电厂煤粉炉直接联产高硅硫铝酸盐水泥熟料的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国的能源消费构成中,煤炭占绝对主导地位,从而产生了数量庞大的电厂灰渣,到2001年,年排放量已经超过1.6亿吨。对于电厂灰渣的综合利用,人们已经进行了几十年的研究;然而,目前我国的灰渣利用率仍不足60%,每年由于建灰场贮灰而占用的土地依然在不断增加,不但污染环境,还耗费了大量的人力财力,从而形成了虽然在拼命利用却仍然不断累积的困惑局面。其难点就在于没有途径能够将数量如此巨大的固体废物全部消费掉。只有彻底改变灰渣的性质,从源头杜绝废物的产生,才能使灰渣综合利用问题得到根本解决,也使循环经济实现真正的闭路发展。
     回转窑工艺是当前主导的水泥烧成技术,但研究如何使生料的预热、分解与烧成均能在悬浮或流化状态完成,在1300℃左右烧成熟料,一直是水泥煅烧新工艺的重要发展方向。而悬浮燃烧和流化床燃烧技术是燃煤电厂锅炉中广泛应用的成熟技术。于是本文创造性地提出了在煤粉炉中直接悬浮烧成水泥熟料,实现电力和水泥联产的设想。
     为验证在煤粉炉中直接烧成水泥熟料的可行性,本文以分段多相反应实验台为主要的试验系统,开展了一系列探索性的试验研究。试验中,分段多相反应实验台炉温设定在1300℃,物料在高温区的停留时间可达7s。试验证明,煤与CaO在适当的配料组成下是可以在悬浮燃烧的同时烧成硅酸二钙、硫铝酸钙等水泥熟料矿物的,但在悬浮煅烧的状态下硅酸三钙难以形成。这证明了煤粉锅炉直接联产水泥熟料具有可行性,不过联产所能实现的肯定不会是常规的硅酸盐水泥熟料。本文经过反复试验,得出了CaO的最佳掺加范围,用石灰标准值KSt值表示应在63~68之间。在用CaCO_3替代CaO进行的试验中发现,煅烧出的样品游离CaO较高,并且含钙物相的含量也有所减少,因此综合考虑,在进一步研究前用CaCO_3替代CaO还不适宜。
     为了获得最佳的煅烧制度,本文通过大量试验和理论分析,较系统地研究了煅烧温度,物料停留时间,物料聚集状态,粉磨方式,以及煤种的自身组成等各种因素对水泥熟料矿物在悬浮状态下快速烧成的影响,从而为扩大性试验以及工业上的实际应用奠定了基础。在悬浮状态下快速烧成水泥熟料矿物,煅烧温度的选择范围比较宽,在1200℃以上都可以,对于本文试验所选用的长广煤而言,最佳温度范围在1250~1350℃之间;并且随着煅烧温度的提高,产品的硅酸二钙含量增加,钙铝黄长石含量减少,于是产品的性能得以提高。物料停留时间在1~7s内变化时,产品质量没有太大变化,但随着停留时间的延长,固相反应进行得更为完全。而增加物料颗粒在燃烧过程中的聚集程度,增加颗粒间碰撞接触的机会,也有利于固相反应的进行,有利于产品质量的提高。将煤与生石灰进行共同粉磨,可以促进煤粉颗粒与氧化钙颗粒之间的粘结附着,从而在燃烧过程中可以更充分的进行固相反应。另外,通过采用兖州煤进行试验,证明在悬浮状态下快速烧成水泥熟料矿物更适合于硫分较高的煤,从而为高硫煤的使用开辟了新路。
     通过将长广煤与生石灰混磨后悬浮煅烧出的样品进行定量x衍射分析,发现样品中75%左右的成分属于具有水硬性的矿物,其中大部分是α′-2CaO·SiO_2和β-2CaO·SiO_2,其余是早强型的硫铝酸钙,另外不足25%的是没有水硬活性的矿物
    
    摘要
    成分。从样品的矿物组成看,它接近于硫铝酸盐系列的水泥,而又与现有工业产品的
    成分含量有差别,因此,根据其特点可以定义为“高硅硫铝酸盐水泥熟料”。
     对于高硅硫铝酸盐水泥熟料,通过净浆强度试验和砂浆强度试验,发现其具有早
    期强度偏低但后期强度发展潜力大的特点,在掺加上30%的硅酸盐水泥熟料后,强
    度可以达到32.5强度等级的硅酸盐水泥的国家标准。因此这就为高硅硫铝酸盐水泥
    熟料的实际应用指明了途径:对前期强度性能要求不是很高的一般性工程可以直接使
    用高硅硫铝酸盐水泥:而对前期和后期强度性能要求都较高的工程则可以将高硅硫铝
    酸盐水泥与硅酸盐水泥混合使用,其效果甚至比单独使用硅酸盐水泥更好。
     本文还对高硅硫铝酸盐水泥熟料的水化机理进行了研究,建立了初步的水化化
    学。其水化过程中主要的水化产物是高硫型水化硫铝酸钙(AFt)和水化硅酸钙
     (CaO一5102一玩O),这两者也是其强度的主要来源。
     本文还通过理论模型的建立,阐述了高硅硫铝酸盐水泥熟料的形成机理,建立了
    在超快速升温锻烧条件下的矿物形成化学,从而为燃煤电厂锅炉联产水泥技术奠定了
    初步的理论基础。物料颗粒在1300℃悬浮燃烧时的升温速率可高达105~106℃/s,因
    此,可以说物料颗粒几乎瞬间就达到了环境温度,从而使物料颗粒的燃烧、灰化和固
    相反应过程也几乎是同时发生。在煤的燃烧和灰化过程中,原煤中的矿物质主要是粘
    土矿物完成脱水和分解,形成氧化物形式的si仇、A12岛、FeZ伪;同时,大部分的有
    机硫和无机硫都氧化形成S伍,然后Sq进一步与Cao进行气固反应,形成CaS04。
    继而,由于新生态的si仇、从伪、FeZO3和CaS伍等物质都具有很高的活性,它们
    与Cao之间的固相反应得以迅速进行。本文通过相图分析、热力学分析、固硫机理
    分析和动力学分析等多种手段,最终确定了煤与Cao的混合物料悬浮燃?
