化学掺杂定向诱导Mg~(2+)离子固溶及对水泥熟料性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国很多水泥企业,石灰石矿产资源都是含MgO较高的低品位石灰石。尽管通过生产控制迫使水泥压蒸安定性合格,但往往会给生产控制带来困难。高MgO矿带的剥离也降低了矿山收益,并可能会带来环境的影响,同时高镁熟料的后期强度也较低。因此,研究如何采用高镁石灰石生产出合格的水泥熟料对于利用低品位原料来说至关重要。
     本文依托于"973"项目(2009CB623101)“高介稳Alite在熟料体系中形成、结构与性质”开展研究,试图利用离子掺杂使氧化镁朝着有利的方向固溶,在定向诱导M2+固溶的同时,尽可能地促进f-CaO的吸收及硅酸相晶体的发育,改变硅酸盐的晶体结构,使阿利特水化活性提高,以达到优化高镁熟料的强度的目的,实现低品位原料的综合和高附加值利用。经过试验分析,得出以下结论:
     (1)当熟料中MgO固定为5%时,在SM=2.2-3.2的范围内,随着SM值的增大,熟料中MgO固溶量从2.94%降到了1.94%。低SM及低IM有利于固溶,KH则影响不大。随SM的增大,熟料的28d抗压强度从60.2Mpa增大至64.0Mpa,而90d抗压强度则从64.1Mpa逐步增大至71.8Mpa。但当SM高于3.0时,随着SM的增加,熟料28d、90d抗压强度已经接近饱和,变化不大。另外,随着KH值的增加,熟料3d、90d抗压强度不断增大,28d抗压强度基本不变。结合固溶和强度,对于高镁体系,实际生产中若要生产高阿利特熟料,可采用稍高的KH,稍低的SM和IM。
     (2)一定范围固定S03掺量,S03或CaF2均能有效促进熟料中MgO的固溶与吸收。且当CaF2掺量≤0.25%时,在CaF2掺量不变的情况下,MgO固溶量随S03含量增加而增加,最高固溶量为3.97%左右。但是,随着熟料中CaF2固定掺量的增加,S03含量对MgO的固溶影响越来越弱。在S03小掺量范围内(S03≤1.2%)时,CaF2掺量的增加更利于熟料中MgO的固溶。单掺S03时,熟料28天抗压强度都随着S03掺量变大而有所降低。在掺杂适量的CaF2的前提下,掺加一定量的S03有助于提高高镁熟料的抗压强度,但存在一个最佳掺量(S03=0.8%)。当生料中掺杂SO3相同时,掺杂有0.25%CaF2的样品28天强度基本上比不掺CaF2的提高大约2~6MPa左右。且熟料中CaF2的含量越高,水泥熟料的后期强度也越高。而在熟料中同时含有S03和MgO时,室温下能稳定M2-M3型的的阿利特。且在掺杂一定量的SO3时,随着熟料中CaF2含量的提高,阿利特的对称性也逐步提高。
     (3)单掺Ca(H2PO4)2·H2O时,随着P205含量的提高,水泥熟料28天抗压强度略有提高。单掺P205若要获得高强度的高镁熟料,需要比较高的含量(P205≥0.8%)。在F-含量相同的情况下,复合掺加Ca(H2PO4)2·H2O或CaHPO4.2H2O均有利于提高高镁熟料的后期强度,最高能达到70MPa左右。但是磷离子存在最佳掺量(0.2%~0.4%),过高或过低则作用不明显。在掺加有适量CaF2时,掺加磷酸氢钙和磷酸二氢钙均有利于熟料中MgO的固溶,最高固溶量为4.76%左右。但是掺加磷酸氢钙比磷酸二氢钙更有利于熟料中MgO的固溶。当熟料中f-MgO含量较低时(小于2%),微量的f-MgO含量的变化已经不是影响强度的主要因素。在本实验掺量范围内,单掺CaF2只能使C3S固溶体稳定在M2-M3型之间。而在此基础上,适当掺加0.2%的Ca(H2PO4)2·H2O,能使C3S固溶体稳定在M3-R型之间。但是,外掺Ca(H2PO4)2·H2O时存在最佳掺量,当其含量过高(0.80%)时,C3S固溶体的晶型又降低到M2-M3型之间。在本实验掺量范围内,C3S晶型变化是高镁熟料强度变化的主要原因。
     (4)采用废渣掺杂的方案不仅适用于高镁熟料,也适用于低镁的正常熟料。在低饱和比(KH=0.87)的情况下,采用PZR+F废渣方案或PG+F废渣方案都可以利用高MgO、低CaO的低品位石灰石获得强度高于57MPa的水泥熟料,但若要获得高强度(≥60Mpa)的熟料需要适当地提高KH值或提高废渣掺量。而采用F废渣+PS方案配料时,即使饱和比较低(KH=0.87),也能生产出28天抗压强度高于75MPa的高标号的水泥熟料。利用PZR+F废渣掺杂的配料方案在设备条件正常时,可以生产出28天抗压强度在68MPa以上的熟料。且该方案具有较好的易烧性和窑炉适应性,飞沙、结圈等不正常窑况较不掺废渣的生产方案好。且与实验前正常生产时相比,采用PZR+F废渣掺杂方案可以实现窑炉系统产量不降低,热耗不增加的目的。
For many cement enterprises in China, the limestone mineral resources are low grade limestone with high MgO. Although the autoclave soundness qualified through cement production control, but often will bring difficulties to the production control. The belts with high MgO are stripped also will reduce the mining income, and may bring about the environmental impact, and the late strength of high magnesium clinker is lower. Therefore, to study how to use high magnesium limestone to produce qualified cement is of vital importance.
