掺杂SrO和SrSO_4对高阿利特水泥合成和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2010年我国水泥产量达18.7亿吨,导致能源和资源消耗巨大,环境污染日益严重。因此,如何实现水泥工业的可持续发展是当前面临的主要任务。高质量建设工程要求水泥与混凝土施工性更好、强度更高及具有良好的耐久性,并要求水泥生产和使用过程中能够利用更多的工业废弃物。生产高性能水泥的关键是制备高胶凝性水泥熟料,而提高水泥熟料中阿利特含量是制备高胶凝性水泥熟料的有效途径之一;另外,在水泥熟料中引入非硅酸盐类高胶凝性矿物形成新的高胶凝性熟料矿相体系也是制备高胶凝性水泥熟料的重要方法。
     本文通过在高阿利特水泥熟料中分别掺杂SrO和SrSO_4,研究了其对高阿利特水泥熟料制备、结构和性能的影响。在高阿利特水泥熟料中掺杂SrO与SrSO_4以形成少量具有快硬早强性能的硫铝酸锶钙矿物,制备了硫铝酸锶钙改性高阿利特水泥熟料。采用正交实验方法确定了该熟料适宜的煅烧制度和组成。通过研究掺杂SrO和SrSO_4的C_3S晶体结构的变化及性能,获得了提高C_3S水化活性的有效方法。采用XRD、SEM-EDS、IR、水化热和岩相分析等测试手段对熟料和矿物的组成、结构和性能进行了分析,初步阐明了掺杂SrO和SrSO_4条件下提高该水泥性能的机理。主要结论如下:
     在1450℃煅烧条件下,在本实验组成范围内,高阿利特水泥熟料的适宜率值为:KH=0.92、SM=2.5、IM=1.5,C_3S的计算含量达65.1%;在该条件下制备的高阿利特水泥1d、3d和28d抗压强度分别达到了23.4MPa、53.7MPa和129.1MPa,展现了良好的力学性能。KH值过高时,阿利特含量没有明显增加,反而易造成水泥熟料的煅烧困难。
     掺杂SrO和SrSO_4可以降低熟料中游离氧化钙的含量,促进阿利特矿物的形成,有利于水泥强度的提高。掺杂SrO的高阿利特水泥熟料的最佳制备条件为:煅烧温度为1450℃、保温时间为60min、SrO的适宜掺量为1.5%(质量分数,下同),水泥早期力学性能明显提高,3d强度可提高15.5%。掺杂SrSO_4的高阿利特水泥熟料的最佳制备条件为:煅烧温度为1450℃、保温时间为60 min、SrSO_4的适宜掺量为0.5%,水泥后期力学性能明显提高,28 d强度可提高9.9%。引入硫铝酸锶钙矿物可以降低高阿利特水泥熟料体系烧成温度约100℃,并使熟料中游离氧化钙含量降低,促进阿利特矿物形成。在本实验条件下,硫铝酸锶钙改性高阿利特水泥熟料的最佳制备条件为:煅烧温度为1350℃、保温时间为60 min、硫铝酸锶钙的引入量为2%。所制备的水泥1d、3d和28d抗压强度分别达到了28.5MPa、66.7MPa和128.6MPa,力学性能良好。熟料中阿利特和硫铝酸锶钙矿物的发育程度均不够完整,矿物尺寸较小;硫铝酸锶钙矿物尺寸约为0.1μm,存在于硅酸盐矿物边界和空隙。
     同时,研究了掺杂SrO和SrSO_4对C_3S晶体结构和性能的影响。结果表明:试样中游离氧化钙含量随SrO掺量的增加而逐渐增多,但当SrO掺量小于0.075mol时,其游离氧化钙含量较低且低于纯C_3S。当SrO掺量小于0.025mol时,硅酸三钙固溶体衍射峰发生变化但均为三斜晶系;当SrO掺量大于0.025mol时,硅酸三钙固溶体为单斜晶系。随着SrO掺量的增加,硅酸三钙固溶体在815cm-1吸收谱带由尖锐逐渐消失,取代程度增加,其对称性提高。掺杂SrO硅酸三钙的加速期提前,水化速率增大,使硅酸三钙固溶体有更大的水化活性。当SrSO_4掺量较少时,可降低试样中游离氧化钙含量,促进C_3S的形成;但当SrSO_4掺量逐渐增大时,试样中的游离氧化钙含量逐渐升高。掺杂1.5% SrSO_4的硅酸三钙晶型为R型。掺杂SrSO_4以后C_3S在815cm-1吸收谱带也由尖锐逐渐消失。
In 2010, the cement output reached 1.87 billion tons in China, which leads to enormous consumption of energy and natural resources as well as severe environmental pollution. Therefore, the main task is how to achieve the sustainable development of cement industry. The key to producing high-performance cement is the preparation of cement clinker with high cementitious. The effects of doping SrO and SrSO_4 on the preparation, structure and properties of the alite-rich cement clinker are studied. Alite-rich cement clinker modified by calcium strontium suphoaluminate is prepared by introducing calcium strontium suphoaluminate mineral with rapid hardening and early strength performances into alite-rich cement clinker. The optimum composition and sintering condition of the clinkers are determined by the orthogonal experimental method. The crystal structures and properties of C_3S doped SrO and SrSO_4 are also researched. The test methods, such as XRD, SEM-EDS, IR, heat of hydration and lithofacies analysis, are used to analyze the composition, structure and performance of clinker and mineral. The main conclusions are as follows:
     Calcined at 1450℃, the appropriate modulus value of alite-rich cement clinker is as follows: KH=0.92, SM=2.5, IM=1.5, and the calculation content of mineral composition C_3S is up to 65.1%; Under this conditions, the 1d, 3d and 28d compressive strength of alite-rich cement are 23.4MPa, 53.7MPa and 129.1MPa respectively, showing excellent mechanical properties. Overvalue KH of cement clinker doesn’t contribute to obvious increase of alite; instead, it results in the difficulties for the sintering of clinker.
