尼龙11/白炭黑纳米复合材料的原位制备、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尼龙11(PA11)是一种具有优异综合性能的工程塑料,其突出性能主要是吸水率低和低温冲击强度高,广泛应用于汽车输油管道和煤气工程等方面,随着对低成本及高力学性能要求的日趋提高,单一的PA11树脂已不能完全满足各行业的需求。纳米粒子具有很多新的特性,利用它对高分子进行改性,可以得到具有特殊性能的高分子材料或使高分子材料的性能更加优异。所以,我们选择白炭黑、蒙脱土两种无机纳米材料作为填充材料,利用原位聚合反应制备PA11/白炭黑和尼龙611/蒙脱土纳米复合材料。
     论文第一部分以廉价的水玻璃为原料,采用硫酸液相沉淀法制备白炭黑。系统研究了制备过程中水玻璃浓度、反应温度、搅拌速度、H2S04浓度、分散剂Na2S04用量、溶剂洗涤等因素对白炭黑制各及性质的影响,优化制备方案,并对优化方案下的白炭黑的结构、粒径、表观物理性质进行了表征。然后以11-氨基十一酸和湿态白炭黑为主要原料,通过原位聚合的方法制备出了PA11/白炭黑纳米复合材料,采用扫描电子显微镜(SEM)、红外光谱仪(FTIR)、热失重分析仪(TGA)、毛细管流变仪、差示扫描量热仪(DSC)和偏光显微镜(POM)等对PA11/白炭黑纳米复合材料的形态结构、热稳定性、流变性能、结晶性能、力学性能和阻隔性能等方面进行了研究。取得的主要研究成果如下:
     1.在白炭黑纯溶液体系中加入表面活性剂PEG6000,控制其发生沉淀反应的微环境,使得生成的沉淀颗粒被包裹起来,保持颗粒的分散性,有效地降低了颗粒的团聚。PEG6000用量为2%时,产品一次粒径为20~45nm。
     2.采用“一步”法即在沉淀反应后期直接往溶液中加入硅烷偶联剂KH570,改变纳米白炭黑表面极性,使其由亲水性转变为疏水性,从而具有与非极性的基体材料更好的相容性。试验中发现在改性剂用量为2%、改性反应时间为1.5h、溶液pH值为4.76时,改性效果最好,此时产品的活化指数为100%,一次粒径为20~45nm。经XRD分析可以看出,加入PEG6000、KH570后对产品晶型没有影响,产品还是无定形的非晶体结构。FT-IR、TG等表征进一步表明表面活性剂PEG6000和硅烷偶联剂KH570是通过化学键键合到白炭黑表面,而不是简单的物理吸附;TEM电镜照片显示经PEG6000及KH570改性后,产品的团聚现象明显改善,改性效果明显。
     3.由油包水法制备的白炭黑粒径小且分布比较窄,在原位聚合过程中均匀分散于PA11基体中,并且与PA11间存在较强的相互作用;随着白炭黑含量的增加PA11的特性粘度逐渐减小,初始失重温度逐渐提高;白炭黑的加入有助于提高PA11纳米复合材料的拉伸强度和弯曲强度、热稳定性和阻隔性能,但降低了纳米复合材料的断裂伸长率和冲击强度。
     4.利用毛细管流变仪研究了尼龙11/白炭黑纳米复合材料的流变性能。研究表明PA11及其纳米复合材料均为假塑性流体,表现为切力变稀现象,且非牛顿指数随白炭黑含量的增加而增大;当剪切速率恒定时,除白炭黑含量为5wt%的纳米复合材料的表观粘度略高于纯尼龙11之外,其他纳米复合材料的表观粘度均低于纯尼龙11;PA11及其纳米复合材料的粘流活化能随剪切应力的增大而降低,说明在恒定剪切应力下其可在较宽的温度范围内加工、成型。
     5.采用DSC研究了尼龙11/白炭黑纳米复合材料的结晶过程及熔融行为。研究结果表明,白炭黑在纳米复合材料中起到了异相成核的作用,Avrami方程能很好的描述PA11及其纳米复合材料的等温结晶动力学过程,而经过Jeziorny修正过的Avrami方程及Mo法则能很好地描述非等温结晶动力学过程;利用Hoffman-Weeks公式和Hoffmann-Lauritzen理论求得了复合材料的平衡熔点和非等温过程的结晶活化能。
     论文第二部分以11-氨基十一酸、尼龙6预聚体和蒙脱土为原料,用原位聚合的方法制备出了尼龙611/MMT纳米复合材料,采用SEM、FTIR、TGA等并对其结构、特性粘度、形态、阻隔性能及热稳定性等方面进行了研究。主要研究成果如下:
     1.当蒙脱土含量较低时,复合材料形成了剥离结构,蒙脱土片层无规分散于聚合物基体中,而当蒙脱土含量较高时形成了插层结构。同时,研究还表明蒙脱土片层与尼龙分子链之间有较强的相互作用力。
     2.由于蒙脱土的限制作用,尼龙611/蒙脱土纳米复合材料粘均相对分子质量随着蒙脱土含量的增加逐渐下降。
     3.随着蒙脱土含量的增加,拉伸强度和断裂伸长率均呈现先增加后降低,而拉伸模量随着蒙脱土含量的增加而增大;尼龙611及其复合材料的冲击强度略有下降。
     5.蒙脱土的加入提高了材料的阻隔性能,较之于尼龙611,复合材料的吸水率、吸油值均随蒙脱土含量的增加大幅下降,分别下降了2倍和2.5倍;同时初始失重温度提高了10℃。
Polyamide11(PA11) is an engineering plastics with excellent performance, suchas low water absorption and high low-temperature impact strength. PA11was mostlyused as automobile pipe-laying and municipal gas pipe as well as offshore oilfieldapplication.But with the increasing request of low cost and high mechanical properties,pure PA11resin can not fully satisfy various usages. Nanoparticles have a lot of newcharacteristics. Using nanotechnology in modification of polymers, nanocomposits with somespecial properties or polymers with more outstanding properties can be gained. Consequently,nylon11/silica nanocomposites, and nylon611/MMT nanocomposites were in-situpolymerized using silica and MMT as fillers.