     This article rely on the "973" project (2009CB623101):The Formation, Structure and the Properties of the High Metastable Alite in the Clinker System. Attempt was made to use the ion doping make magnesium oxide solid solution in a favorable direction. With the directional solid solution of Mg2+caused by chemical doping, as far as possible to promote the absorption of the f-CaO and the development of silicate phase. And, try to change the crystal structure of the silicate and increase the hydration activity of Alite. Ultimately achieve the goal of optimization of the strength of the magnesia clinker and realize the comprehensive and high value-added utilization of low grade raw materials. After the test analysis, several conclusions could be obtained:
     (1) With the increasing of SM, the concentration f-MgO presents an obvious increasing process within the scope of the SM=2.2~3.2when the total MgO in clinker was5%. The solid solution of MgO is decreaseing from2.94%to1.94%. Low SM and IM are conducive to the solid solution of MgO, but KH has little effect on it. Along with the increase of SM, the28d compressive strength of clinker increases from60.2Mpa to64.0Mpa and the90d compressive strength gradually increases from64.1Mpa to71.8Mpa.However, when the SM is higher than3.0, the28d and90d compressive strength of clinker change little with the increase of SM. In addition, with the increase of KH, the3d and28d compressive strength is increasing, but the28d compressive strength of cement basically remains unchanged. Combination of solid solution and strength, to produce high alite and high-Magnesia clinker should be used in the high KH, slightly lower SM and IM.
     (2) Fixed a certain amount of SO3, doping appropriate content of SO3and CaF2can effectively promote the solution of MgO in clinker. On the basis of the doping of CaF2, the solid solution of MgO show a trend of increases with the increase of SO3when CaF2<0.25%. The highest amount of solid solution is approximately3.97%. However, with the increase of CaF2is fixed in the clinker, the impact of SO3on the MgO solid solution is increasingly weak. When the content of SO3is smaller (SO3≤1.2%), the increased doping amount of CaF2is more conducive to the solid solution of MgO in the clinker. When doping with SO3independent, the28days compressive strength decrease obviously with the increase of SO3. When adding suitable amount of CaF2, adding a certain amount of SO3help improve the compressive strength of clinker, but there is a optimal amount (SO3=0.8%). When the content of SO3is equal, the strength of the samples which doped with0.25%CaF2are higher than which not about2-6MPa. And the higher content of CaF2in the clinker, later strength of cement clinker is also higher. The clinker containing with SO3and MgO, Alite can stable at M1-M3type in the room temperature. And, when mixed with a certain amount of SO3, with the improvement of content of CaF2in the clinker, the symmetry of Alite is also gradually improves.
