新型可见光催化剂钒酸铋的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,全球性环境污染及能源危机问题越来越严重,研发能高效降解有机污染物和利用太阳光实现光催化制氢的技术是解决环境污染和能源危机两大问题的有效途径。光催化技术是指采用无机半导体作为光催化剂,能够利用可见光照射激发半导体产生的光生电子和空穴,进行氧化还原降解有机污染物,把有机污染物分解为水、二氧化碳、氢气和无毒害的无机酸。因此本文致力于设计对可见光响应的光催化剂钒酸铋(BiVO4),采用水热法合成不同形貌的BiVO4颗粒,并对其进行表征;系统研究了其生长机理和不同的合成条件对光催化材料晶型结构与表面形貌的影响;以罗丹明B (RhB)溶液为目标降解物,考察了BiVO4可见光催化剂在模拟太阳光照射下的光催化性能及其对污染物的降解机理,主要研究工作和结论如下:
     (1)采用水热法合成了哑铃形BiVO4光催化剂。通过XRD、SEM、TEM和DRS对BiVO4的晶相结构、颗粒形貌、化学组成以及光吸收性质等进行了表征;通过控制水热时间获得不同时间段的BiVO4产品的形貌,得出了其“成核-溶解-再结晶”的生长机理。通过调节初始反应物物质的量的比和所添加模板剂的质量等条件,可控合成了不同形貌的BiVO4样品。以罗丹明B (RhB)溶液为目标降解物模拟污染源,研究了不同条件下哑铃形BiVO4晶体的光催化活性,结果表明只有在可见光照射下哑铃形BiVO4光催化剂才表现出较好的光催化效率并且优于TiO2(P25)的光催化效率。
     (2)采用水热法,在没有添加任何模板剂和表面活性剂的情况下合成了BiVO4核壳微球光催化剂。通过XRD、SEM、DRS和Raman等对BiVO4微球的晶相结构、颗粒形貌、化学组成、比表面积以及光吸收性质等进行了表征。结果显示BiVO4微球拥有较高的比表面积(13.092m2/g)。通过控制水热时间观察核壳结构的BiVO4微球的生长过程,得出BiVO4微球的形成是基于奥斯特瓦尔德熟化机理。以罗丹明B (RhB)溶液为目标降解物模拟污染源,研究了不同形貌的BiVO4微球的光催化性能,结果表明较薄球壳的BiVO4微球具有很强的光催化活性。
Recently, the global environment pollution and energy crisis become more and more serious. The research and development of semiconductor photocatalysis with high utilization efficiency of solar energy to split water into hydrogen or degrade organic pollutant has become an available approach to settle the environment and energy issues. Photocatalysis is an advanced technology that employing inorganic semiconductors as photocatalysts, and using the photogenerated electrons and holes in photons excitated semiconductor, pollutants can be degraded by oxidization or reduction. After photocatalytic process, organic pollutants are decomposed into water, carbon dioxide and non-toxic inorganic acid. So we devote ourselves to design and development of new and efficient BiVVO4photocatalyst with visible-response and different morphologies by hydrothermal route. A series of BiVO4samples are synthesized and characterized. We systemally analyzed their formation mechanisms, studied the relationship between prepared conductions and the crystal phase and morphology of samples, investigate the photocatalytic activity under the mimetic visible-light irradiation by using RhB as target degradation, and discussed the degradation mechanism. The main research contents and results are given as follows:
     (1) Successfully synthesized the dumbbell-like BiVO4photocatalyst via a hydrothermal route. The crystal structures, morphologies, chemical composition and visible-light absorption of the obtained products were well-characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). The different period morphologies of the dumbbell-like BiVO4samples were obtained by controlling the hydrothermal time, the results indicated that the nucleation and growth of the dumbbell-like samples were dominated by a'nucleation-dissolution-recrystallization' growth mechanism. Moreover, BiVO4samples with various morphologies were fabricated by controlling the reaction concentration, the PH value and the kind of and the dose of surfactants. Rhodamine B (RhB) was selected as a target pollutant to evaluate the photocatalytic efficiency of BiVO4catalysts under different conditions, it is shown that the dumbbell-like BiVO4photocatalyst exhibit an excellent photocatalytic activity that better than TiO2(P25) in the photodegradation of RhB under visible light irradiation.