     In the first part, silica was prepared via the vitriol precipitation method usingcheaper water glass as raw material.The influence of the reactant concentration(water glass, H2S04, Na2S04) and processing, parameters (reaction temperature,stirring rate, solvent washing reaction) on the morphology and properties of silicawere investigated systemically and optimized the synthesis technology.The structure,particle size and its distribution, and surface physical properties were alsocharacterized.PA11/silica nanocomposites (PSN-X, where X represent the weightpercentage of silica) were in-situ polymerized using11-amino undecanoic acid andwet silica as raw materials, and its morphology structure, thermal stability, rheologicalbehavior, crystallization properties, mechanical properties and barrier properties wereinvestigated by scanning electron microscopy (SEM), fourier-transform infraredspectroscopy (FTIR), thermo-gravimetric analyzer (TGA), capillary rheometer,differential scanning calorimeter (DSC) and polarizing microscopy (POM),respectively. The main results were listed as following:
     1. PEG6000was used as surfactant to control the minienvironment for the coprecipitation reaction,in which the formed precipitates were bundled by PEG6000and kept the precipitates from aggregating.The result showed that the average size ofprimary nanosilica particle was about20~45nm.
     2. Hydrophobic nanosilica was prepared by”one-step” precipitation method,thatis,silane coupling agent KH570was added into the reaction mixtures during the laststage of synthesis.The affinity of hydrophobic nanosilica with polymer matrix wasexpected to be improved.The activation coefficient of silica is100%,the averagesize of primary silica particle is about20-45nm. The XRD indicated that thenanosilica was still amorphous non-crystalline structure after the treatment withsurfactant PEG6000and silane coupling agent KH570.FTIR and TG analysisshowed that the surface active agents PEG6000and silane coupling agent KH570isgrafted to the surface of nanosilica by chemical bond rather than by simple physicaladsorption.TEM photographs illustrated that the aggregation of nanosilica wasimproved significantly after the treatment with surfactant PEG6000and silanecoupling agent KH570.