     (3) When doping with Ca(H2PO4)2·H2O independent, the28days compressive strength increase slightly with the increase of P2O5. To obtain high strength magnesia clinker, single doped P2O5require higher levels. In the case of the same content of F, composite mixing Ca(H2PO4)2·H2O or CaHPO4.2H2O are conducive to high magnesium clinker late strength, and the highest strength can reach about70Mpa. But, the content of phosphorus ion exist the best dosage (0.2%-0.4%), too high or too low, effect is not obvious. When adding suitable amount of CaF2in the clinker, composite mixing CaHPO4.2H2O or Ca(H2PO4)2.H2O are conducive to the clinker in the MgO solid solution. The highest amount of solid solution is approximately4.76%. But, adding CaHPO4.2H2O is more advantageous than Ca(H2PO4)2·H2O on the solid solution of MgO in the clinker. When the content of f-MgO in clinker is low (<2%), the slightly change of content of f-MgO is not the main factor which affects the strength of clinker. In the scope of this experiment, single doped CaF2can only stable C3S at between M2and M3type. But on this basis, appropriate mixing with0.2%Ca(H2PO4)2.H2O can make the C3S solid solution stable at between M3-R type. However, the content of Ca(H2PO4)2.H2O exists the best dosage. When its content is too high (0.80%), the crystal structure of C3S solid solution reduce to between the M2and M3type.
     (4) Slag doped solution applies not only to the high magnesium clinker, is also applicable to the normal clinker which with low magnesium. In the case of low KH (KH=0.87), use the PZR+F slag solution or PG+F slag solution can be obtained of the cement clinker which strength is higher than57Mpa when the limestone is high magnesium and low calcium. But if you want to obtain high strength clinker (≥60Mpa), KH value or the content of slag should be improved. It is also capable of producing a clinker which compressive strength is more than75MPa even if the KH is relatively low (KH=0.87) when using the scheme of F slag+PS. And the factory can produce a clinker which compressive strength is more than68MPa under normal conditions when using the scheme of PZR+F slag. And the scheme has a good easy to burn and kiln adaptability. When using this scheme, the sand, ring and other abnormal conditions is better than the plan without slag admixture. Compared with normal production before the experiment, the plan of PZR+F slag can be accomplished by the production does not reduce and the heat consumption does not increase.
引文
[1]管宗甫.高阿利特水泥熟料的烧成和掺杂阿利特的研究[D].北京:中国建筑材料科学研究院博士学位论文,2005年,1,107-111.
    [2]陈琳,沈晓冬,马素花,冒浴沂,钟白茜.水泥熟料中硅酸三钙晶体结构的研究[A].第九届全国水泥和混凝土化学与应用技术会议[C],2005.182-188.
    [3]“高胶凝性水泥熟料矿物体系研究”调研报告[R].中国建筑材料科学研究总院,南京工业大学,济南大学.2002.
    [4]冯云.浅谈氧化镁对水泥熟料质量的影响[J].生产技术.2006,2:28-31
    [5]张卫东.高镁石灰石在窑外分解窑的应用实践[J].水泥.2006,(10):13-14
    [7]池金果,泰建强.影响高镁熟料煅烧质量原因分析及对策[J].中国水泥.2008,(6):52-54.
    [8]邱云德.高镁熟料的矿物组成对水泥性能的影响[J].水泥.2008,(6):6-9.
    [9]白波,陈有德等.MgO对水泥熟料煅烧的影响[J].水泥技术.2008,(4):69-71.
    [10]姚润泉,刘洪林.高镁石灰石生产优质熟料[J].水泥技术.2011,(2)109-110:.
    [11]李孝山.高MgO熟料硅率的探讨[J].水泥工程.2006,5:12-14.
    [12]侯贵华.高C3S水泥熟料形成化学与掺杂C3S结构研究[D].南京:南京工业大学博士学位论文,2006年,12-13,64-65.
    [13]沈威.水泥工艺学[M].武汉理工大学出版社,2008.16-23.
    [14]N.GHosH著,杨南如译,水泥技术进展(中译本)[M],北京:中国建筑工业出版社(Bejiing:China Architecture-Building press),1986.67,310-318.
    [15]秦守婉.高钙系硅酸盐水泥熟料矿相匹配及掺杂效应研究[D].郑州:郑州大学硕士论文,2004年,5.
    [16]傅蓉.外掺氧化物对高C3S熟料烧成及性能的影响[D].杭州:浙江大学硕士论文,2006年.
    [17]M.M.Regourp, A.I.Bolkova. Chemistry structure properties and quality of clinker[A], ghtleee[e].Newdelhi, India,1992:125-147.