     (2) BiVO4core-in-hollow-shell spheres were synthesized by using a mild addictive-free hydrothermal treatment. The crystal structures, morphologies, chemical composition, visible-light absorption and specific surface area of the obtained products were well-characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS) and Brunauer-Emmett-Teller (BET). The ultrahigh BET specific surface area of ca.13.092m2/g is displayed for the BiVO4core-in-hollow-shell spheres. We observed the growth process of the prepared BiVO4samples by controlling the hydrothermal time, and the results proved that the nucleation and growth of the BiVO4core-in-hollow-shell spheres were based on 'Ostwald Ripening'mechanism. Rhodamine B (RhB) was selected as a target pollutant to evaluate the photocatalytic efficiency of different morphologies BiVO4catalysts, it is shown that the BiVO4core-in-hollow-shell spheres with thinner shell exhibit excellent photocatalytic activity in the photodegradation of RhB under visible light irradiation.
引文
[1]高洪涛,周晶,戴冬梅等.光催化氧化技术研究进展[J].山东化工,2007,36:14-18.
    [2]Davide, V., Claudio, M., Valter. M., et al. Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst[J]. Appl. Catal. B:Environ.,2005,58:79-88.
    [3]朱建.纳米晶TiO2的晶相、织构及光催化性能研究[M].复旦大学博士学位论文.上海,2006,5.
    [4]龙明策.新型光催化剂的制备、表征及其光催化活性的调控机制[M].上海交通大学博士学位论文.上海,2007,10.
    [5]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006.
    [6]Chen X., Mao Samuel S., Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications[J]. Chem. Rev. 2007,107:2891-2959.
    [7]Ye J. H., Zou Z. G., Visible light sensitive photocatalysts In1-xMxTaO4(M= 3d transition-metal) and their activity controlling factors[J], J. Phys. Chem. Solids,2005,66:266-273.
    [8]Hoffman M. R., Martin S. T., Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.,1995,95:69-96.
    [9]Yeom T. H., Choh S. H., Du M. L., et al. EPR study of Fe3+impurities in crystalline BiVO4[J]. Phys. Rev. B:Condens. Matter, 1996, 53(6):3415-3421.
    [10]Oshikiri M, Boero M, Ye J, et al. Electronic structures of promising photocatalysts InM04(M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region[J]. J. Chem. Phys., 2002,117(15):7313-7318.
    [11]Kang M., Lee S. Y., Chung C. H., et al. Characterization of a TiO2 photocatalyst synthesized by the solvothermal method and its catalytic performance for CHC13 decomposition[J]. J. Photochem. Photobiol., A:Chem., 2001,144:185-191.
    [12]Maira A. J, Yeung K. L., Soria J, et al. Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysis[J]. Appl. Catal. B:Environ.,2001,29(4):327-336.
    [13]范崇,肖建平,丁延伟.纳米TiO2的制备与催化反应研究进展[J].科学通报,2001,46(4):265-273.
    [14]Bilmes S. A., Mandelbaum P., Alvarez F., Surface and electronic structure of titanium dioxide photocatalysis[J]. J. Phys. Chem. B.,2000,104:9851-9858.
    [15]高伟,吴凤清,岁臻,等.TiO2晶型与光催化活性的关系[J].高等学校化学学报,2001,22:660-665.
    [16]Zhang L., Wang W., Zhou L., et al. Bi2WO6 nano-and microstructures:shape control and associated visible-light-driven photocatalytic activities[J]. Small,2007,3(9):1618-1625.
    [17]Wang R., Ren D., Xia S., et al. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR) [J]. J. Hazard. Mater.,2009,169(1-3):926-932.
    [18]Lindner M., Photocatalytic degradation of organic compounds:acceleration the process efficiency [J], Water Sci. Technol.,1997,35(5):8-10.
    [19]Krysa J., Keppert M., Jirkovsky J., et al. The effect of thermal treatment on the properties of TiO2 photocatalyst [J]. Mater. Chem. Phys.,2004, 86(2-3):333-339.
    [20]Saquib M., Muneer M., TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions[J]. Dyes. Pigm.,2003,56(1):37-49.