     Cement clinker doped SrO and SrSO_4 can reduce the contents of free calcium oxide, promote the formation of alite minerals, and be benefit to the improvement of cement strength. The optimum conditions for alite-rich clinker doped SrO are as follows: sintering temperature is 1450℃, sintering time is 60 min, and the appropriate content of SrO is 1.5% (by the mass, the same as following). The early strength of cement increases significantly, and the 3d strength can be improved by 15.5%. The optimum conditions for alite-rich clinker doped SrSO_4 are as follows: sintering temperature is 1450℃, sintering time is 60 min, and the appropriate content of SrSO_4 is 0.5%. The later strength of cement increases significantly, and the 28d strength can be improved by 9.9%.
     The introduction of calcium strontium suphoaluminate mineral can not only reduce the sintering temperature of alite-rich cement clinker to about 100℃, but also decrease the contents of free calcium oxide and promote the formation of alite minerals in clinker, which can play important role in the energy saving of cement industry. Under the experimental conditions, the optimum conditions of alite-rich cement clinker modified by calcium strontium suphoaluminate are as follows: sintering temperature is 1350℃, sintering time is 60 min, and the content of calcium strontium suphoaluminate is 2%. Under the optimum preparation conditions, the 1d, 3d and 28d compressive strength of cement are 28.5MPa, 66.7MPa and 128.6MPa respectively and excellent mechanical properties. The development degree of alite and calcium strontium suphoaluminate minerals in the clinker is incomplete, and the size of mineral particles is small. The size of calcium strontium suphoaluminate minerals is about 0.1μm, existing in the gaps and borders of silicate minerals.
     The effect of SrO and SrSO_4 on the crystal structure and properties of C_3S is also researched. The content of free calcium oxide increases with the increase of SrO, when the content of SrO is less than 0.075mol, the content of free calcium oxide is lower than that of the pure C_3S. When the SrO content is less than 0.025 mol, the diffraction peaks of tricalcium silicate solution show slight change but its crystal type is still triclinic; when the doping content of SrO is more than 0.025 mol, the tricalcium silicate solution is the monoclinic. As the increase of replacement level, the sharp extent of its absorption band decreases. After the doping of SrO, the absorption band of C_3S at 815cm-1 become to gradual disappearance from the very sharp spectrum, resulting in greater hydrate tendency of tricalcium silicate solutions. When the doping content of SrSO_4 is small, the content of free calcium oxide can be reduced in sample and consequently the formation of C_3S can be promoted. However, with the increase of the SrSO_4 content, the content of free calcium oxide in samples increases gradually. The characteristic of the R-C_3S solution sample mixed with 1.5% SrSO_4 is that the absorption band of C_3S at 815cm-1 gradually disappears from the very sharp spectrum.
