熔盐法合成片状氧化铝粉体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
片状氧化铝粉体是一种新型无机精细化学品,它具有特殊的二维结构与优良的物理化学性能,在颜料、化妆品、填料及磨料等领域有着广泛的应用。本文在综合分析氧化铝的晶体生长习性、熔盐化学特性的基础上,对熔盐法制备片状氧化铝粉体进行了系统研究。通过改变熔盐的种类与用量、烧成制度及掺入添加剂与晶种,考察了外界物理化学条件对氧化铝晶体生长形貌的影响,并用电子显微镜与光学显微镜、差热—热重分析、激光粒度和遮盖率等对片状氧化铝进行了表征,同时探讨了片状氧化铝的精制条件。研究结果表明:当硫酸铝与混合硫酸盐熔盐(Na_2SO_4:K_2SO_4:2.4:1.6)的摩尔比为1:4,同时添加1wt%的二氧化钛、1wt%的二氧化硅和3wt%的磷酸三钠,在1200℃烧结处理5小时,可得到粒径为5~25μm,厚度为200~400nm,径厚比为30~60的片状α—Al_2O_3粉体。通过改变添加剂的用量,可对片状氧化铝的粒度及径厚比进行控制和调整。论文还对熔盐法合成片状氧化铝的晶体生长机理进行了探讨,这对于控制氧化铝粉体在熔盐中的晶体生长具有一定的指导意义。
Flaky alumina is one of the new inorganic fine chemicals with special two-dimensional structure and excellent physicochemical prosperities, and is widely applied in pigments, cosmetics, fillers and abrasive. The powders were prepared by molten salt synthesis method, and the influence factors, such as molten salts, sintering conditions, additive and seed, were investigated. The flaky powders obtained were characterized by means of microscope, TG-DTA, laser sizer, covering power measurement, et al. It was found that flaky a-A12O3 powder with diameter of 5~25um, thickness of 200~400nm and aspect ratio of 30~ 60, could be synthesized at 1200℃ for 5 hours when the mole ratio of aluminum sulfide to mixture sulfate salts (Na2SO4:K2SO4:=:2.4:1.6) was 1:4, and the additive amounts of phosphate, titania and silica were 3wt%, lwt% and lwt% (based on alumina) respectively. The size and aspect ratio of the powder can be adjusted and controlled by changing the amount of additives. The crystal growth mechanism of flaky alu
    mina was also studied, which is useful to control the crystal growth of alumina in molten salts.
引文
[1] P. Hartman, et al. The attachment energy as habit controlling factor. J. Cryst. Growth, 1980, 49:166
    [2] Po Hartman, et al. The effect of surface relation on crystal habit: cases of corundum(α—Al_2O_3) and hematite(α— Fe_2O_3). J. Cryst. Growth, 1989, 96: 667
    [3] K. Watanabe, I. Sunagawa. Effects oftrivalent rare-earth ions upon the morphology of corundum crystal. North-Holland Physics Publishing, 1983, 65: 568~575
    [4] W. C. Mackrodt, R. J. Davey, S. N. Black. The morphology of α—Al_2O_3 and α—Fe_2O_3: the importance of surface relations. J. Cryst. Growth, 1987, 80: 441~446
    [5] 王步国,田明原,施尔畏.热液条件下直接制备α—Al_2O_3微晶形态特征.科学通报,1997,42(24):2663~2667
    [6] 田明原,施尔畏,元如林,等.铝氢氧化合物和氧化物晶粒的热液法制备及其形成机理.中国科学E辑,1998,28(2):113~118
    [7] 李汉军,郑燕青,施尔畏,等.TiO_2和α—Al_2O_3晶体的生长习性.无机材料学报,2000,15(6):968
    [8] 仲维卓,华素坤.晶体生长形态学.北京:科学出版社,1999.208,239~243,351~352
    [9] S. Teaney, G. Pfaff, K. Nitta. New effect pigments using innovative substrates. Eur. Coat. J., 1999, 4:90~96
    [10] S. R. Sharrock, N. Schuel. New effect pigments based on SiO_2 and Al_2O_3 flakes. Eur. Coat. J., 2000, 1-2:3