Coal is the most important energy source in China. To date, over 70 percent of energy consumption still stems from coal combustion. Therefore, large amounts of solid wastes are generated from thermal power plants every year. In 2001, for instance, the newly generated ashes amounted to 160 million tons. Although researchers have studied the comprehensive utilization of ashes for decades and have found many ways to use these solid wastes, it is a problem that there are still a lot of ashes left which cannot be used and must be put into landfills, which require large area of land and may pollute the surroundings. The difficulty is that the amount of ashes generated in thermal power plants is too large to be completely utilized. In China, for example, the ashes that can be utilized are less than 60 percent.Rotary kilns, whose disadvantage is the low heating rate of raw materials, are generally used in cement clinker calcination. The development direction of cement clinker calcinations is to calcine at about 1300C with raw materials in suspended or fluidized state. In this way, raw materials can finish heating, decomposing and calcining nearly at the same time, for the hating rate of particles is very high. It is well known that suspended-bed and fluidized-bed combustion are widely applied in the boilers of power plants. Hence, in this dissertation the idea is put forward to calcine cement clinker in PCC(Pulverized Coal Combustion) boilers, so that electric power and cement can be produced together.To testify the above idea, a serial of groping experiments were done on a two-stage polyphase reaction setup, which was designed and put up by myself. In the experiments, the experimental setup worked at 1300'C, and the material particles could stay at high temperature for about 7s. Through the experiments, it is found that some cement minerals, such as dicalcium silicate(2CaO SiO2) and calcium sulfoaluminate(3CaO 3Al2O3 CaSO4), etc, can generate when coal and lime are grinded together and burnt in suspended state. The best range of added CaO is about 63-68, expressed in the form of KSt. The experiments with CaCO3 replacing CaO were also done in the dissertation, but the results were not exciting because of the high amount of free CaO. In all the experiments, tricalcium cilicate(3CaO SiO2) had not been found all through. Then it can be concluded that co-generating cement clinker in PCC boilers is feasible, yet the product may not be the common silicate cement clinker.This dissertation roundly studied the effect of calcination temperature, calcination time, material coherent condition, material grinding process, and coal component on the formation of cement clinker minerals while calcining in suspended state. To form cement clinker minerals, the temperature above 1200C is enough. For the Changguang coal selected in the experiments, the best range is between 1250~1350C. With higher temperature, usually, more 2CaO SiO2 and less 2CaO Al2O3 SiO2 can be generated. While the calcination time of materials varies between l~7s, the product performance
    
