以氧化镁为原料熔盐电解法制备Al-Mg合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以氧化镁为原料熔盐电解法制备铝镁合金有其独特的环境效益和经济优势。同时,该研究成果可以进一步发展为一种新的镁电解工艺,为镁工业提供新的研究发展思路。
     试图在Na3AlF6-AlF3体系中以氧化镁为原料制备Al-Mg合金。镁在Al-Mg合金中的含量均很低,最高为0.08w%。从两种制备Al-Mg合金的还原机理上都否定了在Na3AlF6-AlF3体系中可以制备Al-Mg合金的可能性。
     以RECl3-KCl-MgCl2为电解质合金中Mg含量可以达到4.76%。但合金中同时由Al还原出了电解质中的RE元素形成了Al-Mg-RE三元合金。通过Al直接还原实验,证实了Al-Mg合金中RE元素是由Al直接还原而来,合金中的RE元素含量比较稳定,质量百分比为0.8-1.2%。
     MgF2-LiF-KCl为电解质体系研究了KCl对电解质临界电流密度的影响,结果表明KCl加入到电解质中,可以增加电解质对MgO的溶解性能。Al-Mg合金中镁含量随电解时间的延长而逐渐增加,最高达到9.2%。而电流效率随电解时间的延长也有所升高,最高达到了79.4%。进行200A实验室扩大实验中发现槽电压比较平稳,基本上没有发生太大的变化,变化的幅度在0.6V之内,电流效率为82.6%。
     BaF2-LiF-MgF2电解质体系电流效率都比较高,最高可以达到89.4%,最低也有81.7%。电解质中KCl含量增加并没有使电解的电流效率提高。但同不加KCl相比较,加了KCl的电解质的电流效率还是比不加KCl的电解质的电流效率高。45%BaF2-13%LiF-33%MgF2-9%KCl电解质体系的电流效率在其它条件相同的情况下比45%BaF2-13%LiF-42%MgF2电解质体系的电流效率提高了11%。当电解时间在60min时,电流效率最大,达到了87.7%。之后电流效率有下降的趋势,但最小的电流效率还是保证在82%以上。随着电解时间的延长,合金中镁含量逐渐增高,在3h内,合金中镁含量达到了18.6%,在保证电解质中维持2%的氧化镁浓度,可以使电解在电流密度为0.7A/cm2的情况下正常进行。
     电化学实验证明电解质中有最正的析出电位的K+离子的析出电位为-2.25V,而镁在BaF2-MgF2-LiF-KCl体系中相对于铂电极在钨电极上的析出电位-1.42V。说明镁离子有比电解质体系中其它离子更正约830mV的析出电位。不同电流下电流时间的常数基本上没有发生改变,说明镁离子的沉积过程由镁离子在熔体中的扩散控制。由计时电流曲线中上升部分的电流I和t1/2的关系图可知电流I和t1/2呈良好的线性关系,说明镁离子在钨电极上的成核过程是瞬时成核起主导作用。
     电解质的密度随温度的升高而减小,同时KCl含量的增加和MgF2的含量减少共同作用可以使电解质的密度减小。电解质的初晶温度随KCl含量的增加和MgF2的含量减少共同作用而降低。用CVCC技术测定熔盐电解质的电导率,结果表明:随温度的升高,熔盐电解质的电导率上升,电解质成分中KCl含量的增加和MgF2的含量减少可以使电解质的电导率升高。
     透明槽实验研究发现氧化镁在电解质中的溶解过程可分为四个连续的过程。阳极侧面的气体生长是个动态的连续过程,小气泡可以汇合成大气泡溢出电解质,而阳极底部的气体是一个小气泡慢慢的长大,变成一个大气泡,甚至气体可以生长到直径和阳极的直径(Φ=5mm)一样大时才从阳极的侧面上很快的溢出电解质。阳极气体的析出行为和阴极有很大的关系,底部生成的阳极气体均是从靠近阴极的阳极侧面溢出电解质。同时,靠近阴极的阳极侧面气体直径比另一侧阳极侧面的气体直径小。在低电流密度下,阳极气体的气泡直径比较小,在高电流密度下,阳极气体的气泡直径比低电流密度下生成的气泡直径大。
Preparation of Al-Mg alloy by molten salt electrolysis method from magnesium oxide has special advantages of environment and economy. At the same time, the method can be further developed to a new electrolytic technology on magnesium industry, and to come forth a new thought for studying on magnesium metallurgy.