    [21]Hu C., Wang Y. Z., Tang H. X., Destruction of phenol aqueous solution by photocatalysis or direct photolysis[J]. Chemosphere,2000,41(8):1205-1209.
    [22]Sleiman M., Ferronato C, Chovelon J., Photocatalytic removal of pesticide dichlorvos from indoor Air:A study of reaction rarameters, intermediates and mineralization [J]. Environ. Sci. Technol.,2008,42 (8):3018-3024.
    [23]Kormali P., Troupis A., Triantis T., et al. Photocatalysis by polyoxometallates and TiO2:A comparative study[J]. Catal. Today,2007,124(3-4):149-155.
    [24]Li L., Wu Q., Guo Y., et al. Nanosize and bimodal porous polyoxotungstate-anatase TiO2 composites:Preparation and photocatalytic degradation of organophosphorous pesticcide using visible-light excitation[J]. Micropor. Mesopor. Mater,2005,87(1):1-9.
    [25]Dai K., Peng T., Chen H., Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension[J]. Environ. Sci. Technol.,2008,42(5): 1505-1520.
    [26]Guo Y., Wang Y., Hu C., et al. Microporous polyoxometalates POMs/SiO2:synthesis and photocatalytic degradation of aqueous organocholorine Pesticides[J]. Chem. Mater.,2000, 12(11):3501-3508.
    [27]Hidaka H., Yamada S., suenaga S., et al. Photodegradation of surfactants part VI:Complete photocatalytic degradation of anionic, cationic and nonionic surfactants59 in aquerous semiconductor dispersions[J]. J. Mol. Catal.:Chem.,1990,.59(3):279-290.
    [28]Zhang R., Gao L., Zhang Q., Photodegradation of surfactants on the nanosized TiO2 prepared by hydrolysis of the alkoxide titanium[J]. Chemosphere,2004,54(3):405-411.
    [29]Zhang T., Oyama T., Horikoshi S., et al. Photocatalytic decomposition of the sodium dodecylbenzene sulfonate surfactant in aqueous titania suspensions exposed to highly concentrated solar radiation and effects of additives [J]. Appl. Catal. B:Environ.,2003,42(1): 13-24.
    [30]杜庆洋,杨振明,张劲松.钒酸盐对柴油机排气中碳烟氧化的催化性能[J].材料研究学报, 2004,18(2):205-211.
    [31]赵文宽,牛晓宇,贺飞等TiO2/SiO2的制备及其对染料X-3B溶液降解的光催化活性[J].催化学报,2001,22(2):171-174.
    [32]Fujishima A., Rao T. N., Tryk D. A., Titanium D ioxide Photocatalysis[J]. J. Photochem. Photobiol. A.,2000,1(1):1-21.
    [33]彭绍琴,徐玉欣,周军明,李越湘.玻璃丝负载TiO2光催化剂回收金属银和铜[J].江西化工,2003,3:79-81.
    [34]袁进,吕永康,李裕,李军平.介孔磁性光催化剂的制备及其催化降解硝基苯[J].催化学报,2010,31:597-603.
    [35]Ge L., Zhang X. H., Synthesis of novel visible light driven BiVO4 Photocatalysts via microemulsion process and its photocatalytic performance[J]. J. Inorg. Mater.,2009, 24(3): 453-456.
    [36]张萍,王焕英,等.化学沉淀法制备BiVO4及其表征[J].人工晶体学报,2008,37(3):716-720.
    [37]Tokunaga S., Kato K., Kudo A.. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties [J]. Chem. Matter,2001,13:4624-4628.
    [38]Zhou L., Wang W. Z., Liu S. W., et al. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst[J]. J. Mol. Catal. A:Chem.,2006,252:120-124.
    [39]Yu J. Q., Zhang Y., Kudo A., Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process[J]. J. Solid State Chem.,2009,182:223-228.
    [40]Mouganie T., Moram M, Sumner J., et al. Chemical and physical analysis of acetate-oxide sol-gel processing routes for the Y-Ba-Cu-O system[J]. J. Sol-Gel Sci. Technol.,2005, 36(1):87-94.
    [41]Philipp G, Schmidt H., New materials for contact lenses prepared from Si-and Ti-alkoxides by the sol-gel process[J]. J. Non-Cryst. Solids,1984,63(1-2):283-292.