引文
[1]周正立,周君玉.新型干法水泥生产典型实例[M].北京:化学工业出版社, 2006.
    [2]马保国,李相国,王信刚,等.低环境负荷型高性能水泥生产技术研究[J].环境科学与技术, 2005, 28(3): 87-89.
    [3]陈益民,许仲梓.高性能水泥制备和应用的科学基础[M].北京:化学工业出版社, 2008.
    [4]张文生,陈益民,欧阳世翕.粉煤灰与水泥熟料共同水化硬化的基础研究进展及评述[J].硅酸盐学报, 2000, 28(2): 160-164.
    [5]陈益民,郭随华,管宗甫.高胶凝性水泥熟料[J].硅酸盐学报, 2004, 32(7): 873-879.
    [6]吴中伟,陶有生.中国水泥和混凝土工业的现状和问题[J].硅酸盐学报, 1999, 27(12): 734-738.
    [7]管宗甫.高阿利特水泥熟料的烧成和掺杂阿利特的研究[D].北京:中国建筑材料科学研究院, 2005.
    [8]管宗甫,陈益民,郭随华,等.不同阴离子在高C_3S熟料体系中的作用[J].硅酸盐学报, 2004, 32(3): 317-320.
    [9]芦令超.阿利特-硫铝酸钡钙水泥的制备及组成、结构与性能研究[D].武汉:武汉理工大学, 2005.
    [10]马素花,沈晓冬,钟白茜.掺杂对高胶凝性水泥熟料矿物形成影响的研究进展[J].材料导报, 2006, 20(10): 92-96.
    [11]侯贵华.高C_3S水泥熟料形成化学与掺杂C_3S结构研究[D].南京:南京工业大学, 2006.
    [12]管宗甫,陈益民,郭随华,等.杂质缺陷诱导阿利特晶胞常数的改变及多晶转变[J].硅酸盐学报, 2006, 34(1): 70-75.
    [13]沈威,黄文熙,闵盘荣.水泥工艺学[M].北京:中国建筑工业出版社, 2003.
    [14]袁润章.胶凝材料学[M].武汉:武汉工业大学出版社, 1989.
    [15] Taylor H F W. Cement Chemistry[M]. London: Academic Press, 1990.
    [16]浙江大学.硅酸盐物理化学[M].北京:中国建筑工业出版社, 1980.
    [17]王琦,刘世权,侯宪钦.无机非金属材料工艺学[M].北京:中国建材工业出版社, 2005.
    [18] Kolovos K, Loutsi P, Tsivilis S, et al. The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system: Part I. Anions[J]. Cement and Concrete Research, 2001, 31(3): 425-429.
    [19] Kolovos K, Tsivilis S, Kakali G. The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system: Part II: Cations[J]. Cement and Concrete Research, 2002, 32(3): 463-469.
    [20]郭随华,陈益民,管宗甫,等.铝率及液相性质对高硅酸三钙含量的硅酸盐水泥熟料烧成过程的影响[J].硅酸盐学报, 2004, 32(3): 340-345.
    [21]侯贵华,沈晓冬,许仲梓.高C_3S硅酸盐水泥熟料组成设计及矿物形成的研究.见:中国硅酸盐学会2003年学术年会水泥基材料论文集[C].北京:中国硅酸盐学会, 2003.
    [22] Omotoso O E, Ivey D G, Mikula R. Containment mechanism of trivalent chromium in tricalcium silicate[J]. Journal of Hazardous Materials, 1998, 60(1): 1-28.
    [23] Omotoso O E, Ivey D G, Mikula R. Quantitative X-ray diffraction analysis of chromium(III) doped tricalcium silicate pastes[J]. Cement and Concrete Research, 1996, 26(9): 1369-1379.
    [24] Lin C K, Chen J N, Lin C C. An NMR, XRD and EDS study of solidification/stabilization of chromium with Portland cement and C_3S[J]. Journal of Hazardous Materials, 1997, 56(1-2): 21-34.
    [25]陆平.水泥材料科学导论[M].上海:同济大学出版社, 1991.