     Preparation of Al-Mg alloy was tried in Na3AlF6-AlF3 electrolyte from magnesium oxide, and the results could not match with satisfaction of experimental goal. Content of magnesium in alloy was very low, the highest was 0.08%(w). The method, which Al-Mg alloy was prepared in Na3AlF6-AlF3 electrolyte from magnesium oxide, was denied on two reduction mechanisms.
     Content of magnesium in alloy, which its electrolyte was RECl3-KCl-MgCl2, could reach 4.76%(w). However, element of alloy consisted of Rare Earth, and Al-Mg-RE ternary alloy was prepared in this electrolyte. RE element in alloy was proved that it was reduced directly by aluminum by experiment of aluminum reduction. Content of RE in alloy was stable, it was between 0.8-1.2%.
     Critical current density of electrolyte was studied in MgF2-LiF-KCl electrolyte. The results could show critical current density of electrolyte was affected by content of KCl in electrolyte, and KCl as additive could promote solubility of magnesium oxide in electrolyte. Content of Mg in alloy increased gradually with electrolytic time, the highest was 9.2%(w). Current efficiency increased with electrolytic time, the highest was 79.4%.200A experiment was carried out in laboratory, the results showed that voltage of cell was stable, the range of variation was small, it was about 0.6v, and current efficiency was about 82.6%.
     Current efficiency was high for BaF2-LiF-MgF2 electrolyte, the highest was 89.4%. Results of research showed that current efficiency was not increased with content of KCl in electrolyte. Compared with no additive of KCl in electrolyte, however, the current efficiency which the electrolyte consisted of amount KCl was higher than that of no KCl in electrolyte. Take 45%BaF2-13%LiF-33%MgF2-9%KCl and 45%BaF2-13%LiF-42%MgF2 for example, the current of former increased about 11% more than that of the latter. The current efficiency was the highest when the electrolytic time was 60 minutes, its value was 87.8%. After that time, the current efficiency decreased slowly, the lowest, however, was higher than 82%. Content of magnesium in alloy increased gradually with electrolytic time. During 3 hours, the content of magnesium reached 18.6%. To guarantee content of magnesium oxide in electrolyte over 2%, the electrolysis could maintain normally with 0.7A/cm2 current density.
     It was proved by electrochemistry experiment that decomposed voltage of K+, which was the most positive ion in electrolyte, was-2.25V. Mg2+, however, its decomposed voltage relative platinum electrode on tungsten in BaF2-MgF2-LiF-KCl electrolyte was-1.42V. This could show that decomposed voltage of Mg2+was more positive about 830mV than that of other ions in electrolyte. The constant of current and time hardly changed under different current, conclusion could be drawn that process of Mg2+ decomposition was controlled by diffusion of Mg2+ in electrolyte. The rising part of current, which was studied in chronoamperometry experiment, was a good line relationship with time rooting, this could prove that key action of nucleation process was instant nucleation for magnesium ion on tungsten.
     Density of electrolyte decreased with rising of temperature, common action with increasing content of KCl and decreasing content of MgF2 could lead to reduce density of electrolyte. Liquidus of electrolyte decreased because of common action that content of KCl increased and content of MgF2 decreased in electrolyte. Conductivity of electrolyte was measured by method of continuously vary cell constant, the results showed that conductivity of electrolyte increased with rising of temperature, and the same results with content of KCl increased and content of MgF2 decreased in electrolyte.
     Process of solubility about magnesium oxide in electrolyte was measured in transparent cell. The results could show the process was four continuous steps. Growth of bubble on anode side was a dynamic continuous process. The big bubbles, which were merged by small bubbles, could overflow electrolyte. On the contrary, bubble at anode bottom was slowly grown up by a small bubble, the big bubble could overflow electrolyte when its diameter was big enough, even the diameter could grow up to 5mm which was the diameter of anode in the experiment. Overflowing speed of bubble on anode side was very fast. Behavior of bubble on anode was in close relationship with cathode. The bubbles grown at bottom of anode were all overflowed on anode side which was near the cathode, and the bubbles grown on side of anode, which was near the cathode, were all smaller than that of opposite side. Diameter of bubble was smaller in low current density than that of high current density.
引文
1.刘英,李元元,张卫文等.镁合金的研究进展和应用前景[J].轻金属,2002(8):56-61.