     3. Silica of small particle size and narrow distribution was prepared byoil-in-water microemulsion, and was uniformly dispersed in PA11matrix duringin-situ polymerization. Strong interaction was observed between PA11and silica.With the increasing silica content, the inherent viscosity gradually decreased and theinitial temperature of weight loss improved slightly. The addition of silica contributedto improve the tensile strength, flexural strength, thermal stability and barrier propertyof PA11, while it also led to reduce the impact strength and elongation at break.
     4. Rheological properties of PA11/silica nanocomposites were investigated bycapillary rheometry. The experimental results showed that both PA11and PA11/silicananocomposites were pseudoplastic fluid and exhibited shear-thinning behavior.Non-newtonian index increased with the silica content increasing. In case of aconstant shearing rate, apparent viscosity of all PA11/silica nanocomposites exceptPSN-5was lower than that of pure PA11. The reduction of the viscous activationenergy with the increasing shearing stress indicated that nanocomposites can beprocessed over a wide temperature at a constant shearing stress.
     5. Crystallization and melting behavior of PA11and PA11/silicananocomposites were investigated by differential scanning calorimeter. It was foundthat silica acted as the nucleating agent of PA11, the Avrami equation was suitable todescribe the isothermal crystallization of PA11and its nanocomposites,while both theAvrami equation modified by Jeziorny and Mo’s method well described thenonisothermal crystallization kinetics. Additionally, the equilibrium meltingtemperature and the activation energy of nonisothermal crystallization fornanocomposites were calculated from Hoffman-Weeks equation andHoffmann-Lauritzen theory.
     In the second part, nylon611/MMT nanocomposites were in-situ polymerizedusing11-amino undecanoic acid, nylon6prepolymer and montmorillonite as rawmaterial. The structure, intrinsic viscosity, morphology, barrier properties, mechanicalproperties and thermal stability were characterized by scanning electron microscopy(SEM), fourier-transform infrared spectroscopy (FTIR),thermo-gravimetric analyzer(TGA),, respectively. The main results were listed as following:
     1. Organoclays were thoroughly exfoliated and dispersed homogenously in the nylon6/11matrix at low organoclay loading, but Intercalated and stacked silicates layerswere observed at high organoclay loading. It was also found that strong interactionoccurred between organocaly and nylon611chains.
     2. The viscosity-average molecular weight of nylon611/organoclay nanocompositeswas reduced with the increasing MMT content since that the organoclay blockades theactive ending-group of the monomers.
     3. The tensile strength and elongation at break was increased with the initial additionof MMT and then decreased with the further increasing MMT content. With theincreasing MMT loading level, the tensile modulus and impact strength werecontinuously increased and reduced, respectively.
     4. The barrir properties of nanocomposites were improved with the incorporation ofMMT, as indicated by the fact that the water absorption and oil absorption werereduced by twofold and2.5times versus pure nylon611. the onset temperature of weight loss was also increased by10℃.
引文
[1] Roy R., Komarnenis, Roy D. M., Cation-exchange properties of hydratedcements.Mater Res Soc Symp Proc,1984,32(2):347.
    [2]王涛,张立德.纳米氮化硅红外吸收谱的“蓝移”和“宽化”现象[J].中国科学院研究生学报,1993,4:253-256.
    [3] Balizer E., Fedderrly J., Haught D., et al. FTIR and X-ray study of polymorphs ofNylon11and relation to ferroelectricity. J Polym Sci., B: Polym Phys,1994,32:365-368.
    [4] Chen P. K., Newman B. A., Scheinbeim J. I., et al. High pressure melting andcrystallization of Nylon-11. Materials Sci.,1985,20:1753-1762.
    [5] Zhang Q. X., Mo Z. S., Zhang H. F., et al. Crystal transitions of Nylon11.Polymer,2001,42:5543-5547.
    [6]李齐方.尼龙11共混合金体系的研究[D].北京:北京化工大学,1998.