    changes little. However, when the material coherent condition is improved, the material particles can get more chances of collision, so the solid phase reactions can proceed more deeply and the product quality can be better. In addition, by grinding together, the coal and CaO can form agglomeration particles, which can promote the solid-solid reactions. Comparing the experiment result of Yanzhou coal with that of Changguang coal, it is found that coals with high sulfur are more suitable to form cement-like product. Through all the experiments, the practice base has been founded for larger-scale experiments and production on real PCC boilers.The sample, calcined after grinding Changguang coal and CaO together, was quantitatively measured by X-ray diffraction (XRD) analysis. The result shows that in the sample about 75 percent are hydraulic minerals, most of which are '-2CaO S1O2 and -2CaO SiO2, the left is 3CaO 3A12O3 CaSO4, and that the other 25 percent, mainly 2CaO Al2O3 SiO2, hav
引文
[1] 詹华,姚士洪.对我国能源现状及未来发展的几点思考.能源工程.2003,(3):1-4,8.
    [2] 陈文颖,吴宗鑫.未来中国的SO2和CO2排放控制对策.清华大学学报(自然科学版).2002,42(10):1320-1323.
    [3] www.bp.com. BP statistical review of world energy. 2003.
    [4] 郝吉明,贺克斌.中国燃煤二氧化硫污染控制战略.中国环境科学.1996,16(3):208-212.
    [5] 张坤民,过孝民,樊元生.我国能源环境的形势与对策.环境保护,1996(4):2-4.
    [6] 郭延杰,田义.我国粉煤灰综合利用现状及发展趋势.煤炭加工与综合利用,1997,No.6,47-50.
    [7] 王智,卢浩,钱觉时.可持续发展与粉煤灰的建材资源化.粉煤灰综合利用,1999,No.2,42-45.
    [8] O. E. Manz. Worldwide production of coal ash and utilization in concrete and other products. Fuel. 1997, 76(8): 691-696.
    [9] Barry Stewart. Coal combustion produet(CCPs) production and use. Proceedings of the 15th International American Coal Ash Association Symposium on Management & Use of Coal Combustion Products. 2003.
    [10] 2002 coal combustion product(CCP) Production and use survey. American Coal Ash Association. www.acaa-usa.org.
    [11] 《中国环境年鉴》编辑委员会编.中国环境年鉴.中国环境年鉴社.2000.
    [12] 《中国环境年鉴》编辑委员会编.中国环境年鉴.中国环境年鉴社.2002.
    [13] 叶巧明,黄文熙.增钙粉煤灰的开发和推广.西南工学院学报.1998.No.1:18-26.
    [14] Oscar E. Manz. Coal fly ash: a retrospective and future look. Fuel. 1999, 78: 133-136.
    [15] 林介东,莫乾凯,江潮全.电厂粉煤灰综合利用技术的现状及发展方向.中国能源.2002,No.4,36—39.