    [42]王焨,李晨,徐博.溶胶-凝胶法的基本原理、发展及应用现状[J].化学工业与工程,2009,26(3):273-277.
    [43]符连社,张洪杰,邵华,等.溶胶-凝胶法及其在生物材料方面的应用[J].化学通报,1998,12:26-31.
    [44]徐茶清,田彦文,翟玉春,等.尖晶石型LiMn204的溶胶凝胶法制备[J].东北大学学报,2004,25(10):998-1001.
    [45]陈文梅,赵修建.溶胶凝胶法制备Ti02多孔纳米薄膜[J].武汉工业大学学报,2000,22(1):6-9.
    [46]丁鹏.锡掺杂TiO2气-固复相光催化活性的研究[J].长春师范学院学报,2004,23(1):16-18.
    [47]孟前进,李巧玲.溶胶-凝胶法合成TiO2粉体及其表征和光催化的研究[J].中国粉体工业,2009,3:5-9.
    [48]刘晶冰,汪浩,张慧明,等.化学浴沉积法制备高取向钒酸铋薄膜[J].无机化学学报,2007,23:1299-1302.
    [49]Puntes V. F., Krishnan K. M., Paullivisatos A., The Case of Cobalt Colloidal Nanocrystal Shape and Size Control [J]. Science,2001,291:2115-2117.
    [50]张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社,2002.
    [51]梁俊聪BiVO4的制备及可见光催化研究[M].赣南大学硕士学位论文.广州,2006,12.
    [52]Yu J. Q., Kudo A., Hydrothermal synthesis of nanofibrous bismuth vanadate[J]. Chem. Lett., 2005,34(6):850-851.
    [53]Yoshimura M, Suchanek W., In situ fabrication of morphology-controlled advanced ceramic materials by Soft Solution Processing [J]. Solid State Ionics,1997,98(3-4):197-208.
    [54]Liu J. B., Wang H., Wang S., et al. Hydrothermal preparation of BiVO4 powders [J]. Mater. Sci. Eng., B,2003, B 104(1-2):36-39.
    [55]清华大学分析化学教研室编.现代仪器分析[M].北京:清华大学出版社,1983,156-167.
    [56]高濂,郑珊,张青红.纳米氧化钛催化材料及应用[M].北京:化学工业出版社,2002.
    [57]左演声,陈文哲,梁伟.材料现代分析方法[M].北京:北京工业大学出版社,2000,204-210.
    [58]Manolikas C, Amelinckx S., Ferroelastic domains in BiVO4[J]. Phys. Status Solidi A, 1980,60: 67-172.
    [59]Hirota K., Komatsu G, Yamashita M, et al. Characterization and sintering of alkoxy-derived bismuth vanadate[J]. Mater. Res. Bull,1992,27:823-830.
    [60]Hu C. G., Liu H., Dong W. T., et al. La(OH)(3) and La2O3 nanobelts-Synthesis and physical properties[J]. Adv. Mater.,2007,19:470-473.
    [61]Luo Y. S., Zhang W. D., Dai X. J., et al. Facile synthesis and luminescent properties of novel flowerlike BaMoO4 nanostructures by a simple hydrothermal route[J]. J. Phys. Chem. C,2009, 113,4856-4861.
    [62]Dai X. J., Luo Y. S., Fu S. Y, et al. Facile hydrothermal synthesis of 3D hierarchical Bi2SiO5 nanoflowers and their luminescent properties[J]. Solid State Sci.,2010, 12:637-642.
    [63]Ren L., Jin L., Wang J. B., et al. Template-free synthesis of BiVO4 nanostructures:1. Nanotubes with hexagonal cross sections by oriented attachment and their photocatalytic property for water splitting under visible light[J]. Nanotechnology,2009,20: 115603-115611.
    [64]Zhou L., Wang W. Z., Zhang L. S., et al. Single-crystalline BiVO4 microtubes with square cross-section:microstructure, growth mechanism, and photocatalytic property[J]. J. Phys. Chem. C,2007,111,13659-13664.
    [65]Sun Y. F., Wu C. Z., Long R., et al. Synthetic loosely packed monoclinic BiVO4 nanoellipsoids with novel multiresponses to visible light, trace gas and temperature[J]. Chem. Commun.,2009, 4542-4544.
