21
    [2] Farrauto RJ, Heck RM. Environmental catalysis into the 21st century. Catal.Today, 2000,55: 179
    [3] Mills A, Lehuntes S. An overview of semiconductor photocatalysis. J. Photochem.Photobiol.A: Chem.1997,108: 1-35
    [4] Fank S N, Bard A J. Heterogeneous photo-catalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys.Chem.,1977,81:1484-1489
    [5] Carey JH, Lawrence J. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull.Environ.Contam.Toxicol.,1976,16:697
    [6] Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem.Rev.,1993,93:341-357
    [7] Stafford U, Gray KA, Kamat PV. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev., 1993, 93, 267-300
    [8] 韩兆慧,赵华侨. 半导体多相光催化应用研究进展.化学进展,1999,11:1-10
    [9] Feng Chen, Yinde Xie, Jincai Zhao and Gongxuan Lu. Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere, 2001, 5:1159-1168
    [10] Romero M, Blanco J, Snchez B, Vidal A, Malato S, Cardona A I, Garcia E. Solar photocatalytic degradation of water and air pollutants: challenges and perspectives. Solar Energy.,1999,66:169-182
    [11] C.S. Turchi, D.F. Ollis. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal, 1990, 122: 178-192
    [12] A. V Vorontsov, I. V. Stoyanova, D. V. Kozlov. Kinetics of the Photocatalytic Oxidation of Gaseous Acetone over Platinized Titanium Dioxide. J. Catal, 2000, 189: 360-369
    [13] M.L. Sauer, D.F. Ollis. Photocatalyzed Oxidation of Ethanol and Acetaldehyde in Humidified Air. J. Catal. 1996, 158: 570-582
    [14] M. Miyauchi, A. Nakajima, A. Fujishima. Photoinduced Surface Reactions on TiO2 and SrTiO3 Films: Photocatalytic Oxidation and Photoinduced Hydrophilicity. Chem. Mater, 2000, 12: 3-5
    [15] 余家国,赵修建. 半导体多相光催化原理及其在环境保护中的应用. 武汉工业大学学报,2000, 22: 12-15
    [16] K.W. Boer. Survery of Semiconductor Physics. New York: Van Nostrand Reinhold, 1990,249.
    [17] E. Brillas, E. Mur, R. Sauleda. Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl. Catal. B: Environ, 1998, 16: 31-42
    [18] R.M. Alberici, W.F. Jardim. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl. Catal. B: Environ, 1997, 14: 55-68
    [19] 韩世同,习海玲,史瑞雪,付贤智,王绪绪.半导体光催化研究进展与展望.化学物理学报,2003,5:339-348
    [20] 范崇政,肖建平,丁延伟. 纳米TiO_2的制备与光催化反应研究进展.科学通报,2001,46:265-273
    [21] Pecchi G, Reyes P, Sanhueza P, Villasenor. Photocatalytic degradation of pentachlorophenol on TiO_2 sol-gel catalysts. J. Chemosphere, 2001, 43:141-146
    [22] 沈伟韧, 赵文宽, 贺飞, 方佑龄. TiO_2 光催化反应及其在废水处理中的应用. 化学进展,1998,10:349-361
    [23] 高伟, 吴凤清, 罗臻, 富菊霞, 王德军, 徐宝琨. TiO_2晶型与光催化活性关系的研究. 高等学校化学学报,2001,22:660-662
    [24] Bilmes S A, Mandelbaum P, Alvarez F, Victoria N M. Surface and electronic structure of titanium dioxide photocatalysts. J.Phys.Chem.B, 2000,104:9851
    [25] 戴智铭, 朱中南, 古宏晨. 半导体气固相光催化氧化反应介绍. 化学反应工程与工艺,2000,16:185-192
    [26] 李凤生.超细粉体技术,北京:国防工业出版社,2000.