    [16] 阎维勇,高廷源,熊仁森.循环流化床锅炉脱硫灰渣综合利用.洁净煤技术.2000,6(1):31-33,36.
    [17] 王观华.循环流化床灰渣冷却活化新方法试验研究.浙江大学硕士学位论文.2003.
    [18] 钱觉时,吴传明,王智.粉煤灰的矿物组成(上).粉煤灰综合利用.2001,No.1,26-31
    
    [19] Baoguo Ma, Meng Qi, Jun Peng, etc. The compositions, surface texture, absorption and binding properties of fly ash in China. Environment International, Vol 25, No.4, 423-432.
    [20] 沈威,黄文熙,闵盘荣编著.水泥工艺学.武汉:武汉工业大学出版社.1992.
    [21] 邵靖邦,王祖讷.利用粉煤灰生产化肥.煤炭加工与综合利用.1998,No.3,46-49.
    [22] 岑可法,倪明江,骆仲泱等著.循环流化床锅炉锅炉理论设计与运行.北京:中国电力出版社.1997.
    [23] 何涌,李超.一种能大量消耗粉煤灰的多孔材料的初步研究.地球科学:中国地质大学学报.2000,25(5),526—528.
    [24] 殷素红,樊粤明,文梓芸,钟景裕.粉煤灰的活化.华南理工大学学报(自然科学版).1998,26(12),95-100.
    [25] 李国栋.结构因素对粉煤灰活性激发的影响.粉煤灰综合利用.1998,No.4,3-7.
    [26] 武汉建材学院等编著.玻璃工艺学原理.建材工业出版社.1981.
    [27] 刘崇熙,文梓芸.坝工混凝土专论(一):混凝土碱一骨料反应.广州:华南理工大学出版社,1995.
    [28] 施惠生.高钙粉煤灰用作水泥混合材若干问题的探讨.水泥.1997,(5),3-6.
    [29] Deschamps RJ. Using FBC and Stoker Ashes As Roadway Fill: A case study. Journal of Gcotechnical and Gooenvironmental Engineering. 1998, 124 (11): 1120-1127.
    [30] 王文龙,施正伦,骆仲泱,岑可法.流化床脱硫灰渣的特性与综合利用研究.电站系统工程.2002,18(5):19-21.
    [31] J.Blondin, E.J.Anthony. A Selective Hydration Treatment to Enhance the Utilization of CFBC Ash in Concrete. 1995 International Conference on Fluidized Bed Combustion. Vol.2. Page 1123.
    [32] Suzannc M. Burwell, Edward J.Anthony, Ediwin E.Berry. Advanced FBC Ash Treatment Technologies. 1995 International Conference on Fluidized Bed Combustion. Vol.2. Page 1137.
    [33] J.Blondin, E.J.Anthony, A.P.Iribame. A New Approach to Hydration of FBC Residues. 1993 International Conference on Fluidized Bed Combustion. Vol. 1. Page 641.
    [34] E.J.Anthony, A.P.Iribame, J.V.Iribame. Study of Hydration During Curing of Residues from Coal Combustion with Limestone Addition. 1995 International Conference on Fluidized Bed Combustion. Vol.2. Page 1113.
    [35] Pierre-Claude Aitein. Cements of yesterday and today, Concrete of tomorrow. Cement and Concrete Research. 30: 1349-1359, 2000.
    [3
    
    [36] 龙小梅.关于硅酸三钙水化反应的研究.国外建材科技.18(3):20-25,1997.
    [37] H.EI-Didamony, A.M.Sharara, I.M.Helmy & S.Abd EI-Aleem. Hydration characteristics of β-C_2S in the presence of some accelerators. Cement and Concrete Research. 26(8): 1179-1187, 1996.
    [38] 胡曙光.特种水泥.武汉:武汉工业大学出版社.1999.
