硫铁矿烧渣制备聚合硫酸铁和聚磷硫酸铁新工艺及基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫铁矿烧渣是硫酸工业的固体废弃物,硫铁矿烧渣的综合利用既能消除烧渣对环境的危害,又作为资源进行了利用。因此,硫铁矿烧渣的综合利用具有十分重要的意义。本研究利用硫铁矿烧渣制备得到高质量的硫酸亚铁、聚合硫酸铁(PFS)和新型絮凝剂聚磷硫酸铁(PPFS)。
     为了提高烧渣中铁的回收率,采用了熟化法处理烧渣。烧渣与硫酸混合后经过熟化和水浸,铁浸出率达到91%以上。适宜的熟化条件是熟化温度200~300℃、熟化时间1~2h、硫酸浓度65~85%、硫酸用量系数为1~1.2。
     研究证明在适当条件下,烧渣直接与硫酸反应后铁的浸出率也可达到90%。适宜的酸浸条件为反应温度95~115℃、反应时间3~4h、硫酸浓度40~50%、硫酸用量系数0.9~1.1。酸浸工艺比熟化工艺简单、反应温度低。
     经XRD实验首次发现烧渣和硫酸混合后固化料和熟化料均有FeHSO_4 4H_2O晶体物质生成,SEM证实熟化料为晶体状。烧渣与硫酸反应时,Fe_3O_4的反应活性高于Fe_2O_3,烧渣中Fe_2O_3与硫酸反应受扩散控制,符合颗粒收缩芯模型,动力学方程为1-(1-x_B)~(2/3)=kt。反应速度常数与温度的关系式为k=8.33×10~4_e~(-6.936/RT),反应活化能E_0为6.936kJ/mol。
     烧渣酸浸液中加入铁皮,反应温度高于50℃、Fe~(3+)浓度低于2mol/L、反应4h后,酸浸液中Fe~(3+)被完全还原,9~17℃冷却还原液,得到绿矾。首次采用胶体分散法和氯酸钠部分氧化法由烧渣酸浸液制备得到液体PFS,在PFS溶液中加入磷酸钠得到PPFS。将液体PFS蒸发浓缩后,于60~80℃下搅拌干燥7h得到固体PFS,采取同样的方法也可制备得到固体PPFS。氯酸钠部分氧化法优点是工艺简单,减少了氧化剂用量,降低了成本,有利于产业化。
     TG-DTA实验发现加热PFS和PPFS凝胶样至500℃,出现2次吸热和失重变化,吸热和失重温度区间分别大致为27~160℃和170-290℃。通过XRD首次发现固体PFS和PPFS主要物相为Fe_(4.67)(SO_4)_6(OH)_2·20H_2O,经过130℃以上温度处理后,Fe_(4.67)(SO_4)_6(OH)_2·20H_2O物相消失。因此可知失重是由于失去游离水、部分结晶水和Fe_(4.67)(SO_4)_6(OH)_2·20H_2O的分解而产生。FTIR分析说明固体PFS和PPFS有3400cm~(-1)、1635cm~(-1)OH基团吸收峰和998cm~(-1) Fe-OH弯曲振动吸收峰。XRD和FTIR实验结果证实PFS和PPFS含有羟基。
     PFS和PPFS与盐酸反应非常迅速,酸解液pH值不随时间变化。PFS和PPFS中形态比依次为Fe(a)/Fe_总>Fe(b)/Fe_总>Fe(c)/Fe_总。固体PFS、液体PPFS、液体PFS的Fe(b)和Fe(c)百分含量依次增加,Fe(b)和Fe(c)百分含量并随盐基度和
    
    中南大学博士学位论文摘要
    ,;(P):n(Fe)增加而增加。固体PFS、液体PPFS和液体PFs最高Fe(a)zFe:比分
    别为56,76%、76.99%、79.57%,最高Fe(b)/Fe总比分别为27.8x%、21.72叹、
    一8.7x%,Fe(e)/Fe总比分别为21.71%、13.76%、13.77%。电中和能力由强到弱
    依次为固体PFs>液体PPFS>液体PFS。絮凝硅藻土悬浊液,胶体杏电位变化范围为
    一60mv一+3omV。絮凝生活污水,胶体咨电位变化范围为一30mV一+l ZmV
     PFS和PPFS去除CODcr和浊度的能力为固体PFS>液体PPFS>液体PFS .PFs
    和PPFS絮凝规律表现出与PFS和PPFS的电中和能力和形态变化相似的规律。
    B=14.40%的固体PFS、B=9.33%和n(P):n(Fe)=0.05的液体PPFS、B=14.40%液体
    PFs具有最佳絮凝效果,这些絮凝剂处理浊度为55.3mg/L、pH=7 .46的硅藻土悬浊
    液,加人的剂量(Fe,+)为2.76mg/L时,浊度去除率分别为90.78%、88.61%、84.99%。
     pH值为7.49、浊度56mg/L、CODer为163.5mg/L的城市生活污水经固体pFS、
    液体PPFs、液体PFs、FeZ(504)3、PeA处理,剂量为o.smmol/L(以Fe3+或A13+、}一。
    时,浊度去除率大于99%, CODc:去除率分别为70.00%、69.00%、66.60%、62.13%、
    60.00%,PFS和PPFS处理生活污水后达到了8978一1996综合污水排放的一级标准
    PFs处理总磷含量为4.1 lmg/L的生活污水,剂量(Fe3+)为11.lmg/L时,,曾、磷去除
    率为68.12%。PPFs絮凝总磷为0.37 mg/L的自来水,剂量(Fe3+)达到27.6mg/L
    时,总磷下降到。.17 mg/L。
     液体PPFs去除euZ+和PbZ+的效果好于液体PFs。终点pH值为6.8、齐}J量(Fe又+。
    为27 .6mg/L时,模拟重金属污水经PPFS和PFs处理后,cuZ十去除率分别为93.。%
    和88.7%,Pb2+去除率分别100%和99.2%。
     实验结果说明PFS和PPFS处理硅藻土悬浊液和城市污水效果好,并能够有效
    地去除重金属和总磷。
Pyrite cinders are the solid waste of sulfuric acid industry. The comprehensive utilization of pyrite cinders is very important because the comprehensive utilization can not only control the cinders pollution, but also recover the resource. Ferrous sulfate, polyferric sulfate and phosphoric polyferric sulfate have been prepared from pyrite cinders.
    The maturation method has been adopted to treat the cinders in order to raise the recovery rate of iron. The rate of iron recovery is up to 91% by means of maturating the cinders. The suitable factors of maturation are as follows, that maturation temperature is 200-300 C , maturation time is l~2h, H2SO4 concentration is 65-85% and cost coefficient of H2SO4 is 1-1.2.