    [27] Tomkiewicz M. Scaling properties in photocatalysis. Catal.Today, 2000, 58:115-123
    [28] 李学萍, 尹峰, 肖绪瑞. 2000 全国光催化学术会议论文集,福州,2000.158
    [29] 尚静, 杜尧国, 徐自力. 环境污染治理技术与设备, 2000,1:67
    [30] Micha Tomkiewicz. Scaling Properties in Photocatalysis. CatalysisToday, 2000, 58: 151-159
    [31] Hoffman M N, Martin S T. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 1995,95: 69-76
    [32] Kyeong Youl Jung, Seung Bin Park, Son-Ki Ihm.Linear relationship between the crystallite size and the photoactivity of non-porous titania ranging from nanometer to micrometer size. Applied Catalysis A: General, 2002,224: 229-237
    [33] Hiroshi Kominami, Jun-ichi Kato, Shin-ya Murakami et al.Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities. J. Catalysis Today, 2003,84: 181-189
    [34] Nobuyuki Gokona, Noriko Hasegawa et al. Photocatalytic effect of ZnO on carbon gasication with CO2 for high temperature solar thermochemistry. J. Solar Energy Materials & Solar Cells, 2003,80: 335-341
    [35] Claudia L, Torres-Mart′ynez, Richard Kho, Omar I.Mian, Rajesh K.Mehra. Efficient Photocatalytic Degradation of Environmental Pollutants with Mass-Produced ZnS Nanocrystals. Journal of Colloid and Interface Science, 2001,240:525-532
    [36] K.T.Ranjit, B.Viswanathan. Photoelectrochemical reduction of nitrite ions to ammonia on CdS photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2003,154: 299-302
    [37] Carraway E R, Hoffmann A J, Hoffmann M R. Photocatalytic Production of H2O2 and Organic Peroxides on Quantum – Sized Semiconductor Colloids. J.Environ Sci Technol, 1994, 28: 776-785
    [38] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO_2:Correlation between photoreactivity and charge carried recombination dynamics. J. Phys. Chem., 1994, 98 (5): 13669-13679
    [39] 吴树新,马智,秦永宁,等.掺杂纳米TiO_2光催化性能的研究.物理化学学报,2004,20(2):138-143
    [40] Hyung Mi Sung-Suh., Jae Ran Choi., Hoe Jin Hah. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO_2 under visible and UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004,163: 37-44
    [41] Masakazu Anpo, Masato Takeuchi. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis, 2003,216: 505-516
    [42] Hattori A, Yamamoto M, Tada H, et al. A Promoting Effect of NH4F Addition on the Photocatalytic Activity of Sol-Gel TiO_2 Films. Chemistry Letters, 1998, 707-708
    [43] Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 2001, 293 (13): 269-271
    [44] Shahed U, Khan M, Mofareh Al-Shahry, et al. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO_2. Science 2002, 297(27): 2243-2245
    [45] Sarah Pilkenton, Daniel Raftery. Solid-state NMR studies of the adsorptionand photooxidation of ethanolon mixed TiO_2/SnO2photocatalysts. J. Solid State Nucl Magn.Reson., 2003, 24: 236-253
    [46] Tetsu Tatsuma, Shuichi Takeda,Shuichi Saitoh,Yoshihisa Ohk, Akira Fujishima.Bactericidal effect of an energy storage TiO_2/WO3 photocatalyst in dark. J. Electrochemistry Communications, 2003, 5: 793-796
    [47] Yukina Takahashi, Pailin Ngaotrakanwiwat, Tetsu Tatsuma. Energy storage TiO_2–MoO3 photocatalysts. J. Electrochimica Acta, 2004, 49: 2025-2029
    [48] Chun Hu, Yuchao Tang, Jimmy C.Yu, Po Keung Wong. Photocatalytic degradation of cationic blue X-GRL adsorbed on TiO_2/SiO2 photocatalyst. J. Applied Catalysis B: Environmental, 2003, 40: 131-140
    [49] Anil Kumar, Arvind Kumar Jain. Photophysics and photochemistry of colloidal CdS-TiO_2 coupled semiconductors-photocatalytic oxidation of indole. Journal of Molecular Catalysis A: Chemical, 2001,165: 265-273
    [50] Maolin Zhang, Taicheng An, Xiaohong Hu, Cun Wang, Guoying Sheng, Jiamo Fu.Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide. J.Applied Catalysis A: General, 2004, 260: 215-222
    [51] Kentaro Teramura, Tsunehiro Tanaka, Masaya Kani, Tomohiro Hosokawa, Takuzo Funabiki.Selective photo-oxidation of neat cyclohexane in the liquid phase over V2O5/Al2O3. Journal of Molecular Catalysis A: Chemical, 2004,208:299-305
    [52] 张素香, 屈撑囤, 王新强. 光催化剂改性及固定化技术的研究进展. 工业水处理, 2002,22(7):12-15
    [53] 冯良荣,吕绍洁,邱发礼. 稀土元素掺杂对纳米TiO_2光催化剂性能的影响. 复旦学报(自然科学版),2003,42(3):413-417
    [54] Yibing Xie., Chunwei Yuan.Photocatalysis of neodymium ion modified TiO_2 under visible light irradiation. J. Applied Surface Science, 2004, 221: 17-24
    [55] 傅希贤,杨秋华,白树林等. 钙钛矿型氧化物LaFeO3光催化活性研究.化学工业与工程,1999,16(6):316-319
    [56] 桑丽霞,傅希贤,白树林,等. ABO3 钙钛矿型复合氧化物光催化活性与B离子d电子结构的关系. 感光科学与光化学,2001,19(2):109-115
    [57] Su Wen Liu, Chun Feng Song, Meng Kai Lv. A novel TiO_2=ZrxTi1-xO2 composite photocatalytic films. J. Catalysis Communications, 2003, 4: 343-346
    [58] Wei F. Yao, Hong Wang, Xiao H. Xua. Photocatalytic property of bismuth titanate Bi2Ti2O7. J. Applied Catalysis A: General, 2004, 259: 29-33
    [59] W. Feng Yao, Hong Wang, X. Hong Xu. Photocatalytic property of bismuth titanate Bi12TiO_20 crystals. J.Applied Catalysis A: General, 2003, 243:185-190
    [60] Tanaka H, et al. Eterogeneous photo catalytic decomposition of phenol over TiO_2 powder. Bull. Chem. Soc. Japan, 1985, 8:2015-2022.