    [7]张醒.尼龙11的性能与应用[J].江苏化工,1994,22(2):24.
    [8]金国珍.工程塑料[M].北京:化学工业出版社,2001.
    [9] Kohan M. I., Nylon Plastic. John Wiley&Sons,1973.
    [10]产业投资[J],2003,(10):66.
    [11]张庆新,莫志深.尼龙11结构与性能的研究进展[J].高分子通报,2001,(6):21.
    [12]胡国胜等.尼龙11及其合金材料的制备与应用[J].塑料工业,2006,(5):145.
    [13]夏纬通.白炭黑在灯泡工业中的应用[J],江苏化工,1995,23(1):7-11.
    [14]于欣伟.白炭黑二次结构与附加压力关系的研究[J],鞍山钢铁学院学报,1998,21(3):8-13.
    [15]杨海垄等.气相法白炭黑的表面改性[J],有机硅材料及应用,1999,16(5):15-18.
    [16]唐晓多.尼龙6纳米复合材料的制备、结构和性能的研究[D].南京:南京理工大学,2002,12.
    [17] Nakayama S., Kageyama T., Aono H., Sadaoka Y., Ionic conductivity ofLanthanoid silicates Ln10(SiO4)6O3(Ln=La,Nd,Sm,Gd,Dy,Y,Er and Yb).Mater.Chem,1995,5:1801-1805.
    [18] Moreshead W. V., Nogues J. R., Krabill R. H., Preparation, processing andfluorescence characteristics of neodymium-doped silica glass prepared by the sol-gelprocess. Non-crysta.Solids,1990,121:267-272.
    [19] Pope E. J. A., Machenzie J. D., Sol-gel processing of Neodymia-silica glass.Am.Ceram. Soc,1993,76:1325-1328.
    [20] Lochhead M. J., Bray K. L., Spectroscopic characterization of doped sol-gelsilica gels and glasses: evidence of inner-sphere complexation of europium.Non-Cryst.Solids,1994,170:143-154.
    [21]郑舒文等.白炭黑生产工艺的研究进展[J].辽宁化工,1999,11:340-342.
    [22]宋凤珠,涂学忠,曾泽新等.白炭黑及其改性产品在轮胎工业中的应用[J].轮胎工业,1997,17(4):195-200.
    [23] El-Halwagi M., Manousiouthakis M. V., Synthesis of Mass Exchange Networks.Al ChEJ., Aug.1989,35(8):1233-1244.
    [24] El-Halwagi M. M., Srinivas B. K., Synthesis of Rective Mass ExchangeNetworks. Chem. Eng. Sci,1992,47(8):2113-2119.
    [25] Douglas J. M., Ahierachical decision procedure for process synthesis. Al Ch EJ,1985,31:353.
    [26] El-Halwagi M. M., Hamad A. A., Garrison G. W., Synthesis of WasteInterception and Allocation Networks. Al Ch EJ, NOV.1996,42(11):3087-3101.
    [27] Nouredin M. R., El-Halwagi M. M., Internal-analysis for pollution prevention viamass integration. computer sand chemical engineering,1999,23(10):1527-1543.
    [28] Yonghong Ni, Xuewu Ge, Zhicheng Zhang, and Qiang Ye., Fabrication andCharacterization of the Plate-Shaped γ-Fe2O3Nanocrstals. Chem.Mater.2002,14:1048-1052.
    [29] M.A. Lpez-Manhado, M.Arroyo, B.Herrero, Vulcanization kinetics ofnature-organoclay nanocomposites, polymer,2003,44:2441~2453.
    [30] Ruckenstein E,, Liang H., Surface modification and functionalization through theself-assembled monolayer and graft polymerization. Chem. Mater.,1996,8:546.
    [31]赵竹第等.尼龙6/蒙脱土纳米复合材料的制备、结构与力学性能的研究[J].高分子学报,1996,(2):228.
    [32] Schmidt H. K., et al. The properties of titanium-containing amorphoushydrogenated carbon films. Tech.,1997,1(3):557.