    The recovery rate of iron is also up to 90% by leaching cinders with sulfuric acid .There are suitable factors of leaching that reaction temperature is 95-115 C, reaction time is 3~4h, H2SO4 concentration is 40-50% and cost coefficient of H2SO4 is 0.9-1.1. The leaching technology is simpler than the maturation technology.
    XRD proves first time that FeH(SO4) 4H2O is produced after mixing cinders with H2SO4 and maturating the mixture of cinders and H2SO4. SEM demonstrats that the globular cinders become crystal grains after maturation. Fe3O4 is more reactive than Fe2O3 when cinders react with H2SO4. The reaction between Fe2O3 and H2SO4 is controlled by diffusion and the reaction is applicable to the shrinking core model. The
    leaching kinetics equation was 1-(1-xB)2/3 =kt. k = 8.33x104e-6.936/RT. the active
    energy Eo is 6.936kJ/mol.
    Fe3+ is completely reduced to Fe2+ after putting iron sheet into the leaching liquid and reacting for 4h When reaction temperature is above 50C and Fe3+ concentration is below 2mol/L. FeSO4 7H2O is crystallized from Fe2+ solution by cooling at 9C-17C. PFS solution has been prepared first by dispersing Fe (OH) 3 colloid in the leaching liquid or by oxidizing FeSO4 in the leaching liquid with NaClO3. Phosphoric polyferric sulfate has been obtained by putting Na3pO4 in the PFS solution. Solid PFS has been produced by drying and stirring at 60~80C for 7h after concentrating PFS solution. Solid PPFS has been also prepared in this way.
    TG-DTA tests show there are tow TG weight loss peaks and tow DTA exothermic peaks in the TG-DTA curves. The temperature ranges of the peaks are respectively 27-160C and 170~290C. Fe4.67(SO4)6(OH)2 20H2O in the solid PFS and PPFS has been discovered by XRD tests. Fe4.67(SO4)6(OH)2 2OH2O disappears after heating above 130C. The first loss weight occurs and the second loss weight is resulted because of losing free water by heating and losing crystal water and Fe4.67(SO4)6(OH)2 2OH2O decommission .FTIR spectroscopy shows that absorption bands at 3400cm-1 and 1635 cm-1 arise from OH and absorption bands at 998cm-1 came from Fe-OH in the solid PFS and PPFS.
    PFS and PPFS react with HCl rapidly and pH value of the solution is not dependent on the time. The species percentage of Fe(a), Fe(b) and Fe(c) of the same PFS and
    
    
    
    PPFS are up in order. The percentages Fe(b) and Fe(c) increase and The percentage of Fe(a) decreases as alkali degree and the mole ratio of P and Fe increase. The ratios of Fe(b) and Fe(c) increase from solid PFS, liquid PPFS to liquid PFS. The highest Fe(a) ratios of solid PFS, liquid PPFS and liquid PFS are 56.76%,76.99% and 79.57%.The highest Fe(b) ratios of them are 27.81%,21.82% and 18.71%,.The highest Fe(c) ratios of them are 21.71%,13.76% and 13.77% respectively. Charge neutralization effects increase in the same order as solid PFS, liquid PPFS and liquid PFS. When solid PFS, liquid PPFS and liquid PFS flocculate dialomile suspensions and municipal wastewater the ranges of zeta potentials are from -60mV to +30mV and from -30mV to +12mV respectively.
    The effects of COD and turbidity removal are such as the order of charge neutralization and the species ratios. These coagulants have highest rates of COD and turbidity removal when alkali degree of solid PFS is 14.40%, alkali degree and mole ratio P/Fe of liquid PPFS are 9.33%
引文
[1] 严瑞瑄.水处理剂应用手册[M].北京:化学工业出版社,2000.
    [2] 张宏仁.中国的淡水资源问题[J].环境保护,2001,(5):3~7.
    [3] 解振华.新世纪环境形势与对策[J].环境保护,2001,(9):3~8.
    [4] 国家环保总局.2000年中国环境状况公报[J].环境保护,2001,(7):3~9
    [5] Patric N. Johnson and A. Amirtharajah. Ferric chloride and alum as single and dual coagulants. J. AWWA, 1983, 75(5): 232~239
    [6] 左淑密.铁系无机高分子絮凝剂的生产与应用[J].上海化工,1999,(12):28~32.
    [7] N. Parthasarathy and J. Buffie. Study of polymeric aluminum(Ⅲ) hydroxide solutions for application in waste water treatment. Properties of the polymer and optimal conditions of preparation[J]. Wat. Res., 1985. 19(1): 25~36.
    [8] 严瑞瑄.水溶性高分子[J].北京:化学工业出版社,1998.
    [9] Brian A. Bolto. Soluble polymers in water purification[J]. Progress. Polym sci., 1995, 20(6): 1014~1016.
    [10] 董银卯,于鲲,梁瀛洲.新型阳离子有机絮凝剂的研制[J].工业水处理,1996,16(2):20~22.
    [11] 杨通在,刘亦农,杨君.阳离子型酸性高分子絮凝剂对轻工废的处理[J].工业水处理,1998,18(2):27~29.
    [12] HS Kim, D J Joo, Y D Joung. The use of soluble organic polymers in waste treatment[J]. Environ Tech., 1995, 16(5): 489~494.
    [13] G.F. Fanta, C L Swanson and W M Poane. Composites of starch and poly (ethylene-co- arcylic acid) complexing between polymeric components[J]. J Appl. Polym. Sci, 1990, 40: 811~821.
    [14] G.E Faata; Ptrimnell and J H Salch. Graft polymerization of Methyl Acrylate-vinyl Acetate mixtures onto starch[J]. J. Appl Polym. Sci., 1993, 49: 1679~1682.
    [15] 孙先锋,张志杰.微生物絮凝剂的特性研究及其进展[J].环境导报,2001.(2):22~23.
    [16] 胡勇有,高健.微生物絮凝剂的研究与应用进展[J].环境科学进展[J],1999,7(4):24~29.
    [17] Takagi H, Hadowaki K.. Flocculant production by Peacilomyces Sp. taxonomic studies and culture conditions for production[J]. Agric Biol. Chem., 1985, 49(1): 3151~3157.
    [18] Kurane R, Takedak, Suzuki T. Screening for and characteristics of microbial flocculants[J]. Agric. Biol. Chem., 1986, 50(9): 2301~2307.
    [19] Levg N, Magdassi S and Bar-Or Y. Physico-chemical aspects in flocculation of bentonite suspensions by a cyanobacterial biofocculant[J]. Wat. Res., 1992, 26(2): 249~254.
    [20] 胡筱敏.化学助滤剂[M].北京:冶金工业出版社,1999.
    [21] 肖锦,杞永亮.我国絮凝剂发展的现状与对策[J].现代化工,1997,(12):6~9.