    [61] M.Noorjahan, V.Durga Kumari, M.Subrahmanyam, P.Boule.A novel and efficient photocatalyst: TiO_2-HZSM-5combinate thin film. J. Applied Catalysis B:Environmental, 2004, 47: 209~213
    [62] Jing Shang, Wei Li, Yongfa Zhu.Structure and photocatalytic characteristics of TiO_2 film photocatalyst coated on stainless steel webnet. Journal of Molecular Catalysis A: Chemical, 2003,202: 187~195
    [63] Y. Wang, A. Suna, W. Wahler, R. Kasowski. PbS in Polymers Frorr Molecules to Bulk Solids. J. Chem. Phys. 1987, 87: 7315-7322.
    [64] Mills A, Morris S, Davies R. Photomineralization of 4-chlorophenol sensitized by titanium dioxide; a study of the intermediates. J. Photochem. Phctohicl A-Chem. 1991, 70: 183
    [65] L. Spanhel, M. Hasse, H. Welter, et al. Photochemisry of Colloidal Semiconductors. Surface Modification and Stability of Strong Lunminescing US Particles. J. Am. Chem. Soc. 1987, 109: 5649-5655
    [66] U. Koch, A. Foitik, H Welter, et al. Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem. Phys. Lett. 1985, 122: 507-509
    [67] 王天赤,路殡,车巫智,辛显双,周百斌. 纳米材料的特性及其在催化领域的应用. 哈尔滨商业大学学报(自然科学版).2003, 4期
    [68] 光焕竹,郝东凯,王安齐,杨陪霞,赵春梅. 纳米材料的研究和进展. 哈尔滨商业大学学报(自然科学版). 2002, (04): 104-105.
    [69] Ekimov A I, Efros A L,Onushchenko A A. Quantum size effect in semiconductor microcrystals. Solid State Communications.1985, 56(11): 921-924
    [70] Niklasson G A. Optical properties of square lattices of gold nanoparticles. Nanostructured Materials.1999, 11(12): 725-733
    [71] 严东生,冯瑞. 纳米新星-纳米材料科学.长沙: 湖南科学技术出版社,1997.17
    [72] 王强,郑萍,李海燕,谢笑天. 纳米材料的应用进展. 山东化工,2003, (05):21-23
    [73] 郭永,巩雄,杨宏秀.纳米微粒的制备方法及其进展.化学通报. 1996, (3 ):1-4
    [74] J. Eckert, J.C. Halzer, C.E. Krill, et al. Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders. J. Appl. Phys., 1993, 73:2794-2804.
    [75] H.Gleiter. Nanocrystalline materials. Prog. Mater. Sci., 1989, 33: 223-315.
    [76] 汪国忠. 半导体和金属纳米材料的制备及自组织生长和物性研究. 中国科学院固体物理研究所博士学位论文,2002,2.
    [77] G.L Zhang, et al. Preparation of Fe nanocrystalline in SiO2 by ion implantation. Appl. Phys. Lett., 1992, 61:2527-2529.
    [78] J.J. McClelland, et al. Laser Focused Atomic Deposition. Science, 1993, 262:877-880.
    [79] J. S. Heggery, W. R. Cannon. In: Laser Induced Chemical Process. J. Steinfeld ed. New York: Plenum, 1981.
    [80] Aegerter, A. Michel. Sol-gel niobium pentoxide: A promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Solar Energy Materials and Solar Cells, 2001,68 (3-4): 401-422.
    [81] L. Burtrand, J. P. Zhang. Preparation, structure evolution and dielectric properties of BaTiO3 thin films and powders by an aqueous sol-gel process. Thin Solid films, 2001, 388(1-2): 107-113.
    [82] F. Fievet, J. P. Lagier, etal. Homogenous and Heterogeneous Nucleations in the Polyol Process For the Preparation of Micron and Submicron Size Metal Particles. Solid State Ionics, 1989, 32/33: 198-205.
    [83] Z. Hu, etal. Amorphous Iron-Boron Powders Prepared by Chemical Reduction of Mixed Solutions:Dependence of Composition upon Reaction Temperature. J.Chem. Soc.:Chem. Commun.,1995, 247-332.