    [11] Merck KGaA. http://pb.merck.de/servlet/pb/menu/1072710/index.html, 2003
    [12] W. R. Cramer, P. W. Gabel. Measuring specialeffects. Eur. Coat. J., 2001, 7-8:34~39
    [13] F. J. Maile, P. Reynders. Substrates for pearlescent pigments. Eur. Coat. J., 2003, 4: 124~131
    [14] K. Salta, K. Saeguss. Cosmetics comprising a titanium oxide pigment. EP0191292A2, 1986-08-01
    [15] 熊家林.无机精细化学品的制备和应用.北京:化学工业出版社,1999.225~
    
    231
    [16] 王宏志.氧化铝基纳米复合陶瓷的研究:[博士学位论文].上海:中国科学院上海硅酸盐研究所,1998
    [17] 沈毅,杨正方.板状氧化铝增强氧化铝陶瓷.硅酸盐通报,2001,6:51~52,57
    [18] K. Nitta, T. M. Shau, J. Sugahara. Flaky aluminum oxide and pearlescent pigment, and production thereof. EP0763573A2, 1997-03-19
    [19] S. Nobuoka. Method for manufacture of micaceous-iron oxide. US3987156, 1976-10-19
    [20] L. R. David, J. H. Wallice, W. A. John. Process for preparing iron oxide. EP0307486, 1989-03-22
    [21] 阚艳梅,王佩玲,李永祥,等.工艺参数对熔盐法制备钛酸铋粉体影响的研究.无机材料学报,2002,17(5):1063~1067
    [22] Y. M. Kan, X. H. Jin, P. L. Wang, et al. Anisotropic grain growth of Bi_4Ti_3O_(12) in molten salt fluxes. Mater. Res. Bull., 2003, 38:567~576
    [23] 宋煜昕,李承恩,晏海学.熔盐法合成SrBi_2Ta_2O_9粉体.无机材料学报,2002,17(1):145~148
    [24] D. S. Horm, G. L. Messing. Anisotropic grain growth in TiO_2—doped alumina. Mat. Sci. Eng., 1995, A195:169~178
    [25] A. Kebbede, G. L. Messing, A. H. Carim. Grain boundaries in titania-doped α—alumina with anisotropic microstructure. J. Am. Ceram. Soc., 1997, 80(11): 2814~2820
    [26] A. Kebbede, J. Parai, A. H. Carim. Anisotropic grain growthin α—Al_2O_3 with SiO_2 and TiO_2 additions. J. Am. Ceram. Soc., 2000, 83(11): 2845~2851
    [27] Y. M. Kim, S. H. Hong, D. Y. Kim. Anisotropic abnormal grain growth in TiO_2/SiO_2—doped alumina. J. Am. Ceram. Soc., 2000, 83(11): 2809~2812
    [28] 王欣.氧化铝陶瓷晶粒的各向异性生长研究:[硕士学位论文].上海:中国科学院上海硅酸盐研究所,2000
    [29] R. Pena, H. Wohlfromm, R. Torrecillas. J. S. Moya. Microstructure and mechanical behaviour of eutectoid corundum-rune composites. Ceram. Int., 1990, 16: 375~380
    
    
    [30] H. Song, R. L. Coble. Origin and growth kinetics of platelike abnormal grain in liquid-phase-sintered alumina. J. Am. Ceram. Soc., 1990, 73(7):2077~2085
    [31] H. Sgng, R. L. Coble. Morphology of platelike abnormal.grains in liquid-phase-sintered aumina. J. Am. Ceram. Soc., 1990, 73(7): 2086~2090
    [32] W. A. Kaysser, M. Sprissler, C. A. Handwerker, J. E. Blendell. Effect of a liquid phase on the morphology of grain growth in aluminate. J. Am. Ceram. Soc., 1987, 70(5): 339~343
    [33] T. Koyama, A. Nishiyama, K. Niihara. Effect of a small amount of liquid-forming additives on the microstructure of Al_2O_3 ceramics. J. Mater. Sci., 1993, 28:5953~5956