    [22] 栾兆坤,汤鸿霄.我国无机高分子絮凝剂产业发展现状与规划[J].工业水处理,2000,20(1):1~6
    [23] R. D. Letterman and S. G. Vanderbrook. Effect of solution chemistry on coagulation with hydrolyzed Al(Ⅲ)[J]. War. Res., 1983, 17(1): 195~204.
    [24] A. Amirtharajah and kirk M. Mills. Rapid-Mix design for mechanisms of alum coagulation[J]. J. AWWA. 1982, 74(4): 210~216.
    [25] John E. Van Benschoten and James K. Edzwald. Chemical Aspects of Coagulation using aluminum salts —Ⅰ. Hydrolytic reactions of alum and polyaluminum chloride[J]. Wat. Res., 1990, 24(12): 1519~1526.
    [26] John E. Van Benschoten and james K. Edzwald. Chemical Aspects of Coagulation using aluminum salts
    
    —Ⅱ. Hydrolytic reactions of alum and polyaluminum chloride[J]. Wat. Res., 1990, 24(12): 1527~1535.
    [27] 汤鸿霄.无机高分子絮凝剂的基础研究.环境化学[J],1990,9(3):1~12.
    [28] 栾兆坤,汤鸿霄.聚合铝形态分布特征及转化规律[J].环境科学学报,1988,8(2):146~154.
    [29] J. Y. Bottero, M. Axelos, D. Tchoubar, J. M. Cases, J. J. Friplat and F.Fiessinger. Mechanism of formation of aluminum trihydroxide from keggin Al_(13) Polymers[J]. J. Colloid and Interface Science. 1987, 117(1): 47~57.
    [30] 苏威.无机絮凝剂发展及建议[J].工业水处理,1993,13(1):3~7.
    [31] 三上八州家,森田博也.硫酸第2铁下水处理適用[J].PPM,1982,(11):42~46.
    [32] 三上八州家,森田博也,长友二郎,榖村裕次,石井典辉.硫酸第2鐵用污泥 脱水处理[J].PPM,1985,(4):21~28.
    [33] 三上八州家,森田博也.谷村裕次.硫酸铁溶液他无机凝集剂性能比较[J].PPM.1988.(1):17~27.
    [34] 三上八州家,森田博也,谷村裕次.硫酸铁溶液与用硫化水素除去实例[J].PPM.1989.(2):26~33.
    [35] 李明玉,唐启红,张顺利.无机高分子混凝剂聚合铁研究开发进展.工业水处理[J].2000,20(6):1~5.
    [36] 吴浩汀,刘立伟.聚合硫酸铁与其它无机混凝剂性能的比较[J].水处理技术,1989,15(5):290~294.
    [37] 吕新之.铝的污染和危害[J].环境保护,1998,(5):38~39.
    [38] 汪光焘.城市供水行业2000年技术进步发展规划[M].北京:中国建筑工业出版社,1993
    [39] 崔福义,胡明成,张燕.我国部分城市饮用水中铝含量调查[J].中国给水排水,2002,18(1):5~8.
    [40] S. K. Mittal and R. K. Ratra. Toxic effect ions on biochemical oxygen demand[J]. Wat. Res.. 2000, 34(1): 147~152.
    [41] 孔繁翔,周风帆,张凤,郭丽君.酸性pH及铝对鲤鱼吸收~(45)Ca的影响[J].环境化学,1997,16 (3):272~276.
    [42] Joseph BH, Laverne C, Edward EL, Influence of pH and aluminum on developing brook trout in a low calcium water[J]. Environ. Pollut., 1987, 43: 63~73.
    [43] Christian Volk, Kimberly Bell, Eva Ibrahim, Debble Verges. Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water[J]. War. Res., 2000, 34(12): 3247~3257.
    [44] Nabil S. Abuzaid and Aarif H. Elmubarak. Coagulation of polymeric waste waster discharged. by a chemical factory[J]. Wat. Res. 1999, 33(2): 521~529.
    [45] Fenny AM, Helence AH, Serah KL. Hydroxylated ferric sulfate-an aluminum salt alternative[J]. Water Supply. 1992, 10(4): 167~174.
    [46] F T Li, GD Ji, G Xue. The preparation of inorganic coagulant-polyferric sulphate[J]. J of chem. Tech and Biotech., 1997, 123(9): 859~864.
    [47] Jaroalav R. Derka, Westhill. Canada. Manufacture of hydroxylated Ferric Sulphate compound[P]. US: 5 194 241, 1993-03-16.
    [48] 胡德录,张英香,肖文荪.聚合硫酸铁的生产方法[P].CN:86100483A,1987-1-31
    [49] 樊冠球.水处理用碱式硫酸铁混凝剂[P].CN:1052295A,1991,6,19.
    [50] 李风亭.国外氮氧化物催化法合成聚合硫铁新工艺[J].工业水处理,1998,18(5):9~10.
    [51] Nawlakhe, W. H. Conversion of Ferrous to ferric iron for its effective use as coagulant.[J]. Environ. Health, 1988, 30(2): 142~154.
    [52] 赵湘骥.马荣骏,杨镜泉.液体聚合硫酸铁的制备仅其性能研究[J].环境求索,1992,9(1):16~19.
    [53] Prasak. T. R Manufacture of free-flowing anhydrous iron(3+) Sulfate[P]. IN 166666, 1990-06-30.
    
    
    [54] Krepl Ka, J. Manufacture of chloride-free iron-based coagulation agent for water treatment[P]. CS 268199, 1991-0-15.
    [55] Krepl Ka, J. Waste-free preparation of mixture of jorosi to with goethite and ferric Sulfate by pressure oxidation (P). CS 277 141, 1992-11-18.
    [56] 雷华,袁书玉.无机絮凝剂聚合硫酸铁制备方法的评价[J].环境保护,1997(4):15~16,23.
    [57] 阮复昌,公国庆,莫炳禄,卢燕玲,张民权.聚合硫酸铁的生产技术与效益评价[J].广东化工,1995,(2):4~6.
    [58] 陈辅君.无机高分子混凝剂聚合硫酸铁的制备新工艺,中国给水排水,1995,11(1):32~35.
    [59] 刘金良,赵红范,吕丽俐.聚合硫酸铁的制备及应用[J].河南化工,1991,(1):17~19.
    [60] 白玉兴,刘君,李杨.聚合硫酸铁合成中催化剂的研究[J].工业水处理,1996,16(2):9~11.
    [61] 林冰,廖为鑫,汪林.一种新的聚合硫酸铁的生产方法[P].CN 1053222A,1991-07-24.
    [62] 章振,李安德.高效混凝剂净水灵的开发及应用[J].石油炼制与化工,1985,26(7):60~62.
    [63] K.M.Allal, M Ouchefoun, M Boumahrez. Oxidation of iron (Ⅱ) sulphate to iron (Ⅲ) sulphate and use in water treatment[J]. J. of Chem. Tech. and Biotech., 1996, 34 (10): 151~159.