    [66]Dai X. J., Luo Y. S., Zhang W. D., et al. Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area[J]. Dalton Trans., 2010,39,1-7.
    [67]Yu J. Q., Kudo A., Hydrothermal synthesis of nanofibrous bismuth vanadate[J]. Chem. Lett., 2005,34(6):850-851.
    [68]Zhou L., Wang W. Z., Xu H. L., Controllable synthesis of three-dimensional well-defined BiVO4 mesocrystals via a facile additive-free aqueous strategy[J]. Cryst. Growth Des.,2008,8(2): 728-733.
    [69]陈渊,刘国聪,杨家添,等.可见光响应催化剂BiVO4六角形微米棒的水热合成[J],无机化学学报,2011,27(6):1059-1064.
    [70]张爱平,张进治.水热法制备不同形貌和结构的BiVO4粉末[J].物理学报,2009,58(4):2336-2344.
    [71]陈文权.基于石墨烯纳米光催化复合材料的制备与性能研究[M].信阳师范学院硕士学位论文.信阳,2011,3.
    [72]Kudo A., Tsuji I., Kato H. AgInZn7S9 solid solution photocatalyst for H-2 evolution from aqueous solutions under visible light irradiation[J]. Chem. Commun.,2002,17:1958-1959.
    [73]Butler M. A., Photoelectrolysis and physical properties of the semiconducting electrode WO3[J]. J.Appl. Phys,1977,48:1914-1920.
    [74]Arslan M., Duymusü H., Yakuphanoglu F. Optical properties of the poly (N-benzylaniline) thin film[J]. J. Phys. Chem. B.,2006, 110:276-280.
    [75]Wang K. G., Glicksman M. E., Lou C. G., Correlations and fluctuations in phase coarsening[J]. Phys. Rev. E,2006,73:061502.
    [76]Pacholski C, Komowski A., Weller H., Self-assembly of ZnO: from nanodots to nanorods[J]. Angew. Chem. Int. Ed.,2002,41:1188-1191.
    [77]Park B. K., Jeong S., Kim D., et al. Synthesis and size control of monodisperse copper nanoparticles by polyol method[J]. J. Colloid Interface Sci.2007,311:417-424.
    [78]Zhang H., Cui Z. L., Solution-phase synthesis of smaller cuprous oxide nanotubes[J]. Mater. Res. Bull,2008,43:1583-1589.
    [79]Zhang H., Ren X., Cui Zi., Shape-controlled synthesis of CuO2 nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers[J]. J. Cryst. Growth, 2007, 304: 206-210.
    [80]He F., Yang P. P., Niu N., et al. Hydrothermal synthesis and luminescent properties of YVO4: Ln3+(Ln= Eu, Dy, and Sm) [J]. J. Colloid Interface Sci.,2010,343(1):71-78.
    [81]陈志胜,郭海福,闫鹏,等.OP-10微乳法与SDBS软模板剂法合成催化剂的对比研究[J].肇庆学院学报,2010,31(2):44-51.
    [82]Zhang L., Chen D. R., Jiao X. L., Monoclinic structured BiVO4 nanosheets:hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties[J]. J. Phys. Chem. B,2006,110(6):2668-2673.
    [83]梁治齐,宗慧娟,李金华.功能性表而活性剂[M].北京:中国轻工业出版社,2002,107-113.
    [84]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003,291-304.
    [85]Fan W., Song X., Bu Y., et al. Selected-control hydrothermal synthesis and formation mechanism of monazite-and zircon-type LaVO4 nanocrystals[J]. J. Phys. Chem. B,2006,110(46): 23247-23254.
    [86]郭佳,朱毅,张渊明,等.不同结构形貌BiVO4的水热制备及可见光催化性能[J].无机材料学报,2012,27(1):26-32.
    [87]陈胜文,秦敏敏,杨玲琳等.火焰CVD法合成纳米Ti02及光催化降解罗丹明B的动力学研究[J].上海第二工业大学学报,2011,28(4):280-286.
    [88]Mishraa K. P., Gogate P. R., Intensification of degradation of aqueous solution of rhodamine B using sonochemical reactors at operating capacity of 7 L[J]. Environ. Manage.,2011,92(8): 1972-1977.