    2.訾炳涛,王辉.镁合金及其在工业中的应用[J].稀有金属,2004,28(1):229-232.
    3.夏德宏,余涛.镁的卓越特性[J].金属世界,2005(3):47-48.
    4.付珍.轻型金属镁的发展及应用[J].山西机械,2003,120(3):8-10.
    5.陆刚.铝镁钛合金材料在汽车工业中的应用和发展[J].上海有色金属,2006,27(2):43-48.
    6.苏鸿英.德国宝马公司采用镁铝复合材料生产汽车部件[J].世界有色金属,2004(8):47-48.
    7. H.Friedrich,S.Schumann. Research for a "new age of magnesium" in the automotive industry [J].Journal of Materials Procession Technology,117(2001):276-281.
    8. Kojima Yo. Project of platform science and technology for advanced magnesium alloys[J].Materials Transactions,2000,42 (7):1154-1159.
    9. Aghion E. And Bronfin B. Magnesium Alloys Development towards the 21st Century [J]. Materials Science Forum,350-351(2000):19-28.
    10. Robert Brown, Magnesium automotive meeting[J]. Light Metal Age,2(1992):18-24.
    11.燕战秋,华润兰,燕在华.镁合金在汽车中的应用[J].汽车工业与材料,1994(8):26-27.
    12.黄勇.神奇的镁合金[J].金属世界,2002(4):6-7.
    13.白丁.国际镁业界对中国镁业的一些看法[J].世界有色金属,2004(2):53-55.
    14.张同俊,李星国.镁合金的应用和中国镁工业[J].材料导报,2002,16(7):11-13.
    15.许小忠,刘强,程军.镁合金在工业及国防中的应用[J].华北工学院学报,2002,23(3):190-192.
    16.蔡叶,苏华钦,耿鑫明.镁合金熔炼中若干问题的研究[J].能源研究与利用,1994(4):12-15.
    17.向群,屈伟平.镁合金的发展与应用[J].有色设备,2004(5):38-43.
    18.苏鸿英.世界镁工业生产和技术展望[J].世界有色金属,2004(8):36-40.
    19. Akihiro Yamashita, Zenji Horita, Terence G. Langdon. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J]. Materials Science and Engineering,2001(A300):142-147.
    20. Sorin Ignat, Pierre Sallamand, Dominique Grevey, et al. Magnesium alloys(WE43 and ZE41)characterization for laser applications[J]. Applied Surface Science,2004(233): 382-391.
    21. J. C. Tan, M. J. Tan. Superplasticity in a rolled Mg-3Al-1Zn alloy by two-stage deformation method[J].Scripta Materialia,2002(47):101-106
    22. Hidetoshi Somekawa, Hiroyuki Hosokawa, Hiroyuki Watanabe, et al. Diffusion bonding in superplastic magnesium alloys[J]. Materials Science and Engineering,2003(A339): 328-333.
    23. Xin Wu, Yi Liu. Superplasticity of coarse-grained magnesium alloy [J]. Scripta Materialia, 2002(46):269-274.
    24. N. Cui, J.L. Luo, K.T.Chuang. Nickel-metal hydride (Ni-MH) battery using Mg Ni-type hydrogen storage alloy [J]. Journal of alloy and compounds,2000 (302):218-226.
    25. Liquan Li, Itoko Saita, Katsushi Saito, Tomohiro Akiyama. Effect of synthesis temperature on the hydriding behaviors of Mg-Ni-Cu ternary hydrogen storage alloys synthesized by hydriding combustion synthesis[J]. Journal of alloy and compounds,2004 (372):218-223.
    26. V.M. Skripnyuk, E.Rabkin, Y. Estrin, R. Lapovok. The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg-4.95 wt%Zn-0.71 wt%Zr (ZK60) alloy[J].Acta Materialia,2004 (52):405-414.
    27. G. Liang, J. Huot, S. Boily, et al. Hydrogen storage in mechanically milled Mg-LaNi5 and MgH2-LaNi5 composites [J]. Journal of alloy and compounds,2000(297):261-265.
    28. Hayao Imamura, Yoshirou Takesue, Takehiro Akimoto, et al. Hydrogen-absorbing magnesium composites prepared by mechanical grinding with graphite:effects of additives on composite structures and hydriding properties [J]. Journal of alloy and compounds,1999(293-295):564-568.
    29. Liquan Lia, Itoko Saitab, Katsushi Saitoc, et al. Hydriding combustion synthesis of hydrogen storage alloys of Mg-Ni-Cu[J]. Intermetallics 2002 (10):927-932.