    [64] Ferguson, W. J. Manufacture of aqueous ferric sulfate solutions and their use in water purification[P]. GB2226561, 1990-06-11.
    [65] 刘万昌,刘增春.低品位菱铁矿石生产聚硫酸铁新工艺[J].CN:1048205A,1991-01-02.
    [66] 三上八州家.铁系混凝系制造法[P].日特公昭286228,1986-12-16.
    [67] 黄仁和,曾凡.一种煤系硫铁矿催化氧化生产聚铁和铁黄的方法和装置[J].CN:1262227A,2000-08-09.
    [68] 哈凤贵,高礼让,林辉英,赵国鹏.用于净化水的聚合铁生产工艺[P].CN:1051155A.1991-05-08.
    [69] 薛宝祺.用氧化剂制取固体聚合硫酸铁的方法[P].CN:1292355A,2001-04-25.
    [70] 汪多仁.一步法制备固体聚合硫酸铁新工艺[J].化工环保,1997,17(4):211~214.
    [71] 史成武.氯酸盐直接氧化法制备高浓度聚合铁[J].现代化工,1995,(6):35~36.
    [72] Rennerfelt, Lars. Manufacture of trivalent iron-containing water purification chemicals by oxidation of Divalent Salts with Chlorine-Containing Compounds[P]. DE4015804, 1991-07-04.
    [73] Thomas G. Spiro, Samuel E.Allerton, John Renner, Aristides Terzis, Robert Bils, and Paul Saltman. The hydrolytic polymerization of iron (Ⅲ)[J]. J. Am. Chem. Soc. 1966, 88(12): 2721~2726.
    [74] 王大伟.硫酸烧渣制备聚合硫酸铁的新方法[J].化学工程师,1998,(6):39~40.
    [75] Banerjee A. C., Sood Sandhya. Thermal analysis of basic ferric sulphate and its formation during oxidation of iron pyrite[C]. Thermal Analysis, Proceedings of the seventh international conference. 1982: 769~774, John Wiley & Sons.
    [76] Bermhard, R. Method for the manufacture of ferric sulphate by treating ferric oxide with sulfuric acid[P]. SE 451999, 1987-11-09.
    [77] 谭正洪,钟兴强.聚硫酸铁制造新工艺[P].CN:1043287A,1990-06-27.
    [78] 吴玢,郝丽萍.聚合硫酸铁生产方法,CN:1049487A,1991-02-27.
    [79] 宁平,何少先,孙佩石,吴晓明.硫铁矿烧渣生产聚合硫酸铁及其应用[J].云南化工.1992.(1):35~36.
    [80] 蒋馥华,张萍,陶武阳,申照全.黄铁矿烧渣制备聚合硫酸铁实验[J].硫酸工业,1995,(1):14~16.
    [81] 周华,易德莲,李忠勇.利用硫铁矿烧渣生产聚合硫酸铁的工艺与应用研究[J].硫酸工业.1996,(2):40~46.
    [82] 常青.絮凝科学的研究与进展[J].环境科学,1994,15(1):69~72.
    [83] 迪特尔·哈斯,纳鲁·斯皮拉托斯,卡梅尔·若利科尔.聚合碱式硅硫酸铝[P].CN:1042340A,
    
    1990-05-23.
    [84] Takao Hasegawa, Takaya Onitsuka, Minoru Suzuki, Yasuhiro Ehara. Method and flocculants for water treatment[P], USP4923629, 1990-05-08.
    [85] Hasegawa T, Hashimoto K. Characteristics of metal-polysilicate coagulants[J]. Water Sci. and Tech.. 1991, 23(7): 1713~1722.
    [86] 胡翔,周定.高效无机混凝剂聚硅酸铁铝的研究[J].中国环境科学,1999,19(3):266~269.
    [87] Haase Dieter, Spiratos Nelu, Jolicoeur Carmel. Pohymeric basic aluminum silicate sulphate[P]. EP 0372715A1, 1990-06-13.
    [88] D Q Bunker, J K Edzwald, J Dahlquist. Pretreatment considerations for dissolved air flotation: Water type. coagulants and flocculation[J]. Wat. Sci. And Tech., 1995, 31(34): 63~71.
    [89] Olson L.L., O'Melia C. R. The interactions of Fe(Ⅲ) with Si(OH)4[J]. J. Inorg. Nucl. Chem., 1973.35: 1977~1985.
    [90] 莫炳禄,公国庆,阮复昌,卢燕玲.多元共聚铁系净水剂的生产方法[P].CN:1156127A,1997-08-06.
    [91] 孙剑辉,夏四清,孙瑞霞.絮凝剂PFCS的制备及其性能研究[J].1996,17(4):59~61.
    [92] 石太宏,王靖文,郭蔼仪,汤兵.新型絮凝剂PPFS的制备及其絮凝性能研究[J].中国环境科学,2001,21(2):161~164.
    [93] 刘峙嵘,王旮,韩国芹.聚合磷硫酸铁的合成研究[J].工业水处理,1999,19(1):19~20.
    [94] 刘峙嵘,欧阳霞,刘健强.聚合磷硫酸铁的初步应用[J].污染防治技术,1998,11(4):240~242.
    [95] 朱虹.聚合磷硫酸铁在低温型分散染料废水处理中的应用[J].水处理技术,2001,27 (4):233~235.
    [96] 王东升,吴奇藩,韦朝海.新型无机高分子絮凝剂含铁聚硅酸的研制及其性能[J].环境科学,1997,18(3):17~19.
    [97] 孙向东,王云祥,常同胜.聚硅硫酸铁的合成及性能研究[J].水处理技术,2001,27(4):223~238.
    [98] 宋永会,栾兆刊,岳钦艳,高宝玉.聚硅硫酸铁的混凝性能及其应用[J].环境化学,1997,16(6):600~605.
    [99] 高宝玉,宋永会,岳钦艳.聚硅酸硫酸铁混凝剂的性能研究[J].环境科学,1997,18(2):46~48.
    [100] 马晓鸥,康思琦,刘小军,田宜灵.含硼聚硅酸硫酸铁混凝剂的制备及性能研究[J].现代化工.2000,20(11):42~44,46.
    [101] 高宝玉,于慧,岳钦艳,王艳,黄佶.用煤石干石制备聚合氧化铝铁絮凝剂的研究[J].环境科学,1996,17(4):62~66
    [102] 刘振儒,赵春禄,斐建文,李广科.Al(Ⅲ)和Fe(Ⅲ)共聚合及其混凝效果的研究[J].环境科学学报. 1995,15(1):48~56
    [103] Jiang J-Q., Graham N. J. D. Prelimary evaluation of the performance of new pre-polymerized inorganic coagulants for lowland surface water treatment[J]. Wat. Sci. Tech., 1998, 37 (2): 121~128.