    [34] A. Nakajima, G. L. Messing. Liquid-phase sintering of alumina coated with magnesium aluminosilicate glass. J. Am. Ceram. Soc., 1998, 81(5): 1163~1172
    [35] 施尔畏,夏长泰,王步国,等.水热法的应用与发展.无机材料学报,1996,11(2):193~206
    [36] 李竟先,吴基球,鄢程.纳米颗粒的水热法制各.中国陶瓷,2002,38(5):36~39,3
    [37] 施尔畏,栾怀顺,仇海波,等.水热法制备超细ZrO_2粉体的物理.化学条件.人工晶体学报,1993,22(1):79~86
    [38] W. Dawson. Hydrothermal synthesis of advanced ceramic powders. Am. Ceram. Soc. Bulletin, 1988, 67(10): 1673~1678
    [39] 仲维卓.人工晶体(第二版).北京:科学出版社,1994.515
    [40] S. B. Cho, S. Venigalla, J. H. Adair. Morphological Forms of α—Alumina particles synthesized in 1, 4—butanediol solution. J. Am. Ceram. Soc., 1996, 79:88~96
    [41] P. Hartman. The attachment energy as a habit controlling factor Ⅲ. application to corundum. J. Cryst. Growth, 1980, 49: 166~170
    [42] P. Hartmen. The effect of surface relaxation on crystal habits: cases of corundum(β—Al_2O_3)and hematite(α—Fe_2O_3). J. Cryst. Growth, 1989, 96: 667~672
    [43] 王步国,田明原,施尔畏,等.水热条件下直接制备的α—Al_2O_3微晶的形
    
    态特征.科学通报,1997,42(24):2663~2667
    [44] 韦志仁,董国义,李志强,等.水热法合成α—Al_2O_3晶体.人工晶体学报,2002,31(2):90~93
    [45] 田明原,施尔畏,仲维卓,等.热液条件下α—Al_2O_3微晶粒的形成机理.人工晶体学报,1997,26(3):197
    [46] 韦志仁,董国义,林岩,等.水热法合成α—Al_2O_3晶体的晶面形态.人工晶体学报,2002,31(6):583~589
    [47] T. Fukuda, R. Shido. Flake-like alpha-alumina particles and method for producing the same. EP1148028A2, 2001-10-24
    [48] S. Yasuo, O. Kiichi, F. Takeshi. Process for producing fine flaky alumina particles and alumina-based plastic material. US0522519A2, 1992-08-07
    [49] S. Yasuo, O. Kiichi, F. Takeshi. Process for producing fine flaky alumina particles and alumina-based plastic material. US6080380, 2000-01-27
    [50] R.A.Laudise.单晶生长(刘光照,译者),北京:科学出版社,1979.324~326
    [51] A. Faure, R. Bachelard. Alpha alumina macro crystals in the form ofplatelets and process for their production, 平 3-131517, 1991-06-05
    [52] 芝崎 靖雄.板状颜料及制造方法.特開平7-331110,1995-12-19
    [53] S. Yasuo, O. Kiichi, F. Takeshi. Process for producing fine flaky alumina particles and alumina-based plastic material. US0043910, 2001-11-22
    [54] 才田 健二,三枝 邦夫.薄片状金属酸化物制造法.昭61-295208,1986-12-26
    [55] 三枝 邦夫.薄片状物质制造方法.昭62-213833,1987-09-19
    [56] K. Saegusa, H. Fujita. A method for producing a flaky material. EP0236952A2, 1987-04-03
    [57] K. Saegusa. Method for producing a flaky material. US4882133, 1989-11-21
    [58] S. Zeiss. Improvements in or relating to a filler material having an artificial mother of pearl lustre. GB909084, 1962-08-24
    [59] S.安德斯,G.保尔,G.布伦内,等.涂覆金属氧化物的二氧化钛片状颗粒.中国专利,CN1225659A,1999-08-11
    [60] S.安德斯,S.霍克,G.布伦内,等.片状二氧化钛还原颜料.中国专利,CN1193334A,1998-09-16
    
    