    [84] M. A. Chamarro, C. Gourdon. Selective excitation of nanocrystals by polarized light. Solid State Commun.1992, 10: 967-970.
    [85] M. Y. Han, W. Huang, C. H. Chew, etal. Large Nonlinear Absorption in Coated Ag2S/CdS Nanoparticles by Inverse Microemulsion. J. Phys. Chem. B, 1998, 102:1884-1887.
    [86] I. Yamaguchi,T. Kimishima, K. Osakada, and T. Yamamoto. Ru and Sm Catalyzed Polyaddition of Dialdehydes to Give Poly(ester)s. Application of Tishchenko Type Reactions to Polymer Synthesis. J. Polym. Sci.,Part A: Polym. Chem.,1997, 33: 1265-1273.
    [87] T. Torimoto, H. Uchida, T. Sakata, et al. Surface structures of lead sulfide microcrystals modified with 4-(hydroxythio)phenol and their influences on photoinduced charge transfer. J. Am. Chem. Soc.,1993, 115 (5):1874-1880.
    [88] J. P. Spat z, A. Roesher, M. Moller. Gold Nanoparticles in Micellar Poly (styrene)-b-Poly(一ethyleneoxide) Films. Adv. Mater.,1996, 8:337-340.
    [89] F. C. Meldrum, V. J. Wade, et al. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature, 1991,349: 684-687.
    [90] Y. Li, J. Wan, Z. Gu. Templated Synthesis of CdS Nanowires in Hexagonal Liquid Crystal Systems. Acta Physico-Chimica Sinica, 1999,15:1.
    [91] 施尔畏,夏长泰,王步国等. 水热法的应用与发展. 无机材料学报,1996 11:193-206.
    [92] 川谢博. 纳米材料的表面活性剂控制生长及溶剂热催化生长. 中国科学技术大学硕士学位论文,2002, 13.
    [93] W. S. Sheldrick, M. Wachhold, Solventothermal Synthesis of Solid-State Chalcogeni- dometalates. Angew. Chem. Int. Ed. Eng.,1997,36: 206-224.
    [94] P. Feng, X. Bu, G. D. Stocky. Hydrothermal Syntheses and Structural Characterizations of Cobalt Phosphate Based Zeolite Analogues. Nature, 1997, 388: 735-741.
    [1] Linsebigler, A. L.; Lu, G.; Yattes, Jr. J. T. Photocatalysis on TiO_2 surfaces: principles, mechanism, and selected results. Chem. Rev. 1995, 95: 735-738
    [2] Tryk, D. A, Fujishima, A, Honda, K. Recent topics in photoelectrochemistry: Achievements and future prospects. Electrochim. Acta, 2000, 45: 2363-2376
    [3] Zhao, J.; Yang, X. Photocatalytic oxidation for indoor air purification: a literature review. Building and Environment, 2003, 38: 645-654
    [4] Eng, H. W.; Barnes, P. W.; Auer, B. M.; Woodward, M. Investigations of the electronic structure of d transition metal oxides belonging to the perovskite family. J. Solid State Chem, 2003, 175: 94-109
    [5] Kato, H.; Kudo, A. Energy structure and photocatalytic activity for water splitting of Sr2 (Ta1?XNbX)2O7 solid solution. J. Photochem. Photobiol.A, 2001, 145: 129-133
    [6] Zou, Z.; Arakawa, H. Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. J. Photochem. Photobiol. A, 2003, 158: 145-162
    [7] Skorikov, V. M.; Zakharov, I. S.; Volkov, V. V.; Spirin, E. A.;Umrikhin, V. V. Optical Properties and Photoconductivity of Bismuth Titanate. Inorg. Mater. 2001, 37: 1155-1160
    [8] Reyher, H.-J.; Hellwig, U.; Thiemann, O. Optically detected magnetic resonance of the bismuth-on-metal-site intrinsic defect in photorefractive sillenite crystals. Phys. Rev. B 1993, 47: 5638-5645
    [9] Cummins, S. E.; Cross, L. E. Crystal symmetry, optical properties, and ferroelectric polarization of Bi4Ti3O12 single crystals. Appl. Phys. Lett. 1967, 10, 14-16
    [10] Jovaleki?, ?, Pavlovi?, M, Osmokrovi?, P, Atanasoska, L. X-ray photoelectron spectroscopy study of Bi4Ti3O12 ferroelectric ceramics. Appl. Phys. Lett. 1998, 72: 1051-1053
    [11] Hou, Y.; Wang, M.; Xu, X.-H.; Wang, D.; Wang, H.; Shang, S.-X. Dielectric and Ferroelectric Properties of Nanocrystalline Bi2Ti2O7 Prepared by a Metallorganic Decomposition Method. J. Am. Ceram. Soc. 2002, 85: 3087-3089