    [33] Blumstein A., Bull. Chim. Soc.,1961,5:899.
    [34] Okada A.,Kawasumi M.,et a1., Polym Prepr,1987,28:447·
    [35] Peter C., LeBaron Z., Wang T., J. Pinnavaia, Polymer-layered silicatenanocomposites: an overview, Appl. Clay Sci.,1999,15:11-29.
    [36] Kojima Y., Usuki A., Kawasumi M., et a1., Mechanical Properties of Nylon6-clay Hybrid, J. Mater. Res.,1993,8:1185-1189.
    [37] Reichert P., Kressler J., Thomann R., et a1., Nanocomposites Based on aSynthetic Layer Silicate and Polyamide-12, Acta Polymer.,1998,49:116-123.
    [38] Kim G. M., Lee D. H., Hoffmann B., et al., Influence ofNanofillers on theDeformation Process, in Layered Silicate/Polyamide-12Nanocomposites Polymer,2001,42:1095-1100.
    [39] Z. Wu, C. Zhou, et a1., Synthesis and characterization of nylon1012/claynanocomposite, Appl Polym Sci,2002,83:2403-2410.
    [40] X. Zhang, G. Yang, J. Lin, Synthesis rheology and morphology ofnylon-11/layered siIicate nanocomposite. J. Polym. Sci.,2006,44:2161-2172.
    [41] Vaia R. A., Giannelis E. P., Lattice of polymer melt intercalation inorganically-modified layered silicates, Macromolecules,1997,30:7990-7999.
    [42] T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, D. R. Paul, Effect oforganoclay structure on nylon6nanocomposite morphology and properties, Polymer,2002,43:5915-5933.
    [43] T. McNally, W. Raymond Murphy, Chun Y. Lew, et al., Polyamide-12layeredsilicate nanocomposites by melt blending, Polymer,2003,44:2761-2772.
    [44] T. Liu, K. Lira, W. C. vjin, et al, Preparation and characterization of nylon11/organoclay nanoconpositcs, Polymer,2003,44:3529-3535.
    [45]王志强等.纳米二氧化硅改性尼龙11的研究[J].塑料工业,2005,33:73-75.
    [46]赵才贤等.原位聚合法制备PA6/SiO2纳米复合材料[J].高分子材料科学与工程,2007,23(1):218-221.
    [47]朱金唐等.原位聚合尼龙纳米复合材料的研究[J].合成纤维工业,2007,30(5):1-4.
    [48]杜拴丽等.有机化纳米SiO2填充改性尼龙6复合材料的研究[J].塑料工业,2007,35(8):25-27.
    [49]魏珊珊等.尼龙6/纳米SiO2复合材料力学性能研究[J].湘潭大学自然科学学报,2002,24(4):42-45.
    [50]李莹等.纳米SiO2粒子表面官能团对尼龙6原位聚合的影响[J].高分子学报,2003,(2):235-240.
    [51]方秀苇等.可反应性纳米SiO2/尼龙复合材料的制备和力学性能[J].材料研究学报,2008,22(5):521-525.
    [52]方秀苇等.可分散性纳米SiO2/尼龙1010复合材料的结晶行为[J].化学研究,2009,20(1):33-36.
    [53]徐翔民等.尼龙66/SiO2纳米复合材料的界面结构及其对材料力学性能的影响[J].高分子材料科学与工程,2009,25(2):41-44.
    [54]卢会敏等.尼龙66/SiO2纳米微粒复合材料的结晶行为[J].化学研究,2006,17(1):72-74.
    [55]张治军等.两次挤出制备尼龙66/纳米SiO2复合材料及其结构与性能[J].高分子材料科学与工程,2007,23(3):182-185.
    [56]臧树良等. MC尼龙6/SiO2纳米复合材料的制备与表征[J].塑料工业,2005,33(9):11-13.