    [89]钟理,吕扬效.废水中有机污染物高级氧化过程的降解[J].化工进展,1998,17(4):51-53,64.
    [90]王崇太,华英杰,等.铬取代杂多阴离子PW11O39Cr(III)(H2O)4可见光催化降解罗丹明B[J].化学学报,2012,70(4):399-404.
    [91]Vinod K. N., Puttaswamy, Gowda K. N. N., Oxidative decolorization of triphenylmethane dyes by chloramine-T in alkaline medium catalyzed by Pd(II):A comparative spectrophotometric kinetic and mechanistic approach[J]. J. Mol. Catal. A:Chem.,2009,298:60-68.
    [92]Ayed L., Chaied K., Cheref A., et al. Biodegradation of triphenylmethane dye Malachite Green by Sphingomonas paucimobilis[J]. World J. Microbiol. Biotechnol,2009,25,705-711.
    [93]Weber E. J., Adams R. L., Chemical-and sediment-mediated reduction of the Azo dye disperse blue 79[J]. Environ. Sci. Technol.,1995,29,1163-1170.
    [94]He Z., Sun C., Yang S.G., et al. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation:mechanism and pathway[J]. J. Hazard. Mater.,2009,162:1477-1486.
    [95]Li L., Dai, W. K., Yu P., et al. Decolorisation of synthetic dyes by crude iaccase from rigidoporus lignosus W1[J]. J. Chem. Technol. Biotechnol.,2009,84:399-404.
    [96]Kohtani S., Tomohiro M., Tokumura K., et al. Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalytsts[J]. Appl. Catal. B,2005,58: 265-272.
    [97]Lou X. W., Wang Y., Yuan C., et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J]. Adv. Mater.,2006,18:2325-2329.
    [98]Mao B. D., Kang, Z. H., Wang E. B., et al. Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process[J]. J. Solid State Chem. 2007,180:489-495.
    [99]Kim S. W., Lee W. Y., Hyeon T., Fabrication of hollow palladium spheres and their successful application as the recyclable heterogeneous catalyst for suzuki coupling reactions[J]. J. Am. Chem. Soc.,2002,124:7642-7643.
    [100]Chen J. Y., Wang D. L., Xi J. F., et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells[J]. Nano. Lett.,2007,7: 1318-1322.
    [101]Li Z. Z., Wen L. X., Shao L., et al. Fabrication of porous hollow silica nanoparticles and their applications in drug release control[J]. J. Controlled Release,2004,98:245-254.
    [102]Loo C, Lowery A., Halas N., et al. Immunotargeted nanoshells for integrated cancer imaging and therapy[J]. Nano. Lett.,2005,5:709-711.
    [103]Botterhuis N. E., Sun Q.Y., et al. Hollow Silica Spheres with an Ordered Pore Structure and Their Application in Controlled Release Studies[J]. Chem. Eur. J.2006,12: 1448-1456.
    [104]Lou X. W., Archer L. A., A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles[J]. Adv. Mater.,2008,20:1853-1858.
    [105]Caruso F., Caruso R.A., Mohwald H., Nanoengineering of Inorganic and Hybid Hollow Spheres by Colloidal TemPlating[J]. Science,1998,282:1111-1114.
    [106]Liang Y, Liu Y. L., Mi Y. Z., et al. Gas-phase coupling of methyl radicals during the catalytic partial oxidation of methane[J]. Chem. Lett.,2005,34(10):1422-1423.
    [107]Zhong Z.Y., Yin Y. D., Gates B., et al. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads[J]. Adv. Mater,. 2000,12(3):206-209.
    [108]Huang Z. B., Tang F. Q., Preparation and charaeterization of core-shell structured alpha-Fe2O3/SiC spheres[J]. J. Colloid Interface Sci.,2004,275:142-147.
    [109]Huang Z. B., Tang F. Q., Zhang L., Morphology control and texture of Fe3O4 nanoparticle-coated Polystyrene microspheres by ethylene glycol in forced hydrolysis reaction [J]. Thin Solid Films,2005,471:105-112.
    [110]Jang J., Lee K., Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization[J]. Chem. Commun.,2002,10:1098-1099.