    [61] J. H. Haslam. Pigmentary product and process for making same. US2941895, 1960-06-21
    [62] H. A. Miller. Nacreous material from titanium dioxide. US3071482, 1963-01-01
    [63] S.安德斯,G.保尔,G.布伦内,等.片状二氧化钛颜料.中国专利,CN1193333A,1998-09-16
    [64] S. Andes, G. Bauer, G. Brenner, et al. Platelet-shaped titanium dioxide pigment. US5858078, 1999-01-12
    [65] S. Andes, G. Bauer, G. Brenner, et al. Metal oxide coated titanium dioxide lamellas. US6238472B1, 2001-03-29
    [66] 曹茂盛.超微颗粒制备科学与技术,哈尔滨:哈尔滨工业大学出版社,1995.35~36
    [67] N. Asher. Method of making crystalline alumina lapping powder. US3121623, 1964-02-18
    [68] R.锡伯特,L.格拉文.片状氧化铝.中国专利,CN94100796,1994-09-21
    [69] H. G. Sowman. Non-vitreous ceramic metal oxide microcapsules and process for making same. US4349456, 1982-09-14
    [70] 谢刚.熔融盐理论与应用,北京:冶金工业出版社,1998.6~7,101~118
    [71] K. H. Yoon, Y. S. Cho, D. H. Lee, D, H. Kang. Powder characteristics of Ph(Mg_(1/3)Nb_(2/3)O_3 prepared by molten salt synthesis. J. Am. Ceram. Soc., 1993, 76: 1373~1376
    [72] K. Nagata, K. Okazaki. One-directional grain-odented lead metaniobate ceramics. Jpn. J. Appl. Phys., 1985, 24.. 812~814
    [73] R. H, Arendt, Z. H. Rosolowski, J. W. Szymaszek. Lead zirconate titanate ceramics from molten salt synthesis powders. Mater. Res. Bull., 1979, 14: 703~709
    [74] 蔡君威,王聪秀.熔盐合成法制备铌铁酸铅粉末.化学世界,1993,34:616~618
    [75] 曹健,谢嘉宁,张业凤.熔盐法合成BaFe_(11)Co_(0.5)Ti_(0.5)O_(19)磁性粉体及其性能分析.功能材料,1996,27(5):446~448
    [76] C. C. Chin, C. C. Li, S. B. Desu. Molten salt synthesis of a complex perovskite, Pb(Fe_(0.5)Nb_(0.5))O_3. J. Am. Ceram. Soc., 1991, 74(1):38~41
    [77] 姚连增.晶体生长基础.合肥:中国科技大学出版社,1995.55~56,279~300,412~413
    
    
    [78]张克从,张乐潓.晶体生长科学与技术 上册(第二版).北京:科学出版社,1997.339~341
    [79]K. H. Yoon, Y. S. Cho, D. H. Kang. Review molten salt synthesis of lead-based relaxors. J. Mater. Sci., 1998, 33: 2977~2984
    [80]P. Afanasiev, C. Geantet. Synthesis of solid materials in molten nitrates. Coord. Chem. Rev., 1998, 178~180:1725~1752
    [81]Y. M. Kan, X. H. Jin, P. L. Wang, et al. Anisotropic grain growth of Bi_4Ti_3O_(12) in molten salt fluxes. Mater. Res. Bull., 2003, 38:567~576
    [82]Y. M. Kan, Y. X. Li, P. L. Wang, et al. Fabrication of textured bismuth titanate by templated grain growth using aqueous tape casting. J. Eur. Ceram. Soc., 2003, 23:2163~2169
    [83]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.16~17,23~30
    [84]马兴华,黄滔,尉俐.颗粒图像的快速处理方法.化工冶金,1991,12(2):157~161
    [85]任耀武.非金属矿物径厚比快速测定法.中国非金属矿工业导刊,1998,3:32~33
    [86]赵麦群.片状金属颜料径厚比和包覆膜厚度的估算.粉末冶金技术,1996,14(2):88~91
    [87]王步国,施尔畏,仲维卓.几种极性有机晶体的生长习性与形成机理:Ⅲ.晶体的习性预测与实际形态的控制.人工晶体学报.1998,27(1):20~25
    [88]王步国,施尔畏,仲维卓,等.晶体的习性机制与实际形态控制.人工晶体学报,1997,26(3):198
    [89]郑燕青,李云飞,李文军,等.水热法制备氧化锌陶瓷粉体中的形态调制.硅酸盐通报,1998,5:4~7