    [57]Fujiwara S.,Sakamoto T., Method For Manufacturing A Clay-PolyimideComposite, Kokai Patent Application No.SHO51-109998,1976
    [58]舒中俊、漆宗能、王佛松,聚合物阻燃新途经—聚合物/粘土纳米复合材料的特殊阻燃性,高分子通报,2000,4:65
    [59]Dabrowski F,Bourbigot S,Delobel R,et al., Kinetic modeling of the thermaldegradation of polyamide-6nanocomposite, EUR POLYM J200036(2):273~284
    [60]Lee CU, Bae K, Choi HK,et al,A study on the preparation of polyimide/claynanocomposites, POLYM-KOREA24(2)2000:228-236
    [61]漆宗能、王胜杰、李强、赵竹第等,一种聚酰胺/粘土纳米复合材料及其制备方法[p].中国专利:申请号zl96105362.3,2000-08-12
    [62]王新宇、漆宗能、王佛松等,聚合物-层状硅酸盐纳米复合材料的制备及应用[A],98全国高分子材料工程应用研讨会论文集[C],五夷山:中国机械工程学会,中国材料学会,中国化学会,工程塑料应用,1999,2:8-13
    [63]赵文聘、黄平等,蒙脱土改性尼龙-6复合材料的性能研究,塑料科技,2003,(6):20-22
    [64]刘立敏、乔放、朱晓光等,熔体插层制备尼龙6/蒙脱土纳米复合材料的性能表征,高分子学报,1998,3:304-310
    [65]Okada A,Kawasumi M,Synthesis and characterization of a nylong6-clayhybrid,[J].Polym.Prepr,1987,28(2):447-448
    [66]徐卫兵,聚合物/粘土纳米复合材料研究,中国科学技术大学博士学位论文,2001,4
    [67] Kojima Y,Usuki A, Kawasumi M, et al, Novel Prefereeed Orientation ininjection-molded nylong6-clay hybrid[j]. J, Polym SCI Part b: polymphys,1995,33(7):1039-1045
    [68]Jae Youn Lee.,Arelette R C, Baljon.Simulation of polymer melt intercalation inlayered nanocomposites, J of Chemical Physics,1998,109(23):10321
    [69]漆宗能、李强、赵竹第,一种聚酰胺/粘土纳米复合材料及其制备方法,中国专利CN96.105.3623
    [70]王一中,粘土/尼龙6嵌入化合物的合成与表征,高分子材料科学与工程,1998,(3)14:23-25
    [71]刘立敏、乔放、朱晓光等,熔体插层制备尼龙6/蒙脱土纳米复合材料性性能表征,高分子学报,1998,(3):301-310
    [72]李迎春、胡国胜,尼龙11/蒙脱土纳米复合材料研究,工程塑料应用,2004.6:18~20
    [73]王娜、田一光、封禄田、张明光、陈千贵,尼龙6/蒙脱土纳米复合材料制备和性能研究,沈阳化工学院学报,2002,6(2):99-103
    [74]钟明强、孙莉、罗炜,PA6/蒙脱土日熔融插层复合材料结构与性能分析,合成树脂及塑料,2003,20(3):28-31
    [75]杨宁、贵大勇、田军等,蒙脱土插层尼龙66及其合金力学性能研究,塑料,2004,(3):40-43
    [76]陈业、韩克清、林江滨等,PA66/MMT纳米复合材料的制备及结构与性能研究,工程塑料应用,2002(12):5-7
    [77]田国锋、张建斌、刘建伟等,尼龙1212/蒙脱土纳米复合材料的制备与性能研究,工程塑料应用,2003,(10):9-11
    [78] Giannelis E P, Polymer layered silicates nanocomposite,Adv.Mater1996,8(1):29~35
    [79] Vaio R A,Jandt K D, Kraner E J,Giannelis E P,Microstructual evolution of meltintercalated polymer-organically modified layered silicates nanocomposite chem.Mater,1996,8:2628~2635.