    [111]Ding X. F., Yu K. F., Jiang Y. Q., et al. A novel approach to the synthesis of hollow silica nanoparticles[J]. Mater. Lett.,2004,58:3618-3621.
    [112]Liu B., Zeng H. C, Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors[J]. Small,2005,1(5):566-571.
    [113]Li J., Zeng H. C, Hollowing Sn-doped TiO2 Nanospheres via Ostwald Ripening[J]. J. Am. Chem. Soc,2007,129:15839-15847.
    [114]Wang W. S., Zhen L., Xu C. Y., et al. Room Temperature Synthesis of Hollow CdMoO4 Microspheres by a Surfactant-free Aqueous Solution Route[J]. J. Phys. Chem. B,2006, 110:23154-23158.
    [115]Zhao Y., Jiang L., Hollow micro/nanomaterials with multilevel interior structures[J]. Adv. Mater.,2009,21,3621-3638.
    [116]Chen X. Y., Zhang Z. J., Qin Z. G., et al. Hydrothermal fabrication and characterization of polycrystalline Linneite (Co3S4) Nanotubes based on the kirkendall Effect[J]. J. Colloid. Interf. Sci.,2007,308:271-275.
    [117]Chiang R. K., Chiang R. T., Formation of Hollow Ni2P Nanoparticles Based on the Nanoscale kirkendall Effect[J]. Inorg. Chem.,2007,46:369-371.
    [118]Yin Y. D., Rioux R. M., Erdonmez C. K., et al. Formation of Hollow Nanocrystals through the Nanoscale Kjrkendall Effect[J]. Science,2004,304:711-714.
    [119]丁子上,王民权.硅酸盐物理化学[M].北京:中国建筑工业出版社,1983,145-147.
    [120]Jang J., Oh J. H., Fabrication of hollow polystyrene nanospheres in microemulsion polymerization using triblock copolylmers[J]. Langmuir,2002,18(14):5613-5618.
    [121]马占营,姚秉华,柳敏,徐维霞,高奕红.单斜晶型钒酸铋空心纳米球的制备及其光催化性能[J].分子催化,2010,24(6):549-555.
    [122]张爱平,张进治Cu、Ag、Au掺杂BiVO4可见光催化剂的制备及性能研究[J].分子催化,2010,24(1):51-56.
    [123]朱雷,王其召,袁坚Bi(Nb)OCl光催化剂的制备及其可见光降解罗丹明B溶液的性能[J].分子催化,2009,23(4):362-365.
    [124]Kudo A., Development of photocatalyst materials for water splitting[J]. Int. J. Hydrogen Energy,2006,31(2):197-202.
    [125]Zhou L., Wan G. W., Liu S., et al. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalys[J]. J. Mol. Catal. A,2006,252:120-124.
    [126]Tokunaga S., Kato H., Kudo A., Selective preparation of monoclinic and tetragonal with scheelite structure and their photocatalytic properties[J]. Chem. Mater.,2001,13(12): 4624-4628.
    [127]张妍,于建强,等BiVO4-2MCM241复合催化剂的制备及其对亚甲基蓝降解的光催化活性[J].催化学报,2008,29(7):624-627.
    [128]张萍,王焕英,等.化学沉淀法制备BiVO4及其表征[J].人工晶体学报,2008,37(3):716-720.
    [129]Kudo A., Omori K., Kato H., A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties [J]. J. Am. Chem. Soc, 1999,121:11459-11467.
    [130]Dong F. Q., Qing S. W., Ma J., et al. Mild oxide-hydrothermal synthesis of different aspect ratios of monoclinic BiVO4 nanorods tuned by temperature[J]. Phys. Statu. Solidi A,2009,206(1):59-63.
    [131]Yang T., Xia D. G., Chen G., et al. Influence of the surfactant and temperature on the morphology and physico-chemical properties of hydrothermally synthesized composite oxide BiVO4[J]. Mater. Chem. Phys.,2009,114:69-72.
    [132]Zhou L., Wang W. Z., Xu H. L., Controllable synthesis of three-dimensional well-defined BiVO4 mesocrystals via a facile additive-free aqueous strategy[J]. Cryst. Growth Des., 2008,8(2):728-733.
    [133]Yin W. Z., Wang W. Z., Lin Z., et al. CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation[J]. J. Hazar. Mater.,2010,173,194-199.