    [39] 王燕谋,苏慕珍,张量.硫铝酸盐水泥.北京:北京工业大学出版社,1999.
    [40] 王燕谋,苏慕珍.中国的第三系列水泥.中国建材科技.2(6):1—5,1993.
    [41] Keith Quillin. Performance of belite-sulfoaluminate cements. Cement and Concrete Research. 31:1341-1349, 2001.
    [42] 崔重九,陈汉民.水泥工业呼唤二十一世纪熟料烧成新工艺.水泥工程.1998(2),1-3.
    [43] 周惠群.立窑水泥与回转窑水泥使用性能比较.云南建材.2002,(3):28-30.
    [44] 郭俊才,徐贤进,孙晓玲.水泥熟料低温烧成机理分析及试验研究.武汉工业大学学报.1995,17(4),15-18.
    [45] I. Akin Altun. Influence of heating rate on the burning of cement clinker. Cement and Concrete Research. 29(1999), 599-602.
    [46] 黄文熙,叶巧明,蒋友新.电厂锅炉生产水泥的开发研究.四川水泥.1999(3),1-7.
    [47] 吴凤娟,郭恩凯,党林升.水泥熟料低温快速烧成研究.武汉工业大学学报.1993,15(3):54-58.
    [48] 刘顺妮,乔秀臣,林宗寿.水泥熟料快速烧成的最佳配方研究.水泥.1998,(6):19-21.
    [49] Vagelis G. Papadakis. Effect of fly ash on Portland cement systems. Cement and Concrete Research. 2000, (30): 1647-1654.
    [50] 傅维标,卫景彬.燃烧物理学基础.北京:机械工业出版社.1984.
    [51] 王文龙,施正伦,骆仲泱,岑可法.燃煤电厂锅炉联产水泥的技术现状与前景.浙江大学学报(工学版).2003,37(2):225-230.
    [52] 陈秉恒.电厂锅炉改固态为液态排渣旋风炉.冶金动力.1997,(4):50-52,54.
    [53] 水利电力部热工研究所.旋风炉及其灰渣综合利用.北京:水利电力出版社.1979.
    
    [54] 朱雪芳.煤净化燃烧及伴生物产品化新技术.粉煤灰.2000,(3):29-30.
    [55] 朱雪芳.煤净化燃烧及伴生物产品化.中国工程科学.1999,1(1):53-57.
    [56] 傅子诚.水泥熟料沸腾煅烧工艺新进展.水泥工程.1999,(5):55-56.
    [57] Takako Yuko, Tatsuo Ikabata, Tatsushi Akiyama, Takanori Yamamoto, Norirnitsu Kurumada. New clinker formation process by the fluidized bed kiln system. Cement and Concrete Research. 2000, 30: 1113-1120.
    [58] 唐金泉,董兰起,张富.我国水泥窑余热发电技术.水泥技术.1997,(3):15-20.
    [59] 岑可法,倪明江,骆仲泱等著.循环流化床锅炉锅炉理论设计与运行.北京:中国电力出版社.1997.
    [60] Maoming Fan, Qingru Chen, Yuemin Zhao, Zhenfu Luo. Fine coal (6-1 mm) separation in magnetically stabilized fluidized beds. International Journal of Mineral Processing. 63(4), 2001, p225-232.
    [61] 向才旺,郭俊才,姚大喜编著.水泥应用.中国建材工业出版社.1999.
    [62] 国家技术监督局.中华人民共和国国家标准GB/T 176—1996:水泥化学分析方法.
    [63] 冯培植,李发堂.新型贝利特水泥的研制.水泥.No.11,1999,4-7.
    [64] W.Kurdowski, S.Duszak, B.Trybalska. Belite produced by means of low-temperature synthesis. Cement and Conerete Research. Vol.27, No. 1, 1997, 51-62.