    [12]V.M.Skorikov, Yu.F.Kargin, A.V.Egorysheva, V.V.Volkov, M.M.Gospodinov. Growth of Sillenite-Structure Single Crystals. Rus.Inorganic Materials. 2005, 41: 22-46
    [13] W.Feng Yao, Hong Wang ,X.Hong Xu, X.Feng Cheng, Ji Huang, S.Xia Shang, X.Na Yang, Min Wang. Photocatalytic property of bismuth titanate Bi12TiO_20 crystals. Applied Catalystsis A: General. 2003, 243: 185-190
    [14]R.Gut, E.Schmid, J.Serralach. Acetylacetonat-Komplexe des SiIV und TiIV, brenzcatechinat-komplexe des SbIII, SiIV, TiIV und SnIV in methanolischer L?sung. Helv. Chim.Acta. 1971, 54: 609-624
    [15] J. Moon, J.A. Kerchner, H. Krarup, J.H. Adair. Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts. J. Mater. Res. 1999, 14(2): 425-435
    [16] G.A. Rossetti, Jr., D.J. Watson, R.E. Newnham, J.H. Adair. Kinetics of the hydrothermal crystallization of the perovskite lead titanate. J. Cryst. Growth, 1992, 116: 251-259
    [17] 李凤生. 超细粉体技术, 北京: 国防工业出版社,2000
    [18] Tomkiewicz M. Scaling properties in photocatalysis. Catal.Today. 2000,58:115-123
    [19] Michael Z.-C. Hu, E Andrew Payzant, and Charles H. Byers. Sol–Gel and Ultrafine Particle Formation via Dielectric Tuning of Inorganic Salt–Alcohol–Water Solutions. Journal of Colloid and Interface Science , 2000, 222: 20-36
    [1] 黄继武,卢安贤. 物理效应与功能无机非金属材料. 中国陶瓷,2001,37(1):38-40
    [2] 晏海学,李承恩等.高Tc铋层状压电陶瓷结构与性能.无机材料学报, 2000,15(2):209-220.
    [3] J.F.Dorria,R E.Newnhan and D.K.Smith.Crystal structure of Bi4Ti3O12.Ferroelectrics,1971, 3: 17-27.
    [4] B. H.park,B.& kang.Lanthanum-substituted bismuth titanate for use in non-volatile memories.Nature,1999,401:682-684.
    [5] 申林,肖定全等.(Bi_4-xLax)Ti_3O_(12)铁电陶瓷性能研究.压电与声光,2002,24(3):199-201.
    [6] A.M. Umabala, M. Suresh, A.V. Prasadarao. Bismuth titanate from coprecipitated stoichiometric hydroxide precursors. Mater. Lett. 2000,44: 175-180
    [7] Y. Du, J. Fang, M. Zhang, J. Hong, Z. Yin, Q. Zhang. Phase character and structural anomaly of Bi4Ti3O12 nanoparticles prepared by chemical coprecipitation. Mater. Lett. 2002, 57: 802-806
    [8] Y. Shi, C. Cao, S. Feng. Hydrothermal synthesis and characterization of Bi4Ti3O12. Mater. Lett. 2000, 46: 270-273
    [9] 韩世同, 习海玲, 史瑞雪, 付贤智, 王绪绪. 半导体光催化研究进展与展望. 化学物理学报, 2003 , 16 :339-349
    [10] Wei F. Yao , Hong Wang , Xiao H. Xu , Shu X. Shang ,Yun Hou , Yin Zhang , Min Wang. Synthesis and photocatalytic property of bismuth titanate Bi4Ti3O12. Mater. Lett. 2003, 57: 1899-1902
    [11] C.H. Lu, C.H. Wu. Preparation, sintering, and ferroelectric properties of layer-structured strontium bismuth titanium oxide ceramics. J. Eur. Ceram. Soc. 2002, 22: 707-714
    [12] L.B. Kong, J. Ma, W. Zhu, O.K. Tan. Preparation of Bi4Ti3O12 ceramics via a high-energy ball milling process. Mater. Lett. 2001, 51: 108-114
    [13] Titipun Thongtem, Somchai Thongtem. Characterization of Bi4Ti3O12 powder prepared by the citrate and oxalate coprecipitation processes. Ceramics International. 2004,30: 1463-1470
    [14] Pusit Pookmanee, Phunthanee Uriwilast, Sukon Phanichpant. Hydrothermal synthesis of fine bismuth titanate powders. Ceramics International. 2004, 30:1913-1915
    [15] Yanmei Kan, Xihai Jin, Peiling Wang, Yongxiang Li, Yi-Bing Cheng, Dongsheng Yan. Anisotropic grain growth of Bi4Ti3O12 in molten salt fluxes. Materials Research Bulletin. 2003,38: 567-576
    [16] S.R. Dhage, Y.B. Khollam, S.B. Dhespande, H.S. Potdar, V. Rav. Synthesis of bismuth titanate by citrate method. Materials Research Bulletin. 2004, 39: 1993-1998
    [17] Ze′lia Soares Macedo , Antonio Carlos Hernandes. Laser sintering of Bi4Ti3O12 ferroelectric ceramics. Mater. Lett. 2002, 55: 217-220
    [18] Arturo, M., Quintela, L., and Rivas, J. Chemical Reactions in Microemulsions: A Powerful Method to Obtain Ultrafine Particles. J. Colloid Interface Sci. 1993, 158: 446-451