    [104] 张盼月,王继徽,江鸿,曾光明.活性硅酸混凝剂PFASS C处理造低废水[J].污染防治技术,10 (3):151~154.
    [105] 栾兆刊,刘振儒,赵春禄.聚铝铁硅絮凝剂的合成方法及其混凝效能[J].环境化学,1997,16(6):546~551.
    [106] 陈立丰,李明俊,万诗贵,田东,曾中平.有机高分子絮凝剂和聚铁絮凝剂处理高浊度原水的研究[J].水处理技术,1999,25(1):49~53.
    [107] 邹景瑶,王文超.复合絮凝剂及其制造方法[P].CN:1205308A,1999-01-20
    [108] 高礼让,高丽娟,王金东,李恒义.新型聚合硫酸铁的研制及其结构和净水效果的探讨[J].化学世界,1986,(10):519~522.
    
    
    [109] 杨天石.固体聚合硫酸铁的应用与一步法生产工艺[J].无机盐工业,2001,33(3):26~27.
    [110] 易德莲,周华.用聚合硫酸铁处理硫酸生产中含砷废水的实验研究[J].硫酸工业,1996,(2):42~43,48.
    [111] 吕向红.聚铁处理制革液水[J].广东化工,1997,(1):36,39.
    [112] 何义亮,邱处.聚合硫酸铁处理制革废水[J].水处理技术,1995,21(3):175~178.
    [113] 祁梦兰.用聚合硫酸铁混凝剂处理合成洗涤剂废水的试验研究fJ].环境工程,1988,6(6):34~36.
    [114] 张文平,王鹿星.聚合硫酸铁.助凝剂处理印染废水[J].上海环境科学,1991,10(5):9~13.
    [115] 周志才,舒余德.聚合硫酸铁处理含油废水的条件试验[J].环境保护,1996,(12):16~18.
    [116] 孙家秦.PFS的应用研究及实例[J].化学世界,1990,(2):57~61.
    [117] Jiang J-Q, Graham N.J.D., Comparison of polyferric sulphate with other coagulants for the removal of algae and algae-derived organic matter[J]. War. Sci. Tech. 1993, 27 (110: 221~230.
    [118] 张春晖,奚旦应,徐寅汇.应用复合碱式氯化铝对垃圾渗沥液进行预处理的研究[J].环境污染治理技术与设备,2001,2(1):59~61,43.
    [119] Stumm and Morgen. Aquatic chemistry[M]. Wiley. New York, 1981.
    [120] Wemer Stumm and James J. Morgan. Chemical aspects of coagulation[J]. AWWA, 1962, 54 (6): 971~992.
    [121] H. Gallard, J. De Laat and B. Legube. Spectrophotometric study of the formation of iron (Ⅲ) hydroperoxy complexes in homogenous aqueous solutions[J]. War. Res., 1999, 33 (13): 2929~2936.
    [122] Milburn R. M. and vosburgh W. C. A spectrophotometric study of the hydrolysis of iron (Ⅲ)ion. Ⅱ. Polynuclear species[J]. J. Am. Chem. Soc., 1955, 77: 1352~1355.
    [123] Knight R. J. and Sylva R. N. Spectrophotometric investigation of iron (Ⅲ) hydrous in light and heavy water at 25℃[J]. J. Inorg. Nucl. Chem. 1975, 37: 779~783.
    [124] W.Schneider. Hydrolysis of iron (Ⅲ)-chaotic olation versus nucleation[J]. Commerts Inorg. Chem., 1984, 3 (4): 205~223.
    [125] Charles M. Flynn, JR. Hydrolysis of inorganic iron (Ⅲ) Salts[J]. Chem. Rev., 1984, 84: 31~41.
    [126] Dousma J., De Brugn PL. The hydrolysis-precipitation studies of iron solution[J]. J. Colloid and Interface Sci., 1976, 56: 527~537.
    [127] Tang Hong-xiao, Wemer Stumm. The coagulation behaviors of Fe(Ⅲ) polymeric species-Ⅰ preformed polymers by base addition[J]. War. Res., 1987, 21 (1): 115~121.
    [128] Tang Hong-xiao, Wemer Stumm. The coagulation behaviors of Fe(Ⅲ) polymeric species-Ⅰ preformed polymers by base addition[J]. Wat. Res., 1987, 21 (1): 123~128.
    [129] 高宝玉,王占生,汤鸿霄.聚硅氯化铝(PASC)混凝剂的颗粒大小及分子量分布[J].中国环境科学,1999,19(4):297~300.
    [130] Hasse O, Spiratos N. Polymeric basic aluminum silicate-sulfate[P]. EP 0372715A 1, 1990-06-13.
    [131] Patteron J H. Tyree J R. A light scattering study of the hydrolytic polymerization of aluminum[J]. J. Colloid and interface Sci., 1973, 43 (2): 389~398.
    [132] Barth H G.. Particle size analysis[J]. Annal. Chem., 1995, 67 (12): 257~272.
    [133] Bottero J Y, Tchoubar D. Arnaud M.. Partial hydrolysis of ferric chloride salt, structural investigation by dynamic light scattering and small-angle X-ray scattering[J]. Langmuir, 1991, 7 (50): 1365~1369.
    [134] 王东升,吴奇藩,韦朝海.光子相关光谱在无机高分子絮凝剂形态表征中的应用[J].环境化学,1997,16(5):442~448.
    [135] 刘和清,汪凤珍,袁天佑,谭承德,韦万兴.聚硅酸锌絮凝剂的电镜特征和絮凝效果[J].环境化学,2001,20(2):179~184.
    
    
    [136] A Cornelissen, M G. Burnett, RD Mccall. The structure of hydrous flocs prepared by batch and continuous flow water treatment systems and obtained by optical, electron and atomic force microscopy[J]. Water Sci. Tech., 1997, 36 (4): 41~48.
    [137] Smith R. W.. Relations among equilibrium and non-equilibrium aqueous species of aluminum hydroxide complexes[J]. Adv. Chem. Ser., 1971, 106: 250~279.
    [138] Murphy P. J., Posner A. M. and Guirk J. P.. Chemistry of iron in soil[J]. J. Soil Sci.. 1975, 13: 189~201.
    [139] 田宝珍,汤鸿霄.Ferron逐时络合比色法测定Fe(Ⅲ)溶液聚合物的形态[J],环境化学,1989.8 (4):27~33.
    [140] 王东升,汤鸿霄.聚铁硅型复合无机高分子絮凝剂的形态分布特征[J],环境科学,2001,22(1):94~97.
    [141] 王东升,汤鸿霄,栾兆坤.含硅酸盐水解Fe(Ⅲ)溶液的形态分析方法-Fe-Ferron与β-Silicomolydate法相结合[J].环境化学,1998,17(3):225~229.