    [65] I. Akin Altun. Effect of CaF_2 and MgO on sintering of cement clinker. Cement and Concrete Research. 1999, 29, 1847-1850.
    [66] 杨南如编著.无机非金属材料测试方法.武汉:武汉工业大学出版社.1994.
    [67] P. E. Halstead, A. E. Moore. Journal of Applied Chemistry.12(9):413-417, 1962.
    [68] 张冠英,张丕兴.无水硫铝酸钙的X射线衍射分析.上海建材学院学报.4(1):15-24,1991.
    [69] 张冠英,张丕兴.无水硫铝酸钙及其晶体结构问题.上海建材学院学报.4(1):9-14,1991.
    [70] 国家质量技术监督局.中华人民共和国国家标准GB/T 1346-1989:水泥标准稠度用水量、凝结时间、安定性检验方法.
    [71] 国家质量技术监督局.中华人民共和国国家标准GB/T 750-1992:水泥压蒸安定性试验方法.
    [72] 国家质量技术监督局.中华人民共和国国家标准GB/T 17671-1999:水泥胶砂强度检验方法(ISO法).
    
    [73] 国家质量技术监督局.中华人民共和国国家标准GB 175-1999:硅酸盐水泥、普通硅酸盐水泥.
    [74] J. Skalny, J. F. Young.波特兰水泥水化的机理.第七届国际水泥化学会议论文选集.1985.
    [75] V. Kasselouri, P.Tsakiridis, etc. A study on the hydration products of a non-expansive sulfoaluminate cement. Cement and Concrete Research. 25(8): 1726-1736, 1995.
    [76] Ilham Demir, Randall E.Hughes, Philip J.DeMaris. Formation and use of coal combustion residues from three types of power plants burning Illinois coals. Fuel. 80,1659-1673, 2001.
    [77] F.Wigley, J. Williamson. Modeling fly ash generation for pulverized coal combustion.Progress in Energy & Combustion Science. 24, 337-343, 1998.
    [78] M.rosa Martinez-Tarazona, D.Alan Spears. The fate of trace elements and bulk minerals in pulverized coal combustion in a power station. Fuel Processing Technology. 47, 79-92, 1996.
    [79] 虞继舜.煤化学.北京:冶金工业出版社.2000.
    [80] 马庆芳,方荣生等.实用热物理性质手册.北京:中国农业机械出版社.1986.
    [81] 杨世铭,陶文铨.传热学.北京:高等教育出版社,1998.
    [82] 张洪济.热传导.北京:高等教育出版社.1992.
    [83] M. Necati Ozisik. Heat Conduction. The United States. 1980.
    [84] Stanislav V.V, Christina G.V. Occurrence, abundance and origin of minerals in coals and coal ashes. Fuel Processing Technology. 48: 85-106, 1996.
    [85] 孙俊民,韩德馨.煤粉颗粒中矿物分布特征及其对飞灰特性德影响.煤炭学报.25(5):546-550,2000.
    [86] Yan L, Gupta R.P, Wall T.F. A mathematical model of ash formation during pulverized coal combustion. Fuel. 81:337-344, 2002.
    [87] Fraser W, Jim W, Will H.G. The distribution of mineral matter in pulverized coal particles in relation to burnout behaviour. Fuel. 76(13): 1283-1288, 1997.
    [88] Yan L. CCSEM analysis of minerals in pulverized coal and ash formation modeling. PhD thesis, The University of Newcastle, 2000.
    [89] Keith Quillin. Performance of belite-sulfoaluminate cements. Cement and Concrete Research. 31: 1341-1349, 2001.
    [90] P.Arjunan, Michael R.S, Della M.R. Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products. Cement and Concrete Research. 29: 1305-1311, 1999.
    [9
    
    [91] 郭祝昆,林祖襄,严冬生.高温相平衡与相图.上海:上海科学技术出版社.1987.
    [92] 顾菡珍,叶于浦.相平衡和相图基础.1991.