    [19] Barnickel, P., Wokaun, A., Sager, W., and Eicke, H. F. Size tailoring of silver colloids by reduction in W/O microemulsions. J. Colloid Interface Sci. 1992, 148: 80-90
    [20] A. Ko?ak, D. Makovec, M. Drofenik, A.?nidar?i?. In situ synthesis of magnetic MnZn-ferrite nanoparticles using reverse microemulsions. Journal of Magnetism and Magnetic Materials, 2004,272: 1542-1544
    [21] Vuk Uskokovi?, Miha Drofenik, Irena Ban. The characterization of nanosized nickel-zinc ferrites synthesized within reverse micelles of CTAB/1–hexanol/water microemulsion. Journal of Magnetism and Magnetic Materials 2004, 284: 294-302
    [22] C.P. Sbu, S.R. Kumar, P. Mukundan, K.G.K.Warrier. Stuctural modifications and associated properties of lanthanum oxide doped sol-gel manosized titanium oxide. Chem. Mater. 2002, 14: 2876-2881
    [23] H.S. Gu, A.X Kuan, X.J.Li. Reactions in Prepa0ring Bi4Ti3O12 Ultrafine Powders by Sol-Gel Process. Ferroelectrics, 1998, 211: 271-280
    [24] 王笃金,吴瑾光,徐光宪.反胶团或微乳液法制备超细颗粒的研究进展.化学通报,1995, 9: 1-5
    [1] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996,271:933-937
    [2] Manna L, Scher E C, Alivisatos A P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc., 2000, 122, 12700-12706
    [3] Wang D B, Yu D B, Shao M W, et al. Dendritic growth of PbS crystals with different morphologies. J. Crystal. Growth, 2003,257:384-389
    [4] X.L. Hu and Y.J. Zhu. Morphology Control of PbWO4 Nano- and Microcrystals via a Simple, Seedless, and High-Yield Wet Chemical Route. Langmuir, 2004, 20: 1521-3
    [5] D. Rautaray, A. Ahmad and M. Sastry, “Biosynthesis of CaCO3 Crystals of Complex Morphology Using a Fungus and an Actinomycete,” J. Am. Chem. Soc., 2003, 125[48]: 14656-7
    [6] Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie and M.J.Mcdermott. Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns. J. Am. Chem. Soc., 2002, 124[44]: 12954-5
    [7] D. Rautaray, K. Sinha, S.S. Shankar, S.D. Adyanthaya, and M. Sastry. Aqueous Foams as Templates for the Synthesis of Calcite Crystal Assemblies of Spherical Morphology. Chem. Mater., 2004, 16[7]: 1356-61
    [8] J.K. Liu, Q.S. Wu and Y.P. Ding. Controlled Synthesis of Different Morphologies of BaWO4 Crystals through Biomembrane/Organic-Addition Supramolecule Templates. Cryst. Growth Des., 2005, 5[2]: 445-9
    [9] P.X. Gao and Z.L. Wang. Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process. J. Phys. Chem. B, 2004, 108[23]: 7534-7
    [10] H.T. Shi, L.M. Qi, J.M. Ma and H.M. Cheng. Polymer-Directed Synthesis of Penniform BaWO4 Nanostructures in Reverse Micelles. J. Am. Chem.Soc., 2003, 125[12]: 3450-1
    [11] G.J. Zhou, M.K. L.u, F. Gu, S.F Wang, Z.L. Xiu and X.F. Cheng. Controlled synthesis and optical properties of PbCrO4 nanorods and nanoparticles. J. Crystal Growth, 2004, 270: 283-7
    [12] J.K. Liu, Q.S. Wu and Y.P. Ding. Morphologies-controlled synthesis of CaWO4 crystals by a novel supramolecular template method. J. Crystal Growth, 2005, 279: 410-4
    [13] F.M. Pontes, M.A.M.A. Maurera, A.G. Souza, E. Longo, E.R. Leite, R. Magnani, M.A.C. Machado, P.S. Pizani and J.A. Varela, Preparation. Structural and optical characterization of BaWO4 and PbWO4 thin films prepared by a chemical route. J. Eur. Ceram. Soc., 2003, 23[16]: 3001-7
    [14] Q.T. Guo, J.W. Wang and O.J. Kleppa. Note on the enthalpies of formation, from the component oxides, of CoWO4 and NiWO4, determined by high-temperature direct synthesis calorimetry. Thermochim. Acta, 2001,380: 1-4 2001
    [15] C.A. Kodaira, H.F. Brito, O.L. Malta and O.A. Serra. Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method. J. Lumin., 2003, 101: 11-21