    [18]A.Fukud, I.I.Taguciii.Relation ofαL and βdiealcium silicates with ideniieail concentration of phospours oxide. CemConeerRes.1999,29(4):503-506.
    [19]朱教群,徐贤进.应用工业废渣降低水泥生产能耗.山东建材.1995(5):37~40.
    [20]马保国,柯凯.Mn02掺杂对硅酸盐水泥熟料烧成及矿物结构的影响[J].材料科 学与工程学报.2007,25(5):671~675.
    [21]余曼丽.铬离子对水泥熟料烧成作用的研究[J].建材发展导向.2007(2):45-47.
    [22]Xiaocun Liu, Yanjun Li, Ning Zhang. Influence of MgO on the formation of Ca3SiO5 and 3CaO·3Al2O3·CaSO4 minerals in alite sulphoaluminate cement[J]. Cement and Concrete Research,2002,32:1125-1129.
    [23]肖飞燕.高硫煤对硅酸盐水泥熟料烧成及显微结构的影响[D].武汉:武汉理工大学硕士论文,2007年.
    [24]R. Bucchi, World Cement Technology,12 1981, (12):258.
    [25]M. Sychev and B. V. Volkonskii, Tsement,1975, (9):12.
    [26]M.Tanaka, G.Sodoh. Proceeding of the Fifth International Sympsium on the Chemistry of Cement, Tokyo,1968:122.
    [27]李飞,杨雷,管学茂等.CuO对水泥熟料烧成及矿物组分的影响[J].水泥.2010(9):11-12.
    [28]周枫,王玉江,张战营等.CuO对水泥熟料烧成及C3S形成动力学的影响[J].河南科技大学学报(自然科学版).2011,32(3):5-8.
    [29]杨雷,罗树琼,李飞.Pb对水泥熟料矿物烧成、组分的影响及其固化行为研究[J].Chinese Journal of Environmental Engineering.2011, (6):4174-4178.
    [30]李好新,王培铭,熊少波.MgO对C2S矿物形成的影响[A].建筑材料学报,2006.
    [31]I.Akln Altun. Effect of CaF2 and MgO on sintering of cement clinker [J]. Cement and Concrete Research.1999,29(11):1847-1850.
    [32]柯凯,马保国,王晓亮,谭洪波.MgO对C3S形成过程影响及其固溶效应研究[J].水泥.2010(12):8-11.
    [33]Kakali G, Parissakis G. Investigation of the effect of Zn oxide on the formation of Portland cement clinker. Cem Concr Res,1996,25(1):79-85.
    [34]陈琳,沈晓冬,马素花,黄叶平,钟白茜.BaO对高胶凝性水泥熟料矿物形成的影响[C].第十届全国水泥和混凝土化学及应用技术年会CCC论文.2007.
    [35]Hongbo Tan, Kai Ke, Baoguo Ma, Jun Xiao. Solid Solution Mechanism of Co2O3 During C3S Formation[J]. The Open Materials Science Journal.2011,118-122.
    [36]马保国,柯凯,李相国,胡贞武,余曼丽.不同重金属离子对硅酸盐水泥熟料烧成的影响[[J].中国水泥.2007,64-65.
    [37]马保国,柯凯,李相国,胡贞武,余曼丽.V205掺杂对硅酸盐水泥熟料烧成及矿物结构的影响[J].硅酸盐学报.2007,35(5):588-592.
    [38]]余曼丽,范良浩,胡永平.钒渣掺杂对硅酸盐水泥熟料烧成及性能的影响[J].建筑材料.2007,29(6):437-439.
    [39]K. G. Kolovos, S. Tsivilis and G. Kakali. STUDY OF CLINKER DOPPED WITH P AND S COMPOUNDS[J]. Journal of Thermal Analysis and Calorimetry.2004,77:759-766.
    [40]Lan Ming-Zhang, Zhang Liang-Liang. Study on the Burnability in the Formation of High C3S Cement Clinker with Fluoride Sulphate Composite Mineraliser Used[C]. The 6th International Symposium on Cement & Concrete and Canmet/Aci International Symposium on Concrete Technology for Sustainable Development,2006.
    [41]管宗甫,陈益民,秦守婉,郭随华.生产高胶凝性水泥熟料的研究[J].中国水泥,2007,3:54-57.