    [142] J.D.Russell. Infrared spectroscopy of ferrihydrite: evidence for the presence of structural hydroxyl groups[J]. Clay Minerals, 1979, 14: 109~114.
    [143] Kemeth M. Towe and William E Bradley. Mineralogical constitution of colloidal "hydrous ferric oxides"[J]. J, colloid and interface Sci., 1967, 24: 384~392.
    [144] 田宝珍,汤鸿霄.聚合铁的红外光谱和电导特征[J].环境化学,1990,9(6):70~76.
    [145] Ronald G. Wollmann and David N. Hendrickson. Preparation and physical physical properties of oxidation products of oxo-bridged binuclear iron (Ⅲ) complexes. Mixed-valence diiron(Ⅲ. Ⅳ) complexes[J]. Inorganic chemistry, 1977, 16 (4): 723~730.
    [146] 常青,傅金镒,郦兆龙.絮凝原理[M].兰州,兰州大学出版社,1993.
    [147] Wernner Stumm and charles R. O'Melia. Stoichemistry of coagulation[J]. J. AWWA, 1968, 60(5): 514~438.
    [148] O'Melia, C. R.. Coagulation and flocculation. Physicochemical processes for water quality control[M]. Wiley Interscience, new York, 1972.
    [149] 王志石.混凝和过滤工艺过程的基础理论方面[J].土木工程学报,1988,21(4):48~53.
    [150] 苏绍眉.建设项目环境保护实用手册[M].北京,中国环境科学出版社,1992.
    [151] 薛立基,马乃洋.硫酸渣的基本特性及其利用[J].环境工程,1992,10(3):42~45.
    [152] Potamianves N., Kontopoulos, A. Recovery of Gold and Silver from Arseni ferrous Pyrite cinders By Acidic thiourea leaching[C]. Precious Metals: Mining, Extraction, and Processing, Los Angeles, 1984, 9: 323~335.
    [153] 房裕生,张华.硫铁矿烧渣湿法脱硫及伴生有价金属的提炼方法[P].CN:1074947A,1993-08-04.
    [154] 王兴印,李建洲.利用硫酸厂焙烧废渣提取银初步探讨[J].陕西化工,1992,(3):44~47.
    [155] Lenchev Al., Donchev, I., Zhelyazkova, B.G. Behavior of Copper, Zinc, Sulphur and Arsenic in the sulphatizing Roasting of Pyrite cinders[J]. Scandinavian Journal of Metallurgy, 1983, 12 (3): 133~136.
    [156] Yamamichi, Yoshikazu; Kudo, Tomomichi, Na Kayama, Minoru; Orii, Makoto. New trial for making copper powder from cement copper[J]. Journal of the Japan Society of Powder and Powder Metallurgy. 1975, 21 (8): 227~232.
    [157] AraKawa Saburo. Solution treatment at Dowa Seiko Amagasaki Plant[J]. Journal of the Mining and Metallurgical Institute of Japan, 1973, 89 (1025): 423~428.
    [158] 南京钢铁厂.黄铁矿烧渣综合利用中温氯化法中间试验[J].硫酸工业,1967,(5):12~32.
    [159] 扈文斌.铬硫两渣高炉炼铁新工艺[J].无机盐工业,1991,(1):32~35.
    
    
    [160] Kapoor, J. N., Mathur D. P. Studing on the flocculation characteristics of pyrites cinder in dilute Sulphuric Acid with polyacrylamide[J]. Fertilizer Technology, 1981, 18(3-4): 184~188.
    [161] Ozawa Masaya, Tanaka Minoru. Reduction of fine iron ores in gas conveyed system[J]. Transactions of The Iron and Steel Institute of Japan, 1973, 13 (6): 402~408.
    [162] Anon. Utilization of by-productive iron resource from non-ferrous mineral industry[J]. J. of the Mining and Metallurgical Institute of Japan, 1978, 4: 1~10.
    [163] 南化公司研究院.广东去除硫铁矿综合利用试验总结[J].硫酸工业,1992,(1):3~13.
    [164] 胡宾生,王晖.南化硫酸渣磁化熔烧.磁选工艺的研究[J].环境工程,1999,17 (4):53~56.
    [165] 许斌,庄剑呜,刘国庆,姚锐.硫酸烧结渣利用途径的研究[J].矿业综合利用,1999,(4):44~48.
    [166] 商志民,宋保山,李留记.硫铁矿烧渣制硅的试验[J].硫酸工业,1989,(4):51~56.
    [167] Alimmaryi, salim A., Tamas Ferenc D. Burnability of cement raw materials at rapid calcinations conditions[J]. Cement and Concrete Research, 1980, 10 (6): 739~752.
    [168] 张培根,葛秋萍,周宝石.我国硫铁矿烧渣综合利用的研究与实践概况[J].化工环保,1996.16:146~151.
    [169] 郑雅杰.龚竹青,陈白珍,陈文泊.硫铁矿烧渣湿法制备铁系产品的原理和途径分析[J].环境污染治理技术与设备,2001,2(1):48-54.
    [170] 张龙银.淄博钛厂以硫酸为中心的资源综合利用硫酸工业[J].1991,(1):28~32.
    [171] 姚福琪.由黄铁矿制配矿渣生产黄色氧化铁(r-Fe_2O_3)[J].河北化工,1989,(1):8.
    [172] 陈白珍,龚竹青,黄坚,郑雅杰,王之平.硫铁矿烧渣制备铁黄颜料的工艺研究[J].无机盐工业,2001,33(4):39~42.
    [173] 杨喜云,龚竹青,陈白珍,郑雅杰,黄坚.氧化铁黑颜料的制备[J].涂料工业,2001,(3):21~23.
    [174] 孙石,宋平,吴晓明.硫铁酸烧渣制取硫酸亚铁的研究[J].化工环保,1990,10(4):227~229.
    [175] 卢世鲁.硫铁矿渣制硫酸高铁[J].化学世界,1960,15(2):83~84.
    [176] 王雪松,张德海,仁允芙.黄铁矿烧渣的特性及其利用[J].环境工程,1999,17(1):58~61.
    [177] 杨声海,唐谟堂,张凯,孟芸.高硅硫铁矿烧渣浸出过程动力学机理[J].中南工业大学学报,2001,32(6):583~586.
    [178] 梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [179] 刘立三.化成法硫酸酸解硫铁矿渣[J].硫酸工业,1995,(2):51~54.
    [180] 温普红,宋周周.以硫酸渣为原料制备铁黑工艺研究[J].无机盐工业,1994,(1):31~33.
    [181] 孙康.宏观反应动力学及其解析方法[M].北京:冶金工业出版社,1998.
    [182] 朱炳辰.化学反应工程[M].北京:化学工业出版社,1993.