    30. Nobuko Hanada, Takayuki Ichikawa, Shin-Ichi Orimo, et al. Correlation between hydrogen storage properties and structural characteristics in mechanically milled magnesium hydride MgH2[J]. Journal of alloy and compounds,2004 (366):296-273.
    31. S. Rivoirard, P. de Rango, D. Fruchart, et al. Catalytic effect of additives on the hydrogen absorption properties of nano-crystalline MgH2(X) composites[J]. Journal of alloy and compounds,2003(365-367):622-625.
    32.邸素梅.我国菱镁矿资源及市场[J].非金属矿,2001,24(1):5-7.
    33.姚素娟,张英,褚丙武等.镁及镁合金的应用与研究[J].世界有色金属,2005(1):26-30.
    34.左铁镛.中国镁及镁合金发展战略[J].科学中国人,2006(2):28-29.
    35.孟树昆.2005年中国镁工业发展报告[J].中国金属通报,2005(21):3-10.
    36.王香槐.闪亮的金属[J].金属世界,1998(1):25-26.
    37.左天明,申永全,宋晖.浅谈金属镁工业的发展[J].河南科技,1995(9):8-9.
    38.李一夫,戴永年.关于中国镁工业的思考[J].山西冶金,2006,102(2):11-14.
    39.周涛.2005年镁市场评述及2006年展望[J].中国金属通报,2006(7):8-12.
    40.周涛.2004年镁市场评述及2005年展望[J].中国金属通报,2005(9):1-7.
    41.周涛.2003年镁工业发展报告[J].中国金属通报,铝镁篇,2004(12):9-12.
    42. S.Ranmkrishnan, P.Koltun. Global warming impact of the magnesium produced in China using the Pidgeon process[J].Resources Conservation and recycling,42 (2004):49~64.
    43.梁蓓,梁义田.利用氧化镁电解生产金属镁[J].轻金属,2007(6):50-51.
    44.氧化镁在熔盐中的溶解度国外轻金属,1964.8.
    45.沙录昌,蔡安洪,候复生等.氧化镁直接电解制取金属镁的槽型和工艺研究[J].轻金属.1994(8):41~44.
    46. Ram A. Sharma. Method for producing magnesium metal from magnesium oxide[P].USA. 5279716,1994.1.18.
    47. Ram A. Sharma. An electrolytic process for magnesium and its alloys production [C]. Light Metals, WTMS,1996:1113-1122.
    48. Ram A. Sharma. A new electrolytic magnesium production process[J]. JOM,10(1996): 39-43.
    49.金属镁的制取方法特公昭国外轻金属,1964.8(57-65)
    50.薛文林,狄鸿利.熔盐电解法制取Al-Mg合金的研究[J].轻金属(冶炼部分).1993(4):11-14.
    51.路贵民,邱竹贤,铁军.低镁含量铝合金中镁的活度研究[J].轻金属,1998(3):50-53.
    52.路贵民,邱竹贤,铁军.氟化物熔体中镁在钨丝电极上的沉积[J].轻金属,1997(12):38-40.
    53.路贵民,马贺利.Al-Mg-Sc合金中组元活度及组元相互作用系数[J].稀土2(2000):43-45.
    54.路贵民,刘学山,蒋冬梅.Al-Mg合金热力学的计算[J].中国有色金属学报. 2(1999):381-384.
    55.曹大力.熔盐电解法及铝热还原法制备铝基中间合金的研究[D].东北大学,2006:92-96.
    56. Mahmoud A. Raban. Preparation of aluminum-magnesium alloys and some valuable salts from used beverage cans[J].Waste management,2003(23):173-182.
    57. Qiu Zhuxian, Zhang Mingjie, Wang Jing etal. Preparation of aluminum-magnesium master alloys by electrolysis of magnesium oxide in fluoride melts[C].Light Metals, WTMS 1991:349-355.
    58. Qiu Z X, Zhang M J. Preparation of aluminum master alloy by electrolysis in molten cryolite[J].Aluminum,1990,66(6):560-564.
    59. Qiu Zhuxian, Zhang Mingjie. Measurement of back emf and overvoltage in Aluminum electrolysis[J]. Aluminum,61(8):563-567.