    [42]李艳君,刘晓存,张启龙.S03对阿利特一硫铝酸盐水泥熟料中C3S,C4A3S矿物形成的影响研究[J].2000,14(1):1-3.
    [43]Larbi Kacimi, Angelique Simon-Masseron, etc. Influence of NaF, KF and CaF2 addition on the clinker burning temperature and its properties[J]. L. Kacimi et al./C. R. Chimie 9 (2006) 154-163.
    [44]徐利军,胡水江,徐君,樊佳能,李生初.TiO2对高钙生料易烧性的影响研究[J].水泥工程,2012,19-22.
    [45]于丽波,封元,叶正茂.钼氟复合掺杂对硅酸盐水泥熟料形成的影响[J].济南大学学报.2013,27(3):229-232.
    [46]和春梅,杨晓杰,黄岚.稀土尾矿对水泥生料易烧性的影响[J].昆明冶金高等专科学校学报.2012,28(5):9-11.
    [47]咎和平,赵海晋等.镁渣配料煅烧水泥熟料的动力学研究[J].武汉理工大学学报.2007,29(5):38-42.
    [48]范基骏,丛立庆等.探讨MgO在高硫水泥中的机制[C].全面建设小康社会:中国科技工作者的历史责任——中国科协2003年学术年会论文集(下).2003.
    [49]马素花,沈晓冬,黄叶平,龚学萍,钟白茜.氧化锌对阿利特和硫铝酸钙的形成及共存温度范围的影响.硅酸盐学报[J],2006,34(11):1392-1396.
    [50]Shou De Wang, Xiang Yang Guo, Ling Chao Lu, Xin Cheng. Effect of Doped with BaO on the Formation Dynamics of Alite in Alite-Rich Cement Clinker[J]. Advanced Materials Research.2011,998-1002.
    [51]N.K.Katyal,S.C.Ahluwalia,P.Parkash. Effect of barium on the formation of tricalcium silicate[J].Cement and Concrete Research,1999,29(11):1857-1862.
    [52]郭向阳;芦令超;王守德等.钡掺杂对高阿利特硅酸盐水泥熟料组成与性能的影响[J].硅酸盐学报.2009,37(12):2083-2088.
    [53]Ma S H, Shen X D, Gong X P, et al. Influence of CuO on the formation and coexistence of 3CaO·SiO2 and 3CaO·3A12O·3·CaS04minerals[J]. Cement and Concrete Research,2006,36(9): 1784-1787.
    [54]龚学萍,沈晓冬,马素花,等.掺杂CuO对C4A3S矿物形成的影响.硅酸盐通报,2006,25(2):60-64.
    [55]马素花,沈晓冬,黄叶平,等.氧化锌对阿利特和硫铝酸钙的形成及共存温度范围的影响[J].硅酸盐学报,2006,34(11):1392-1396.
    [56]管宗甫,秦守婉,郭随华,陈益民.工业废渣-阴离子团多元复合掺杂对高C3S水泥熟料烧成及性能的影响[J].水泥,2004,3:6-9.
    [57]Chun Fang Wang, Zong Hui Zhou, Cai Xia Liu, Xin Cheng. Effects of CaF2 on the Formation Kinetics of Portland Cement Clinker[J]. Emerging Focus on Advanced Materials. 2011,306-307:966-969.
    [58]王志,王波,王军华等.P2O5对煤矸石水泥性能的影响[J].山东建材学院学报,1995,9(2):19-25.
    [59]黎锦清,朱教群.采用磷渣为原料烧制水泥熟料的研究[J].建材世界,2009,30(4):40~42.
    [60]马先伟,王培铭.P2O5对于高C3S水泥熟料烧成和水化性能的影响[J].材料科学与工程学报.2010,28(1):26-30.
    [61]陈胡星.TiO2对高C3S熟料烧成的影响[J].浙江大学学报.2009,43(7)1302-1306.
    [62]STEPHAN Dietmar, WISTUBA Sebastian. Crystal structure refinement and hydration behaviour of 3CaO.SiO2 solid solutions with MgO, A12O3 and Fe2O3[J]. J Eur Ceram Soc,2006, 26:141-148.
    [63]WOERMANN E, HANHN Th, EYSEL W. The substitution of akalies in tricalcium silicate[J]. Cem Concr Res.1979,9:701-711.