    [26] Ye Q, Kong J M, Liu B Y. Effect of fluorite gypsum composite mineraliser on the microstructure and properties of Portland cement clinker phase. In: The 9th International Congress on the Chemistry of Cement[C]. New Delhi, 1992, 2: 342-350.
    [27] Feng P Z, Yin H F, Tong D M. The Promoting effect of CaF2 and CaSO4 on the formation of C_3S. In: Proceedings of 1985 Beijing International Symposium on Cement and Concrete. Beijing[C]. China Building Industry Press, 1985.
    [28]陈伟民,楼宗汉.氟硫存在条件下过渡型矿物生成规律和促进C_3S形成的研究[J].硅酸盐学报, 1997, 12(6): 651-655.
    [29] Giménez Molina S, Blanco Varela M T. Solid state phases relationship in the CaO-SiO2-Al2O3-CaF2-CaSO4 system[J]. Cement and Concrete Research, 1995, 25(4): 870-882.
    [30] Cesare Gilioli, Franco Massazza, Mario Pezzuoli. Studies on clinker calcium silicates bearing CaF2 and CaSO4[J]. Cement and Concrete Research, 1979, 9(3): 295-302.
    [31] Khlusov V B. Manufacture and properties of alite-sulphoaluminate clinker. In: 8th ICCC[C]. 1987.
    [32] Kravchenko I V, Kuzhecova T V, Khlusov V B. Alite-sulphoaluminate clinker and its cement[J]. Cement, 1978, (8): 7-8.
    [33]王洪芬,沈晓冬,袁媛.含C4A3S矿物硅酸盐水泥力学性能及水化产物研究[J].水泥, 2003, (3): 3-6.
    [34]宋旭辉,杨树新,田斌守.阿利特-硫铝酸盐水泥的试生产[J].水泥, 2003, (2): 24-25.
    [35]成希弼,吴兆琦.特种水泥的生产及应用[J].北京:中国建筑工业出版社, 1994.
    [36]冯培植,童大懋.对掺有氟化钙、硫酸钙的硅酸盐水泥熟料C_3S低温形成的探讨[J].水泥, 1983, (10): 20-26.
    [37] Moranville R M, Boikova A I.熟料的化学、结构、性能和质量.见:第九届国际水泥化学会议综合报告译文集[C].南京:南京化工学院材料科学与工程系, 1994.
    [38]王燕谋,苏慕珍,邓君安. CaO-SiO2-Al2O3-Fe2O3-SO3五元系统中水泥矿物组成的研究[J].硅酸盐学报, 1982, 10(4): 369-376.
    [39]李艳君,张宁,张西臣,等. CaF2对C_3S和C4A3S矿物形成及共存的影响[J].山东建材学院学报, 2001, 15(2): 105-107.
    [40]李艳君,谢英,刘晓存. SO3对阿利特-硫铝酸盐水泥熟料性能影响的研究[J].水泥工程, 2000, (6): 4-6.
    [41]李艳君,刘晓存,李锋. P2O5对阿利特-硫铝酸盐水泥熟料矿物形成及性能的影响[J].山东建材学院学报, 1996, (12): 10-13.
    [42]李艳君,刘晓存,曾贤成. Fe2O3对阿利特-硫铝酸盐水泥熟料矿物形成影响的研究[J].水泥, 2000, (3): 5-7.
    [43] Liu X C, Li Y J. Effect of MgO on the composition and properties of alite-sulphoaluminate cement[J]. Cement and Concrete Research, 2005, 35(9): 1685-1687.
    [44] Liu X C, Li Y J, Zhang N. Influence of MgO on the formation of Ca3SiO5 and 3CaO·3Al2O3·CaSO4 minerals in alite-sulphoaluminate cement[J]. Cement and Concrete Research, 2002, 32(7): 1125-1129.
    [45]刘晓存,李艳君,单连梅. ZnO和CaF2对C_3S和C4A3S矿物形成的影响[J].建筑材料学报, 2003, 6(1): 9-12.
    [46]李艳君,李永怀,张宁,等.碱对阿利特-硫铝酸盐水泥熟料矿物形成及水泥性能的影响[J].水泥, 2001, (4): 4-6.