    60.邱竹贤.预焙槽炼铝(第三版)[M].北京,冶金工业出版社.2005:431~439
    61. Kai Grjotheim, Halvor Kvande, Li Qingfeng, et al. Metal production by molten salt electrolysis[M].Xuzhou, China University of Mining and Technology Press.1998: 151-155.
    62.贺圣,李宗安,颜世宏等.YF3-LiF熔盐体系中氧化物电解共沉积钇镁合金的阴极过程研究[J].中国有色金属学报.2007,25(1):120-123.
    63. Arne K. Dahle, Young C. Lee, Mark D, Nave, et al. Development of the as-cast microstructure in magnesium-aluminum alloys[J]. Journal of Light Metals,2001(1):61-72.
    64. Kojima Yo. Project of platform science and technology for advanced magnesium alloys[J].Materials Transactions,2000,42 (7):1154-1159.
    65. Amy L. Rudd, Carmel B. Breslin, Florian Marisfeld. The corrosion protection afforded by rare earth conversion coating applied to magnesium [J].Corrosion Science,42(2000): 275-288.
    66. F. Von Buch, J.Lietzall, B.L.Mordike, et al. Development of Mg-Sc-Mn alloys [J].Materials Science and Engineering, A263(1999):1-7.
    67. Grobner, R.Schmid Fetzer. Selection of promising quaternary candidates from Mg-Mn-(Sc, Gd, Y, Zr) for development of creep-resistant magnesium alloys [J]. Journal of Alloys and Compounds,320 (2001):296-310.
    68. F.von Buch, J.Lietzau, B. L. Mordike, et al. Development of Mg-Sc-Mn alloys[J]. Materials Science and Engineering,A263(1997):1-7.
    69. Mayumi Suzuki, Hiroynuke Sato, Kouich Maruyama. Creep deformation behavior and dislocation substructure of Mg-Y binary alloys [J].Materials Science and Engineering, A 319-320(2001):751-755.
    70. Guangling Song, Pavid St John. The effect of zirconium grain refinement on the corrosion behavior of magnesium-rare earth alloy MEZ [J].Journal of Light Metals, 2(2002):1-16.
    71. B.L. Mordike. Creep-resistant magnesium alloys[J]. Materials Science and Engineering, A324(2002):103-112.
    72. F. Rosalbino, E. angelini, S. De Negri, Al. Saccone, et al. Effect of erbium addition on the corrosion behaviour of Mg-Al alloys[J]. Intermetallics,2005(13):55-60.
    73. Zeng Xiaoqin, Wang Qudong, Lu Yizhen et al. Influence of beryllium and rare earth additions on ignition-proof magnesium alloys[J].Materials Processing Technology,112 (2001):17-23.
    74. R. Ferro, A. Saccone, G. Borzone. Rare earth metals in light alloys[J]. Rare Earths 1 (1997):45-62.
    75. Polmear I J. Magnesium alloys and application[J].Materials Science and Technology, 1994:1-16.
    76. R.L.Deutscher, K.J.Cathro. Organcochlorine formation in magnesium electro winning cells. [J].Chemosphere.43 (2001):147-155.
    77. L.Lrokhlin, N.I.Nikitina. Recovery after ageing of Mg-Y and Mg-Gd alloys[J]. Journal of Alloys and Compounds,279 (1998):166-170.
    78. Yizhen lu, Qudong Wang, Xiaoqin Zeng, et al. Effects of rare earth on the microstructure, properties and fracture behavior of Mg-Al alloys[J].Materials Science and Engineering,A78 (2000):66-76.
    79. GPettersen, H.Westengen, R. Holer, et al. Microstructure of a pressure die cast magnesium-4wt%aluminium alloy modified with rare earth additions[J]. Materials Science and Engineering, A207 (1996):115-120.
    80. Richard S. Nicholsn. Theory and appliance of cyclic voltammetry for measurement of electrode reaction kinetics[J]. Analytical Chemistry,1965,37(11):1351-1355.
    81.田邵武.电化学研究方法[M].北京:科学出版社,1984,128.
    82.陈金钟,李冰,汪瑾等.氧化镁在NdCl3-NaCl-KCl-MgCl2熔盐中的溶解行为[J].稀有金属.2006,30(2):158-163.