    [134]Ke D. N., Peng T. Y., Ma L., et al. Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light[J]. Inorg. Chem. 2009,48,4685-4691.
    [135]Sun S. M., Wang W. Z., Lin Z., et al. Efficient Methylene Blue Removal over Hydrothermally Synthesized Starlike BiVO4[J]. Ind. Eng. Chem. Res.,2009,48,1735-1739.
    [136]Guan M. L., Ma D. K., Hu S. W., et al. From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@ Bi2O3 microspheres:controlled synthesis and enhanced visible-light-responsive photocatalytic properties[J]. Inorg. Chem.2011,50,800-805.
    [137]Wang Z. Q., Luo W. J., Yan S. C., Feng J. Y., Zhao Z. Y., Zhu Y. S., Li Z. S., Zou Z. G., BiVO4 nano-leaves:mild synthesis and improved photocatalytic activity for O2 production under visible light irradiation[J]. CrystEngComm,2011,13,2500-2504.
    [138]Yu J. Q., Kudo A., Effect of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4[J]. Adv. Funct. Mater.,2006,16:2163-2169.
    [139]Zhang H. M., Liu J. B., Wang H., Rapid microwave-assisted synthesis of phase controlled BiVO4 nanocrystals and research on photocatalytic properties under visible light irradiation[J]. J. Nanopart. Res.,2008,10:767-774.
    [140]Liu J., Wang H., Wang S., Yan H., Hydrothermal Preparation of BiVO4 powders[J]. Mater. Sci. Eng. B,2003,104:36-39.
    [141]Hardcastle F. D., Wachs I. E., Eckert H., et al. Vanadium(V) environments in bismuth vanadates:A structural investigation using Raman spectroscopy and solid state 51V NMR[J]. J. Solid State Chem.,1991,90:194-210.
    [142]Galembeck A., Alves O. L., BiVO4 thin film preparation by metalorganic decomposition[J]. Thin Solid Films,2000,365:90-93.
    [143]Yu J., Kudo A., Chem. Lett., Hydrothermal Synthesis of Nanofibrous Bismuth Vanadate[J]. 2005,34:850-851.
    [144]Sleight A. W., Chen H. Y., Ferretti A., et al. Crystal growth and structure of BiVO4[J]. Mater. Res. Bull.,1979,14:1571-1581.
    [145]Zhang A. P., Zhang J. Z., Characterization of visible-light-driven BiVO4 photocatalysts synthesized via a surfactant-assisted hydrothermal method[J]. Spectrochim. Acta, Part A, 2009,73:336-341.
    [146]Fu H. B., Pan C.S., Yao W. Q., et al. Visible-light-induced degradation of Rhodamine B by nanosized Bi2WO6[J]. J. Phys. Chem. B,2005,109:22432-22439.
    [147]Watanabe T., Takizawa T., Honda K., Photocatalysis through excitation of adsorbates.1. Highly efficient N-deethylation of rhodamine B absorbed to cadmium sulfide[J]. J. Phys. Chem.,1977, 81:1845-1851.
    [148]Zhao W., Chen C. C, Li X. Z.,et al. Photodegradation of sulforhodamine-B dye in platinized Titania dispersions under visible light irradiation:influence of platinum as a functional Co-catalyst[J]. J. Phys. Chem. B,2002,106:5022-5028.
    [149]Zhang C., Zhu Y. F., Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts[J]. Chem. Mater.,2005,17:3537-3545.
    [150]Wu T. X., Lu G. M., Zhao J. C, Photoassisted Degradation of Dye Pollutants V. Self-photosensitized Oxidative Trasformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO2 Dispersions[J]. J. Phys. Chem. B.,1998,102:5845-5851.
    [151]付宏刚,王建强,任志宇,等.Fe3+-TiO2/SiO2薄膜催化剂的结构对其光催化性能的影响[J].高等学校化学学报,2003,24(9):1671-1676.
    [152]祁巧艳,孙剑辉.负载型纳米TiO2光催化降解罗丹明B动力学宇机理研究[J].水资源保护,2006,22(2):56-58.
    [153]Zhang L. S., Wang W. Z., Chen Z. G, et al. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts[J]. J. Mater. Chem.,2007, 17: 2526-2532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700