    [16] A.A. Kaminskii, C.L. McCray, H.R. Lee, S.W. Lee, D.A. Temple, T.H. Chyba, W.D. Marsh, J.C. Barnes, A.N. Annanenkov, V.D. Legun, H.J. Eichler, G.M.A. Gad and K.Ueda. High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals. Opt. Comm., 2000, 183: 277-87
    [17] Y.L. Huang, X.Q. Feng, Z.H. Xu, G.J. Zhao, G.S. Huang and S.G. Li. Growth and spectra properties of Nd3+-doped PbWO4 single crystal. Solid State Comm., 2003, 127: 1-5
    [18] J.G. Yu, J.F. Xiong, B. Cheng, Y. Yu and J.B. Wang. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. J. Solid State Chemistry, 2005, 178[6]:1968-72
    [19] Chuan Zhang and Yongfa Zhu. Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts.Chem. Mater. 2005, 17, 3537-3545
    [20] 古映莹,戴恩斌,黄可龙. 水热法制备PZT压电陶瓷粉体. 无机材料学报,1999,14(4):665-668
    [21] Y.H. Shi, S.H. Feng and C.S. Cao. Hydrothermal synthesis and characterization of Bi2MoO6 and Bi2WO6. Mater. Lett., 2000, 44: 215-18
    [22] Hiroaki Takeda, Takashi Nishida, Soichiro Okamura and Tadashi Shiosaki. Crystal growth of bismuth tungstate Bi2WO6 by slow cooling method using borate fluxes. J. Eur. Ceram.Soc., 2005, 25[12]: 2731-34
    [23] M. L. Zhang, T. C An, X. H. Hu, C. Wang, G. Y Sheng and J. M. Fu. Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide. Appl. Catal. A: General, 2004, 260: 215-222
    [1] Fujishima A, Honda K.Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, 238: 37-38
    [2] Hoffmann M R, Martin S T, Choi W. et al. Applications of semiconductor photocatalysis. Chem Rev. 1995, 95: 69-96
    [3] K. Gurunathan. Photocatalytic hydrogen production using transition metal ions-doped γ-Bi2O3 semiconductor particles. International Journal of Hydrogen Energy. 2004, 29: 933-940catalyst. Solar Energy Materials & Solar Cells. 2002, 73 :339
    [5] W. Feng Yao, Hong Wang, X. Hong Xu, X. Feng Cheng, Ji Huang, et al. Photocatalytic property of bismuth titanate Bi12TiO_20 crystals. Appl. Catal. A: Gen. 2003, 243:185-190
    [6] Wei F. Yao, Hong Wang, Xiao H. Xu, Jing T. Zhou, Xue N. Yang, et al. Photocatalytic property of bismuth titanate Bi2Ti2O7. Applied Catalysis A: General. 2004, 259: 29-33
    [7] Zhigang Zou, Jinhua Ye, Hironori Arakawa.Substitution effects of In3+ by Fe3+ on photocatalytic and structural properties of Bi2InNbO7 photocatalysts Journal of Molecular Catalysis A: Chemical. 2001, 168: 289-287
    [8] Jiaguo Yu, Jianfeng Xiong, Bei Cheng, Ying Yu, Jianbo Wang. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. Journal of Solid State Chemistry 2005, 178:1968-1973
    [9] Shigeru Kohtani, Masaya Koshiko, Akihiko Kudo, Kunihiro Tokumura, et al. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl. Catal. B: Environ. 2003, 46: 573-586
    [10] R.K. Grasselli. Advances and Future Trends in Selective Oxidation and Ammoxidation. Catalyst Catal. Today. 1999, 49: 141-153
    [11] J.C. Vedrine, G. Coudurier, M. Forissier, J.C. Volta. Relations between catalytic properties and atomic arrangements of metallic oxides. Catal. Today. 1987, 1: 261-280
    [12] E. Godard, E. M. Gaigneaux, P. Ruiz and B. Delmon. New insights in the understanding of the behaviour and performances of bismuth molybdate catalysts in the oxygen-assisted dehydration of 2-butanol. Catalysis Today, 2000, 1-4: 279-285
    [13] M. T. Le, J. Van Craenenbroeck, I. Van Driessche and S. Hoste. Bismuth molybdate catalysts synthesized using spray drying for the selective oxidation of propylene. Applied Catalysis A: General, 2003, 2: 355-364
    [14] M.M. Bettahar, G. Costentin, L. Savary, J.C. Lavalley. On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Appl. Catal. A, 1996, 145: 1-12