    83. B.Borresen, G.M.Haarberg, R.Tunold. Electrodeposition of magnesium from halide melts-charge transfer and diffusion kinetics[J]. Electrochemical Acta,1997,142 (10):1613-1622
    84. Lantelme F, Cherrat E J. Electroanal. Chem.244(1988)61-68.
    85. Berghoute Y, Slimi A, Lantelme F. J. Electroanal. Chem.365(1994)171-177.
    86. S. Z. Duan, Y. Kang, X. F. Gu, Z. Y. Qiao. Chinese Journal of Rare Metals.17(1993)348.
    87. Wendt H, Reuhl K, Schwarz V. Electrochim. Acta 37(1992)237-244.
    88. Lantelme F, Alexopoulos H, Devilliers D,et al. J. Electrochem. Soc.138(1991) 1665-1671.
    89. Nekrasov V N, Dr. Sci. (Chemistry) Thesis, Sverdlovsk,1986
    90. Lantelme F, Cherrat E J. Electroanal. Chem.244(1988)61-68.
    91. Berghoute Y, Slimi A, Lantelme F. J. Electroanal. Chem.365(1994)171-177.
    92.张明杰,王兆文.熔盐电化学原理与应用[M].化学工业出版社,北京,2006:85-92
    93.高小霞.电分析化学导论[M].北京:科学出版社.1986:22.
    94. Robbins G D. Measurement of electrical conductivity in molten fluorides:a survey[J] Journal of the Electrochemical Society,1969,116:813-817.
    95. Hills G L, Djordjevic S. Electrode polarization in conductance measurements, with special reference to molten salt systems[J]. Electrochimica Acta,1968,13:1721-1726.
    96. Tomkins R P, Janz G J, Andalaft E. The polarization in Conductance Measurements [J]. Journal of the Electrochemical Society,1970,117:906-907.
    97. Wang X W, Ray D P, Alton T T. Electrical conductivity of cryolitic melts [C].Light Metals 1992[M]. Warrendale:Minerals, Metals & Materials Soc,1991:481-488.
    98. Wang X W, Ray D P, Alton T T. A multiple regression equation for the electrical conductivity of cryolitic melts[A]. Light Metals[C]. Warrendale:Minerals, Metals & Materials Soc,1992:247-255.
    99. Kim K B, Sadoway D R. Electrical conductivity measurements of molten alkaline-earth fluoride[J]. Journal of the Electrochemical Society,1992,139(4):1027-1033.
    100.Kim K B, Sadoway D R. Electrical conductivity measurements of binary solutions of molten alkaline-earth fluorides[J]. Journal of the Electrochemical Society,1992,139(8): 2128-2133.
    101.Wang L M, Alton T T, Nolan E R. The electrical conductivity of cryolitic melts containing aluminum carbide[C]. Light Metals. Warrendale:Minerals, Metals & Materials Soc,1994:177-185.
    102.王常珍.冶金物理化学研究方法[M].北京:冶金工业出版社,2002:344.
    103.徐君莉,石忠宁,高炳亮等.铝电解金属阳极上的气泡析出行为[J].中国有色金属学报,2002(2):298-301.
    104.Grjotheim K, Kvande H, QIU Zhuxian, et al. Interfacial phenomena in molten salt electrolysis [J].Aluminum,1989,65(2):157-162.
    105.Laszlo J K, Sandor P. Effect of the bubble growth mechanism on the spectrum of voltage fluctuations in the reduction cell [A]. Sclmeider W. Light Metals [C]. Warrendale:TMS, 2002.365-370.
    106.Xue J, Oye H. Bubble behavior-cell voltage oscillation during aluminum electrolysis and the effects of sound and ultrasound[A].Evans J. Light Metals [C].Warrendale:TMS,1995. 265-270.
    107.Hyde T H, Welch B J. The gas under anodes in aluminum smelting cells (part I):Measuring and modeling bubble resistance under horizontally oriented electrodes [A]. Huglen R. Light Metals. [C].Warrendale:TMS,1997.333-340.
    108.Aaberg R J, Ranum V, Williamson K, et al. The gas under anodes in aluminum smelting cells (part II):gas volume and bubble layer characteristics [A].Huglen R.Light Metals[C]. Warrendale:TMS,1997.341-346.
    109.Sadoway D R. A materials systems approach to selection and testing of non-consumable anode for the hall cell [A]. Boxall L G. Light Metals [C]. Warrendale:TMS,1990.403 407.
    110.Kai Grjotheim, Halvor Kvande, Li Qingfeng, et al. Metal production by molten salt electrolysis [M].Xuzhou,China University of Mining and Technology Press.1998:151~ 155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700