    [64]EMANUELSON Anna, HANSEN Sthffan,VIGGH Erik. A comparative study of ordinary and mineralized Portland cement clinker from two different production units:Part Ⅰ:Composition and hydration of the clinker[J]. Cem Concr Res. 2003,33(10):1613-1621.
    [65]DIOURI A,BOUKHARI A. Stable Ca3SiO5 solid solution containing manganese and phoshorus[J]. Cem Concr Res.1997,27(8):1203-1212.
    [66]管宗甫,陈益民等.杂质缺陷诱导阿利特晶胞常数的改变及多晶转变[J].硅酸盐学报.2006,34(1):70-75.
    [67]任雪红,张文生.Al2O3与多种离子复合掺杂对阿利特结构及活性的影响[C].中国材料研讨会2011.11-24.
    [68]Vagn Johansen, N.H.Christensen, etal. Rate of formation of C3S in the system CaO-SiO2-Al2O3-Fe2O3-MgO with addition of CaF2. Cement and Concrete Research, 1979,9(1):1-6.
    [69]徐玲玲,杨南如,钟白茜.MgO对C4A3 S水化性能的影响.硅酸盐学报,1995,23(2):206-210.
    [70]芦令超,王辉等.MgO对贝利特一硫铝酸钡钙水泥煅烧和性能的影响[J].建筑材料学报.2010,13(3):281-285.
    [71]李艳君,刘晓存,陈亚明.MgO对阿利特一硫铝酸盐水泥熟料矿物形成及性能影响的研究[J].水泥,1999,(1):1-3.
    [72]Anna Emanuelsona, Angel R. Landa-Ca'novasb, Staffan Hansen, A comparative study of ordinary and mineralised Portland cement clinker from two different production units Part II: Characteristics of the calcium silicates, Cement and Concrete Research 33 (2003) 1623-1630.
    [73]童雪莉,张晓东.P205对硅酸盐水泥熟料矿物组成影响的研究[J].1986,14(1):56-62.
    [74]孙希刚,王培铭.矿化剂CaF2对熟料中C3S结构和水泥性能的影响[c].第九届全国水泥和棍簇土化学及应用技术2005年会.2005,77-83.
    [75]王政,巴恒静等.固溶异离子对高贝利特水泥性能的影响[J].武汉理工大学学报.2005,27(7):33-35.
    [76]吕辉,钟景裕,卢志宏(LU Hui, et al)添加稀土贫矿提高水泥质量机理研究(一)熟料矿物形成过程[J].水泥.1997(7)
    [77]杨雷,罗树琼,李飞,马保国.Ni2O3对水泥熟料烧成及矿物组分的影响[J].2011.30(3):662-666.
    [78]REGOURD M M, BOIKOVA A I, Chemistry, structure, properties and quality of clinker [A].9th ICCC[C], New Delhi, India,1992.3~45
    [79]朱晓燕.煅烧条件对高胶凝性水泥烧成和阿利特晶体结构的影响[D].北京:中国建筑材料科学研究院博士学位论文,2007年,I,27-28.
    [80]刘宝元,薛君玕.萤石、石膏复合矿化剂对硅酸盐水泥熟料矿物得影响[J].硅酸盐学报,1984,(12):414-423.
    [81]任雪红,张文生,王彬,欧阳世翕.多组分组合作用下Al2O3掺杂对阿利特结构及活性的影响[J].硅酸盐学报,2012,40(2):200-206.
    [82]任雪红,张文生,欧阳世翕.多离子复合掺杂对阿利特介稳结构的影响[J].硅酸盐学报,2012,40(5):664-669.
    [83]周伟强,马素花,沈晓冬.热处理对MgO掺杂阿利特晶型与水化性能的影响[J].南京工业大学学报(自然科学版),2012,36(4):83-87.
    [84]STEPHAN D, DIKOUNDOU S N, RAUDASHL-SIEBER G. Influence of combined doping of tricalcium silicate with MgO, AlO2O3and Fe2O3:synthesis, grindability, X-ray diffraction and 29Si NMR [J]. Mater Struct,2008,41(1):1729-1740.
    [85]Angeles G. de la Torre, Enrique R. Losilla, Aurelio Cabeza, Miguel A.G. Aranda, High-resolution synchrotron powder di.raction analysis of ordinary Portland cements:Phase coexistence of alite, Nuclear Instruments and Methods in Physics Research B 238 (2005) 87-91.