    [80]Arelette R C,Baljon,Jae Youn Lee, Molecular view of polymer flow into astrongly attractive slit,J. of chemical physics,1999,111(19):9068
    [81]王一中、张楠、余鼎声,挤出法制备尼龙6/蒙脱土纳米复合材料,工程塑料应用,1997,27(12):1-3
    [82]刘立敏、朱晓光、漆宗能,尼龙6/蒙脱土纳米复合材料的等温结晶动力学研究,高分子学报,1999,(3):274-279
    [83]李强、赵竹第、欧玉春、漆宗能、王佛松等,高分子学报,1997,(2):188
    [84]柯林萍、阳明书、张世民等,尼龙66/蒙脱土复合材料结晶行为的研究,高分子学报,2002,4:472-478
    [85]朱诚身、吕励耘、何素芹等,蒙脱土对尼龙66熔融与结晶行为的影响,2002,10:985-988
    [86]何素芹、吕励耘、朱诚身等,成核剂对尼龙66熔融与结晶的影响,塑料工业,2004,(2):39-40
    [87]宋国君、佘希林等,三元尼龙/蒙脱土纳米复合材料制备及表征,工程塑料应用,2003,(6):5-7
    [88]王留阳、何素芹、郝留成等,尼龙1010/蒙脱土纳米复合材料的合成与表征,高分子材料科学与工程,200,4:62-65
    [89]Hoffmann B,Kressler J,Stoppelmann G,Morphology and rheology of polystrenenanocomposites based upon organoclay,Colloid Polym Sci,2000(7):629
    [90] Kojima Y,Usuki A, Kawasumi M, et al, Novel Preferred Orientation ininjection-moldednylong6-clay hybrid[j].J,Polym Sci Part b:Polym Phys,1995,33(7):1039-1045
    [91]Kojima Y,Usuki A, Kawasumi M,et al, Fine structure of nylong6-clayhybrid[J].J,Polym SciPart B:Polym Phys,1994,329(4):625-630
    [92]李迎春、胡国胜、王志强等,尼龙11/蒙脱土纳米复合材料的流变性能,高分子材料科学与工程,2004,(5):152-154
    [93]吴增刚,聚合物/蒙脱土纳米复合材料的制备、结构与性能研究,上海交通大学博士学位论文,2001,12
    [94]张以河、付绍云、李国耀等,聚合物基纳米复合材料的增强增韧机理,高技术通讯,2004,(5),99-105
    [95]崔丽等.尼龙6/粘土与聚乙烯醇共混物中尼龙6的晶型转变.高分子材料科学与工程.2010,26(8):42-45.
    [96]张成贵,孙春红等.尼龙6/POE/粘土纳米复合材料的研究.化工新材料.2009,37(10):37-39.
    [97]白林景,孔令梅等.尼龙6粘土纳米复合材料的红外光谱研究.山东轻工业学院学报.2008,22(3):7-8.
    [98]王波孔,令梅等.尼龙6/粘土纳米复合材料低温下微结构的正电子湮没研究.武汉大学学报.2007,53(3):323-327.
    [99]东为富,张晓红等.尼龙6/橡胶/天然粘土纳米复合材料的制备及其力学性能.化工新型材料.2006,34(8):45-48.56.
    [100]马广印,王建华.尼龙6粘土纳米复合材料的性能.合成纤维工业.2005,28(3):50-53.
    [101]于德梅,郭秀生等.尼龙6/粘土聚合物纳米复合材料的性能表征-电性能研究.高分子材料科学与工程.2004,20(3):133-135,143.
    [102] T. Jiang, Y. H. Wang, et al. Study on solvent permeation resistance properties ofnylon6/clay nanocomposite. J. European Polymer.2005,41:459-466.
    [103]张秋.尼龙611/蒙脱土纳米复合材料的制备、表征和性能研究.中北大学.2009
    [104]潘鹤林,徐志珍碳酸钙表面处理工艺研究及机理探讨[J].无机盐工业,1997,(4):13~14.
    [105] M. E. Aub, Colloid and Surface,1985,(16):301~307.
    [106]于丽丽碳酸钙粉末的表面改性[J].天津化工,2000,(3):11~13.
    [107] R. B. Seymouy, Fillers for Plastics. Modern Plastics Encycl,1974,217~226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700