    [183] Tkacovo K and Balaz P. Selective leaching of Zinc from mechanically activated complex Cu-Pb-Zn concentrate[J]. Hydrometallurgy, 1993, 33: 291~300.
    [184] Pankaj kasliwal, P.S.T Sai.. Enrichment of titanium dioxide in red mud: a Kinetic study[J]. Hydrometallurgy, 1999, 53: 73~87.
    [185] Edward Olanipekun. kinetic study of the leaching of a Nigerian ilmenite one by hydrochloric acid[J]. Hydrometallurgy, 1999, 53: 1~10.
    [186] 魏晓娜,夏光祥.砷黄铁矿在催化氧化酸浸体系中心反应[J].中国有色金属学报,1994,4(2):31~33.
    [187] 刘志宏,钟竹前,梅光贵.金属铜与二氧化锰同时浸出的动力学研究[J].中国有色金属学报,1994,4(3):41~44.
    [188] 王明华,都兴红,隋智通.H_2SO_4分解富钛精矿的反应动力学[J].中国有色金属学报,2001,11
    
    (1): 131~134.
    [189] Ekinci Z, Colak S, Cakici A, Technical note leaching kinetics of sphalerite with pyrite in chloride saturated water[J]. Minerals Engineering, 1998, 11(3): 279~283.
    [190] Breed AW and Hansford GS. Studies on the mechanism and Kinetics of bioleaching[J]. Mineral Engineering, 1999, 12 (4): 383~392.
    [191] 傅献彩,陈瑞华.物理化学(下)[M].北京:人民教育出版社,1979.
    [192] 陈朝华.钛白粉生产技术问答[M].北京:化学工业出版社,1998.
    [193] 秦榕年.硫酸法钛白厂副产硫酸亚铁的综合利用[J].广西化工,1996,25(3):26~30.
    [194] 郑典模,孙同圣,刘晓红,卢芳仪,蒋柏泉.七水硫酸亚铁治理利用有研究[J].环境工程,2000.18(3):42~43.
    [195] 陈次中.谈谈钛白副产物硫酸亚铁的提纯[J].湖南化工,1989,(2):43~45.
    [196] 陈家荪,张胜建.从亚铁盐水溶液中去除杂质的方法[P].CN:1099728A,1995-03-08.
    [197] 高志钢,郑吉建,于德永.硫铁矿烧渣回收再利用[J].无机盐工业,1999,31(2):36~37.
    [198] 杨松青,蒋汉瀛.黄铁矿的电化学研究[J].物理化学学报,1991,7(6):735~739.
    [199] S.B.Kanungo. Rate process of the reduction leaching of manganese nodules in dilute HC1 in presence of pyrite. Part Ⅰ. Dissolution behavior of iron and sulphur species during leaching[J]. Hydrometallurgy. 1999, 52: 313~330.
    [200] L. K. Bailey, E. Peters. Decomposition of pyrite in acids by pressure leaching and anodization: the case for an electrochemical mechanism[J]. Canad. Metall. Quart., 1976, 15: 333~340.
    [201] 候长军,霍丹群.硫铁矿渣生产硫酸亚铁还原过程动力学研究[J].硫酸工业,1998,(6):13~15.
    [202] 顾庆超,楼书聪,戴庆平.化学用表[M],南京:江苏科学技术出版社,1979.
    [203] 胡勇有,王占生,汤鸿霄.聚磷氯化铝溶液形态分布及转化规律[J].环境科学学报,1995,15(2):224~231.
    [204] Vitor Augusto do Rego Monteiro, Elizabeth Fatima de Souza, Marcelo Mantovani Martiniano de Azevedo, and Fernando Galembeck. Aluminum Polyphosphate Nanoparficles: Preparation, particle size determination, and microchemistry[J]. J. Colloid and Interface Science, 1999, 217: 237~248.
    [205] Roger L R Roger L A, Roger St C S. The mechanism of phosphate fixation by iron oxides[J]. Soil Sci. Soc. Amer. Proc., 1975, 39: 837~841.
    [206] Roger L R Roger L A, Roger St C S. Infrared study of phosphate adsorption on goethite[J]. J. Chem. Soc. Faraday Ⅰ, 1973, 70: 1472~1479.
    [207] Hsu Pa Ho.土壤化学选论[M].北京:科学出版社,1982
    [208] 田宝珍,汤鸿霄.含磷酸酸盐的三氯化铁水解溶液的化学特征[J].环境化学,1995,14(4):329~336.
    [209] Noriko Yamaguchi, Takusei Hashitani, Masanori Okazaki, and Tom Tokeda. Volume change in an aqueous suspension of amorphous iron(Ⅲ) hydroxide due to the adsorption of phosphates (H_2PO_4)[J]. J. Colloid and Interface Science, 1996, 183: 280~284.
    [210] 田宝珍,汤鸿霄.Fe(Ⅲ)水解过程中无机阴离子的影响作用[J].环境化学,1993,12(5):365~371.
    [211] 吕伺红.固体聚铁的研制[J].广州化工,1996,24(4):35~37.
    [212] 王发利.用硫酸亚铁制备聚合硫酸铁絮凝剂[J].陕西化工,1992,(1):21~25.
    [213] 赵湘骥,马荣骏,杨镜泉.固体聚合硫酸铁的制备及其特性研究[J].矿冶工程,1995,15(2):33~36.
    [214] 吴瑾光.近代傅里叶变换红外光谱技术及应用(下)[M].北京:科学技术文献出版社,1994
    [215] L.J.具拉米.复杂分子的红外光谱[M].北京:科学出版社,,1975
    [216] Yuji Arai and DL. Sparks. ATR-FTIR Spectroscopic Investigation on phosphate adsorption mechanisms
    
    at the ferrihydrite-water interface[J]. Journal of Colloid and Interface Science 2001, 241, 317~326.
    [217] Singley J. P., and Black A. E Hydrolysis products of iron(Ⅲ)[J]. 1967, 59(12): 1552~1559.
    [218] 常青,汤鸿霄.聚合铁的形态特征和凝聚—絮凝机理[J].环境科学学报,1985,5(2):185~193.
    [219] 高宝玉,于慧,岳钦艳,王淑仁.PACS的结构特征及絮凝性能研究[J].环境化学,1994,13(2):113~118.
    [220] Holmes L R, Cole D L. Eyning E M. Kinetics of aluminum ion hydrolysis in dilute solution[J]. Phys. Chem, 1968, 72: 301~304.
    [221] 高宝玉,王吕生,汤鸿霄.聚硅氯化铝混凝剂中Al(Ⅲ)水解—聚合历程及铝硅作用特性研究[J].环境科学学报,2000,20(2):151~155.
    [222] 栾兆坤,汤鸿霄.聚合铝形态分布特征及转化规律[J].环境科学学报,1988,8(2):146~154.