    [130]F.R.D. Andrade, V. Maringolo, Y. Kihara, Incorporation of V, Zn and Pb into the crystalline phases of Portland clinker, Cement and Concrete Research,2003,(33):63-71.
    [86]Angeles G. De la Torre, Ruth N. De Vera, Antonio J.M. Cuberos, Miguel. A.G. Aranda. Crystal structure of low magnesium-content alite:Application to Rietveld quantitative phase analysis[J]. Cement and Concrete Research,2008,(38):1261-1269.
    [87]Boikova A I. Chemical composition of raw material as the main factor responsible for the composition, structure and properties of clinker phases [A].8th International Congress on the Chemistry of Cement [C],1985,19-33.
    [88]N.K.Katyal, S.C.Ahluwalia, P.Parkash. Effect of barium on the formation of tricalcium silicate [J]. Cement and Concrete Research,1999,29(11)1857-1862.
    [89]N.K.Katyal,S.C.Ahluwalia,Ram Parkash, Effect of TiO2 on the hydration of tricalcium silicate[J]. Cement and Concrete Research,1999,29(11):1851-1855.
    [90]N.K. Katyal, S.C. Ahluwlia, R.Parkash. Effect of Cr2O3 on the formation of C3S in 3CaO:1SiO2:xCr2O3 system [J], Cement and Concrete Research,2000,30(9):1361-1365.
    [91]N.K.Katyal,R.Parkash,S.C.Ahluwalia, et al. Influence of titania on the formation of tricalcium silicate[J]. Cement and Concrete Research,1999,29(3):355-359.
    [92]李相国,柯凯,马保国等.Mn02对硅酸三钙晶粒尺寸及晶型的影响[J].建筑材料学报,2012,15(4):544-547.
    [93]王培铭,李好新,吴建国.不同氧化铜掺量下硅酸三钙矿的形成[J].硅酸盐学报,2007,35(10):1353-1358.
    [94]李贵强.掺杂SrO和SrS04对高阿利特水泥合成和性能的影响[D].济南大学,2011.
    [95]W A Gutteridge. On the dissolution of the interstitial phase in portland cement[J]. cement and concrete reserch,1979,9 (5):319~324.
    [96]李召峰,周宗辉,单立福.氢氧化钾-蔗糖溶液(KOSH)萃取钢渣中间相的研究[A].中国硅酸盐学会水泥分会首届学术年会[C],2009.8.
    [97]赵喜梅,马峰玲,余其俊等.若干因素对硅酸盐水泥熟料中MgO分布及形态的影响[J].山东建材学院学报.1989,3(2):6-13.
    [98]曹泽生,徐锦华.氧化镁混凝土筑坝技术[M].北京:中国电力出版社,2003.
    [99]S.N.戈什等编,杨南如等译,水泥技术进展,中国建筑工业出版社,1986:81.
    [100]朱大龙.工业生产含氧化镁硅酸盐水泥熟料的几个问题.水泥与混凝土研究论文选(下册)[C].1984,(10):1858-1870.
    [101]S.S.Rehsi and A.J.Majumdar Mag Concr Res.1969,21(67):67.
    [102]K.Balthasar. Tonind. Zeit.1932,56:1016:Tonind. Zeit.1934,58:194.
    [103]MAKI I, KATO K. Phase identification of alite in Portland cement clinker [J]. cement and concrete research,,1982,1 (12):93~100.
    [104]T Stanek, P Sulovsky. The influence of the alite polymorphism on the strength of the Portland cement[J]. Cement and Concrete Research,2002,32 (7):1169~1175.
    [105]陈雁安.立窑高镁熟料中S03的作用与调控[J].建材工业信息.1998,3:13-14.
    [106]管宗甫,陈益民,秦守婉,等.掺杂阳离子在水泥熟料矿物阿利特中的固溶[J]. 硅酸盐学报,2007,35(4):461-466.
    [108]DE NOIRFONTAINE M N, TUSSEAU-NENEZ Sandrine, et al. Effect of phosphorus impurity on tricalcium silicate Tl from synthesis to structural characterization. J Am Ceram Soc, 2009,92(10):2337-2344.
    [109]DIOURI A, BOUKHARI A. Stable Ca3SiO5 solid solution containing manganese and phosphorus [J]. Cem Concr Res,1997,27(8):1203-1212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700