    [15] H iroak i T, M anabu A, Yasuyak i K, Seish iro I. Enhancing Effect of SiOx Monolayer Coverage of TiO_2 on the Photoinduced Oxidation of Rhodamine 6G in Aqueous Media. J. Phys. Chem. B, 1998, 102: 6360-6366
    [16] Hong C S, W ang Y B, Bush B. Kinetics and products of the TiO_2, photocatalytic degradation of 2-chlorobiphenyl in water. Chemosphere, 1998, 36 (7): 1653-1667
    [17] Liu H, Cheng S A, Zhang J Q, Cao C A, Zhang S K. Titanium dioxide as photocatalyst on porous nickel: Adsorption and the photocatalytic degradation of sulfosalicylic acid. Chemosphere, 1999, 38 (2): 283-292
    [18] D ionysiou D D, Khodadoust A P, Kern A M, Suidan M T, Baudin I, L aine JM. Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO_2 rotating disk reactor. Appl. Catal. B: Environ. 2000, 24: 139-155
    [19] Domenech X, Peral J. Kinetics of the photocatalytic oxidation of N (III) and S(IV) on differentsemiconductor oxides. Chemosphere, 1999, 38 (6 ): 1265-1271
    [20] Leng W H, Liu H, Cheng S A, Zhang J, Cao C. Kinetics of photocatalytic degradation of aniline in water over TiO_2 supported on porous nickel. J. Photochem. Photobio. A: Chem., 2000, 131: 125-132
    [21] 马颖, 姚建年. 罗丹明B在TiO_2薄膜和P-25涂层催化下光反应的比较. 感光科学与光化学, 1998 ,16 (2) :117-121.
    [22] Watanabe T, Takizawa T, Honda K. Photocatalysis through Excitation of Adsorbates. 1. Highly Efficient N-Deethylation of Rhodamine B Adsorbed to CdS. J Phys Chem., 1977, 81: 1845-1851.
    [23] Wu T X, Lu G M, Zhao J C. Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO_2 Dispersions. J Phys Chem B, 1998, 102: 5845-5851.
    [24]付宏刚,王建强,任志宇. TiO_2/ SiO_2 薄膜催化剂的结构对其光催化性能的. 高等学校化学学报,2003 ,24 (9) :1671-1676.
    [25] Wu T X, Lu G M, Zhao J C. Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO_2 Dispersions. J Phys Chem B, 1998, 102: 5845-5851
    [26] Jin-Ming Wu, Tian-Wei Zhang. Photodegradation of rhodamine B in water assisted by titania films prepared through a novel procedure. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162:171-177
    [27] J. Grzechulska, A.W. Morawski. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide Appl. Catal. B: Environ. 2002, 36: 45-51
    [28] A. Rachel, M. Sarakha, M. Subrahmanyam, P. Boule. Comparison of several titanium dioxides for the photocatalytic degradation of benzenesulfonic acids. Appl. Catal. B: Environ., 2002, 37:293-300
    [29] J. Grzechulska, A.W. Morawski. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Appl. Catal. B: Environ. 2002, 36: 45-51
    [30] K. Young, C-B. Hsich. Photocatalytic decomposition of 2,4-dichlorophenol in aqueous TiO_2 suspensions. Water Res. 1992, 26:1451-1456
    [31] Bullock E L, Patthey L, Steinamann S G. Hydroxylated rutile TiO_2 (110) surfaces studied by X-ray photoelectron sprectroscopy. Surface Science, 1996, 504: 352-354
    [32] Wooseok Nam, Jimin Kim, Guiyoung Han. Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor. Chemosphere, 2002, 47:1019-1024
    [33] M. Penpolcharoen, R. Amal, M.J. Brungs. Degradation of Sucrose and Nitrate Over Titania Coated Nano-hematite Photocatalysts. J. Nanopart. Res. 2001, 3: 289-302
    [34] Y. Ma, J.N. Yao. Photodegradation of Rhodamine B catalyzed by TiO_2 thin films. J. Photochem. Photobiol. A: Chem. 1998, 116: 167-170
    [35] A.E.H. Machado, A.M. Furuyama, S.Z. Falone, R. Ruggiero, D.da S. Perez, A. Castellan. Photocatalytic degradation of lignin and lignin models, using titanium dioxide: the role of the hydroxyl radical.Chemosphere, 2000, 40: 115-124
    [36] L. Weng, B. Delmon. Phase Rooperation and Remote Control Effects in Selective Oxidation Catalysts. Appl. Catal. A, 1992, 81:141-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700