    [93] 浙江大学,武汉工业大学等合编.硅酸盐物理化学.北京:中国建筑工业出版社.1980.
    [94] Levin E. M, Mttrdie H. F. Mc, Hall E. P. Phase Diagrams for Ceramists. Amer. Ceram. Soc. Columbus, Ohio, 1956.
    [95] Levin E.M, Robbin C.R. Phase Diagrams for Ceramists. Amer. Ceram. Soc. Columbus, Ohio, 1969, Supplement.
    [96] Levin E.M, Murdie H.F.Mc. Phase Diagrams for Ceramists. 1975, Supplement. New York, Academic Pr. 1975.
    [97] 印永嘉,奚正楷,李大珍.物理化学简明教程.北京:高等教育出版社.1992.
    [98] Barin I, Knacke O. Thermochemical Properties of Inorganic Substances. Berlin: Springer, 1973.
    [99] Barin I, Knacke O. Thermochemical Properties of Inorganic Substances. Berlin: Springer, 1977, Supplement.
    [100] 叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社.
    [101] 杨天华,周俊虎等.高温固硫物相硫铝酸盐的研究进展.燃烧科学与技术.9(1):35-39,2003.
    [102] 刘泽常,高洪阁,王力等.高温条件下钙基固硫剂脱硫特性研究.煤炭转化.22(4):54-56,1999.
    [103] Hao Liu, Jiartrong Qiu, Hao Wu, Jun Li. Direct modification of solid residues during co-firing of coal sludge and coal. Fuel. 82: 2323-2329, 2003.
    [104] 罗世永,张家芸,周土平.固/固相反应动力学模型及其应用.材料导报.14(4):6-7,40,2000.
    [105] 顾乐民.固相反应中扩散动力学方程的新探讨.化学学报.49:135-141,1991.
    [106] Haruhiko Tanaka. Thermal analysis and kinetics of solid state reactions. Thermochimica Acta. 267: 29-44, 1995.
    [107] 国家质量技术监督局.中华人民共和国国家标准GB 1344-85:矿渣硅酸盐水泥.
    [108] www.stats.gov.cn.国家统计局.2001年国民经济和社会发展统计公报.2002.
    [109] www.zhb.gov.cn.国家环保局.“2002年中国环境状况公报”,2003.
    
    [110] 刘炳江等.中国酸雨和二氧化硫污染控制区区划及实施政策研究.中国环境科学.18(1):1-7,1998.
    [111] 腾斌.半干法烟气脱硫的实验及机理研究.浙江大学博士学位论文.2004.
    [112] UNFCCC. Convention on climate change. UUEP/IUC, Geneva Executive Center, Switzerland. 1992.
    [113] Kyoto Protocol to the United Nations Framework Conventionon Climate Change [EB/OL] http://www.unfccc.de, 1997.
    [114] 任国玉,徐影,罗勇.世界各国CO_2排放历史和现状.气象科技.30(3):129-134,2002.
    [115] 陈长虹,鲍仙华.全球能源消费与CO_2排放量.上海环境科学.18(2):62-64,1999.
    [116] 胡亚庄.CO_2中国汽车如何面对.汽车与社会.(7):42-43,2001.
    [117] 张近朱.发电企业减排CO_2的技术经济对策.东北电力技术.(6):23-25,52,2002.
    [118] 陈鹏.中国高硫煤及其排放SO_2污染控制.煤炭转化.21(3):1-6,1998.
    [119] 张自劭,叶大武,贺德方,纪国友.高硫煤限产的可能性及环境与经济评价.洁净煤技术.5(3):5-9,1999.
    [120] 哈尔滨普华煤燃烧技术开发中心编.大型煤粉锅炉燃烧设备性能设计方法.哈尔滨:哈尔滨工业大学.2002.
    [121] 袁钧卢,张佩芳译.煤的燃烧理论与技术.上海:华东化工学院出版社.1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700