    [47] Ma S H, Shen X D, Gong X P, et al. Influence of CuO on the formation and coexistence of 3CaO·SiO2 and 3CaO·3Al2O3·CaSO4 minerals[J]. Cement and Concrete Research, 2006, 36(9): 1784-1787.
    [48]龚学萍,沈晓冬,马素花,等.掺杂CuO对C4A3S矿物形成的影响.硅酸盐通报, 2006, 25(2):60-64.
    [49]马素花,沈晓冬,黄叶平,等.氧化锌对阿利特和硫铝酸钙的形成及共存温度范围的影响[J].硅酸盐学报, 2006, 34(11): 1392-1396.
    [50]马素花,沈晓冬,龚学萍,等.氧化锂对高胶凝性熟料矿物形成的影响[J].硅酸盐通报, 2006, 25(3): 74-77.
    [51] Chen L, Shen X D, Ma S H. Effect of barium oxide on the formation and coexistence of tricalcium silicate and calcium sulphoaluminate[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2009, 24(3): 457-461.
    [52]马素花,沈晓冬,陈琳.二氧化锰对含硫铝酸钙矿物硅酸盐水泥熟料相平衡共存的影响[J].硅酸盐学报, 2010, 38(4): 564-567.
    [53] Chang J, Cheng X, Liu F T, et al. Influence of fluorite the Ba-bearing sulphoaluminate cement[J]. Cement and Concrete Research, 2001, 31(2): 213-216.
    [54] Cheng X, Chang J, Lu L C, et al. Study of Ba-bearing sulphoaluminate minerals and cement[J]. Cement and Concrete Research, 2000, 30(1): 77-81.
    [55]滕冰,程新.含钡硫铝酸钙晶体的合成及其结构和形态[J].人工晶体学报, 1999, 28(2): 193-197.
    [56] Cheng X, Chang J, Lu L C, et al. Study on the hydration of Ba-bearing calcium sulphoaluminate in the presence of gypsum[J]. Cement and Concrete Research, 2004, 34(11): 2009-2013.
    [57]常钧,谭文杰,黄睿,等.硫铝酸锶钙矿物的研究[J].硅酸盐学报, 2010, 38(4): 666-670.
    [58]徐国涛,杜鹤桂.硫铝酸锶钙水硬性矿物的合成与显微结构分析[J].东北大学学报, 2000, 21(1): 70-72.
    [59]阎培渝. 3CaO·3Al2O3·SrSO_4浆体结构与强度的关系[J].武汉工业大学学报, 1994, 16(1): 19-22.
    [60]程新,芦令超,王来国,等.高胶凝性阿利特-硫铝酸钡钙矿相体系的研究[J].硅酸盐学报, 2004, 32(3): 321-326.
    [61]芦令超,常钧,沈叶青,等.阿利特-硫铝酸钡钙水泥材料制备技术的研究[J].硅酸盐通报, 2004, (5): 16-19.
    [62]芦令超,沈业青,刘福田,等. SO3、BaO及CaF2对阿利特-硫铝酸钡钙水泥煅烧和性能的影响.见:第九届全国水泥和混凝土化学及应用技术会议论文汇编[C].北京:中国建材工业出版社, 2005.
    [63]芦令超,沈业青,常钧,等.阿利特-硫铝酸钡钙水泥熟料矿相体系的组成结构与性能[J].济南大学学报(自然科学版), 2005, (2): 95-98.
    [64]芦令超,常钧,叶正茂,等.硫铝酸盐与硅酸盐矿物合成高性能水泥[J].硅酸盐学报, 2005, (1): 57-62.
    [65]沈业青.阿利特-硫铝酸钡钙水泥材料合成及组成、结构与性能研究[D].济南:济南大学图书馆, 2005.
    [66]芦令超,张伟,唐晓娟,等.阿利特-硫铝酸钡钙水泥组成与性能的研究[J].建筑材料学报, 2007, (1): 20-25.
    [67]芦令超,常钧,沈业青,等.阿利特-硫铝酸钡钙水泥的合成与力学性能[J].硅酸盐学报, 2005, (7): 902-906.
    [68]芦令超,于丽波,常钧,等. CaF2对硫铝酸钡钙矿物形成过程的影响[J].硅酸盐学报, 2005, (11): 1396-1400.
    [69] Lu L C, Chang J, Cheng X, et al. Study on a cementing system taking alite-calcium barium sulphoaluminate as main minerals[J]. Journal of Materials Science, 2005, 40(15): 4035-4038.