    [90]施尔畏,元如林.关于负离子配位多面体生长基元模型.中国科学(E辑),1998,28(1):37~45
    [91]R. W. Wolfe, R. E. Newnham, D. K. Smith. Crystal structure of Bi_3TiNbO_9. Ferroelectrics, 1971, 3:1~7
    [92]J. W. Cahn. On the morphology stability of growth crystals, in Crystal Growth. Edited by H. S. Peiser. Pergamon, Oxford, U. K. 1967
    [93]W. Z. Zhong, D. Y. Tang. Growth unit and morphology of lithium triborate(LBO) crystals. J. Cryst. Growth, 1996, 166:91~98
    
    
    [94] T. Kimura, T. Yamaguchi. Fused salt synthesis of Bi_4Ti_3O_(12). Ceram. Int., 1983, 9(1): 13~17
    [95] N. B. Singh. Preparation of metal oxides and chemistry of oxides ions in nitrate eutectic melt. Prog. Crystal Growth and Charact., 2002, 44:183~188
    [96] 李太君,卢春燕.Na_(0.5)Bi_(4.5)Ti_4O_(15)晶体的熔盐法合成及其显微结构分析.海南大学学报自然科学版,1994,12(4):302~307
    [97] S. D. Ramamurthi, D. A. Payne. Structural investigations of prehydrolyzed precursors used in the sol-gel processing of lead titanate. J. Am. Ceram, Soc., 1990, 73(8): 2547~2551
    [98] F. F. Herring. J. Am. Ceram. Soc., 1989, 72:3
    [99] T. Kimura, T. Yamaguchi. Advanced in Ceramics: Ceramic Powder Science. Westerville, 1987
    [100] J. Prywer. Theoretical analysis of changes in habit of growth rates of individual faces. J. Cryst. Growth, 1999, 197:271~285
    [101] 郑水林.粉体表面改性.北京:中国建材工业出版社,1995.10
    [102] 方青,张联盟,沈强,等.钛酸铝陶瓷及其研究进展,硅酸盐通报,2003,1:49~53
    [103] 郑燕青,施尔畏.晶体生长理论研究现状与发展.无机材料学报,1999,14(3):321~332
    [104] O. C. Seob, G. Tomandl, M. H. Lee, et al. Effect of an added seed on the phase transformation and the powder properties in the fabrication of Al_2O_3 powder by the sol-gel process. J. Mater. Sci., 1996, 31(20): 5321~5325
    [105] H. B. Ramirez, A. S. Morales. Effect of seeding on α-Al_2O_3 powder formation from bayerite and bohemite. Key Eng. Mat., 1997, 132-136(1): 69~72
    [106] M. Kumagai, G. L. Messing. Enhanced densification of boehmite sol-gels by alpha—alumina seeding. J. Am. Ceram. Soc., 1984, 67(11): C-230~231
    [107] 刘大鹏,司文捷,苗赫濯.α—Al_2O_3晶种对氧化铝转相温度的影响.材料导报,2000,10:40~43
    [108] C. S. Nordahl, G. L. Messing. Transformation and densification of nanocrystalline θ—alumina during sinter forging. J. Am. Ceram. Soc., 1996, 79(12): 3149~3154
    [109] T. Nomura, M. Alonso, K. Yasuo, et al. A model for simultaneous homogeneous and heterogeneous nucleation. J. Colloid Interface Sci., 1998,
    
    203(1): 170~176
    [110] Y. Kousaka, T. Nomura, M. Nishio, et al. Experimental studies on gas-phase nucleation and the effect of seed particles on homogeneous nucleation suppression. J. Aerosol. Sci., 2000, 31(5): 519~530
    [111] 顾学民,龚毅生,臧希文,等.无机化学丛书第二卷.北京:科学技术出版社,1990.458

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700