    [223] Parfitt R. L. and Smart K. S. C. Confirmation of the surface structure of goethite (a-FeOOH) and phosphated goethite by infrared spectroscopy[J]. J. Chem, Soc. Fared. I. 1976, 72: 1082~1087.
    [224] Waychunas G. A., Rea B. A., Fuller C. C. and Davis J. Surface chemistry of ferrihydrite[J]. Past Ⅰ. Geochim. Cosmochim. Acta, 1992, 57: 225~226.
    [225] 龚竹青.理论电化学导论[M].长沙:中南工业大学出版社,1987
    [226] 石室友,汤鸿霄.聚合氯化铝与有机高分子复合絮凝剂的电荷特性及其絮凝作[J].环境化学,1999,18(4):302~307.
    [227] J-Q. Jians and N. J. D. Graham. Observations of the comparative hydrolysis/precipitation behavior of polyferric sulphate and ferric sulphate[J]. Wat. Res., 1998, 32(3): 930~935.
    [228] 井出哲夫.水处理工程理论与应用[M].北京:中国建筑工业出版社,1986
    [229] 《环境监测分析》编写组.环境监测分析[M].长沙:湖南科学技术出版社,1986
    [230] 高宝玉,王秀芬.聚合氯化铝铁絮凝剂的性能研究[J].环境化学,13(5):415~420.
    [231] 高宝玉,何晓镇,王春省,王淑仁.PACS絮凝剂的制备及其性能研究[J].环境科学,1990,11(3):34~37.
    [232] 胡晓霞,史成武,戴文娟.不同碱化度聚合硫酸铁的除浊效果[J].安徽大学学报,1996,20(2):89~91
    [233] E Diamadopoulos, C Valchos. Coagulation-filtration of secondary effluent by means of pre-hydrolyzed coagulations[J]. Wat. Sci. Tech., 1996, 33(10-11): 193~201.
    [234] 蒋建国,王伟,赵翔龙,那崇铮.重金属螯合剂在废水治理中的应用研究[J].环境科学,1999,20(1):65~67.
    [235] 金婵,尤宏,杨玉霞,周定.以Ce~(4+)为引发剂接技共聚物羧基淀粉的制备及其去除重金属离子效果的研究[J].环境化学,1985,4(1):25~29.
    [236] 汪玉庭,程格,朱海,唐玉蓉.交联壳聚糖对重金属离子的吸附性能研究[J].环境污染与防治,1998,20(1):1~3.
    [237] 汤立.铁氧体化法在重金属污染物解毒处理中的运用[J].环境导报,2001,(2):26~29.
    [238] L loyed Emil Voges, P.E. Mark M. Benjamin and Yujung Chang. Use of iron oxides to enhance metal removal in Grossflow microfiltration[J]. J of Environ. Engineering (ASCE), 2001, 127(5): 411~419.
    [239] Benjamin M. M. Adsorption and surface precipitation of metals or amorphous iron oxyhdroxide[J]. Environ Sci. Tech., 1983, 17: 686~692.
    [240] Coughlin B. R., Stone A. T. Nonreversible adsorption of divalent metal ions[Mn(Ⅱ), Co(Ⅱ), Ni(Ⅱ). Cu(Ⅱ) and Pb(Ⅱ)] onto goethite effects of acid addition, Fe(Ⅱ) addition and picolinic acid addition[J]. Environ. Sci. Technol., 1995, 29: 2445~2454.
    [241] B. Demiral. Removal of Cu, Ni and Zn from waste waters by the ferrite process[J]. Environ. Tech., 1999, 21(9): 963~970.
    
    
    [242] G. M Ayoub, L. Semerjian, A. Acra, M. EI Fadel, B. Koopmeu. Heavy metal removal by coagulation with seawater liquid bittern[J]. J of Environ Engineering, 2001, 127 (3): 196~207.
    [243] 范键.原子吸收分光光度法[M].长沙:湖南科学技术出版社.1981.
    [244] 北京市市政设计院.给水排水设计手册第五册城市排水[M].北京:中国建筑出版社,1986.
    [245] 哈尔滨建筑工程学院.排水工程[M].北京:中国建筑出版社,1981.
    [246] 李献元,钱易,聂梅生.城市污水稳定塘设计手册[M].北京:中国建筑工业出版社,1990.
    [247] Gersberg, R. M., B. V. Elkins, S. E. Lyon, CR. Goldman. Role of Aquatic plants in Waste Water treatment by artificial wetlands[J]. War. Res., 1986, 20: 363~368.
    [248] 郑雅杰.人工湿地系统处理污水和模式的探讨[J].环境科学进展,1995,3(6):1~8.
    [249] P.Griffin Strategy for sustainable waste water treatment at small treatment works[J]. Water Environ Manag. J., 2000, 13(6): 441~446.
    [250] Harleman, D. R. F. The case of using chemically enhanced primary treatment in a new cleanup plau for Boston Harbor[J]. J. Boston society of Civil Engineers section/ASCE. 1991, 6(1): 69~84.
    [251] Landa H. Ceyella A., Jimenez B. Perticale size distribution in an effluent from advanced primary treatment and its removed during filtration[J]. War. Environ Tech., 1997, 9(4): 36~40.
    [252] 沈玉楠,宋和平.化学强化一级处理法(CEPT)及其研究方向[J].环境污染与防治,2000,22(2):26~27.
    [253] 栾兆坤,张锦华,孔凡铭,韩德来.适于城镇污水处理的强化絮凝工艺[J].中国给水排水,2002,18(1):30~33.
    [254] Donald KF Harleman. An innovative approach to urban wastewater treatment in the developing world[J]. Water, 2001, 21 (6): 44~48.
    [255] 邱慎祁.化学强化一级处理(CEPT)技术[J].中国给水排水,2000,16(1):26~29.
    [256] Odegaard H, Skrovseth AF. An evaluation of performance and process stability of different processes for small waster treatment plants[J]. War. Sci. Tech., 1995, 35(6): 119~127.
    [257] 熊建英,杨海真,王闯,顾国维,邵志刚.铁盐处理上海合流一期污水试验研究[J].中国给水排水,2000,16(6):17~19.
    [258] 曾北危.环境分析化学[M].长沙:湖南科学技术出版社,1979
    [259] Q. H. He, Gary G. Leppard, C. R. Paige and W. J. Snodgrass. Transmission electron microscopy of a phosphate effect on the colloid structure of iron hydroxide[J]. Wal Res., 1996, 30(6): 1345~1352.
    [260] Gianatasio J.M., Hook M. A. and Hjersted L. J. Enhanced coagulation an operational perspective. enhanced ferric sulfate treatment for color and TOC removal at the city of Tampa Hillsborough river water treatment plant. In proc[C]. AWWA WQTC Conf., 1995, New Orleans, LAC (Nov. 12-16).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700