    [70] Lu L C, Lu Z Y, Liu S Q, et al. Durability of alite-calcium barium sulphoaluminate cement[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2009, 24(6): 982-985.
    [71]李贵强,芦令超,王守德,等.阿利特-硫铝酸钡钙水泥抗硫酸盐侵蚀性能的研究[J].硅酸盐通报, 2009, 28(5): 1038-1041.
    [72] Guinier A, Regourd M. Structure of Portland cement minerals. In: Proeeedings of the 5th International Symposium on the Chemistry of Cement[C]. Tokyo, 1968.
    [73]祖庆贺,闵辉华,汪峰.单斜相阿利特的晶体结构研究[J].硅酸盐学报, 2009, 37(10): 1750-1753.
    [74] Maki I. Kato K. Phase identification of alite in Portland cement clinker[J]. Cement and Concrete Research, 1982, 12(1): 93-100.
    [75] Katyal N K, Ahluwalia S C, Parkash R. Effect of barium on the formation of tricalcium silicate[J]. Cement and Concrete Research, 1999, 29(11):1857-1862.
    [76] Katyal N K, Ahluwalia S C, Parkash R. Effect of TiO2 on the hydration of tricalcium silicate[J]. Cement and Concrete Research, 1999, 29(11): 1851-1855.
    [77] Katyal N K, Ahluwlia S C, Parkash R. Effect of Cr2O3 on the formation of C_3S in 3CaO·SiO2·xCr2O3 system[J]. Cement and Concrete Research, 2000, 30(9): 1361-1365.
    [78]叶青,刘宝元,薜君玕.含氟和硫的硅酸三钙固溶体的结晶化学研究[J].硅酸盐学报, 1989, 17(2): 97-104.
    [79]叶青,刘宝元,薛君玕.含氟和硫的硅酸三钙固溶体的水硬性研究[J].中国建筑材料科学研究院学报, 1989, 1(3): 230-239.
    [80]王善拔,周宗辉.含氟硅酸三钙的水化[J].硅酸盐学报, 1991, 19(4): 318-323.
    [81]樊粤明,钟景裕,吕辉,等.含氟硫A矿的水化特性[J].华南理工大学学报(自然科学版), 1996, 24(3): 104-110.
    [82]胡曙光,耿健,吕林女.混合材对高C_3S含量水泥水化性能的影响[J].武汉理工大学学报, 2005, 27(10): 4-7.
    [83] Ma S H, Shen X D, Huang Y P. Effect of CuO on the formation mechanism of calcium sulphoaluminate[J]. Journal of Wuhan University of Technology--Materials Science Edition, 2008, 23(4): 518–521.
    [84]马保国,柯凯,李相国,等. V2O5掺杂对硅酸盐水泥熟料烧成及矿物结构的影响[J].硅酸盐学报, 2007, 35(5): 588-592.
    [85] Andrade F R D, Maringolo V, Kihara Y. Incorporation of V, Zn and Pb into the crystallinephases of Portland clinker[J]. Cement and Concrete Research, 2003, 33(1): 63-71.
    [86]芦令超,张卫伟,轩红钟,等.贝利特-硫铝酸钡钙水泥的煅烧及其性能[J],硅酸盐学报2008, 36(S1): 165-169.
    [87]管宗甫,秦守婉,郭随华,等.工业废渣-阴离子团多元复合掺杂对高C_3S水泥熟料烧成及性能的影响.
    [88]张亮亮.氟硫矿化剂对高C_3S水泥熟料形成的影响[D].北京:北京工业大学图书馆, 2005.
    [89]常钧,黄世峰,叶正茂.硫铝酸钡钙矿物的早期水化[J].硅酸盐学报, 2006, 34(7): 19-22.
    [90] Li Dongxu, Song Xuyan, Gong Chenchen, et al. Research on cementitious behavior and mechanism of pozzolanic cement with coal gangue[J]. Cement and Concrete Research, 2006, 36(6): 1752-1759.
    [91]吴兆琦,汪瑞芬,等译校.水泥的结构和性能[M].北京:中国建筑工业出版社, 1991.
    [92]陆佩文主编.无机材料科学基础[M].武汉:武汉理工大学出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700