汽油/柴油双燃料高预混合低温燃烧技术应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以均质压燃(HCCI)为代表的新一代燃烧方式可取得极低的NOx和颗粒物排放并保持高热效率,但由于化学反应动力学在燃烧过程中起主导作用,其燃烧控制困难及运行工况范围狭窄的难题至今没有得到有效的解决,限制了HCCI的广泛应用。为此,本文提出了一种基于燃料化学活性及混合气分层协同控制的燃烧模式—汽油/柴油双燃料高预混合低温燃烧(Highly Premixed Charge Combustion,HPCC),其供油方式为进气道喷射汽油、缸内直喷柴油,根据发动机运行工况通过调整汽油/柴油比例、EGR率及柴油喷油策略控制实现高比例的预混合燃烧,从而实现HPCC负荷工况范围内的高效清洁燃烧。本文主要针对HPCC燃烧技术的相关基础问题及其负荷工况范围内的燃烧控制策略开展了系统的研究。
     本文首先进行了燃烧控制参数对HPCC燃烧、性能及排放影响的试验研究,结果表明,柴油喷油时刻影响HPCC的燃烧放热模式,柴油早喷与晚喷时分别表现出双燃料的HCCI和柴油引燃汽油预混合气的准均质压燃(QHCCI)燃烧放热特性。通过调整汽油/柴油比例、EGR率及柴油喷油策略可改变缸内混合气的化学活性及浓度分层,实现对不同燃烧模式的控制;进气压力影响HPCC的着火滞燃期、燃烧反应速度和“失火”与“爆震”燃烧的汽油比例限值,提高进气压力可以提高汽油比例,从而大幅度降低NOx和碳烟排放;提高柴油喷油压力仍是改善HPCC模式下NOx和soot排放的重要途径;通过优化燃烧控制参数,在平均指示压力(IMEP)为0.9MPa工况,NOx和soot比排放分别低于0.4g/(kW·h)和0.003g/(kW·h),并保持较高的热效率,但HC和CO排放偏高。
     柴油早喷是在中低负荷实现HPCC的主要控制策略,但早喷燃油的“湿壁”会导致碳烟排放升高,而且碳烟排放峰值出现在某一特定的喷油时刻区域。本文针对燃油早喷时刻下的碳烟排放特性开展了试验研究,结果表明,在特定的喷油时刻区域碳烟排放升高的根本原因是“湿壁”燃油在缸内形成了局部过浓区。燃油早喷情况下的碳烟排放特性不同于传统柴油机,如提高进气压力、控制进气温度、冷却水温度和提高喷油压力等均不能有效降低碳烟排放,而提高EGR率、采用高挥发性燃料或进气道结合缸内直喷的供油方式均可显著降低碳烟排放。
     柴油喷油策略是控制燃烧模式、扩展高效清洁运行工况范围的重要途径。本文分别对单次喷油(晚喷:L-single,早喷:E-single)和两次喷油(第二次晚喷:L-SOI2,第二次早喷:E-SOI2)策略进行了试验研究,并以L-SOI2为例,采用KIVA-CHEMKIN软件从混合气活性及其分层角度对HPCC燃烧及排放的控制机理进行了数值模拟研究。结果表明,在单次喷油策略中,E-single的NOx和soot排放远低于L-single;在两次喷油策略中,对于L-SOI2,着火时刻主要由第二次喷油时刻控制,高温放热分两阶段进行,可有效降低最大压力升高率(MPRR)及最大爆发压力,但由于较晚的第二次喷射的柴油存在部分扩散燃烧导致碳烟排放升高。对于E-SOI2,着火时刻主要由第二次喷油时刻与化学反应动力学共同控制,燃烧持续期短,热效率高,但MPRR也较高。
     为了使高效清洁运行工况范围向高负荷扩展,本文对不同转速(900~2500r/min)下的高负荷扩展技术途径进行了试验研究,结果表明,在满足一定的MPRR及排放等限定条件下,对各运行参数进行优化,采用E-single策略时,高负荷边界点的指示比油耗在1900r/min时达最低值为168.6g/(kW·h()即50%的指示热效率),各边界点的NOx、soot排放均分别低于0.4g/(kW·h)、0.003g/(kW·h)。边界点IMEP值随转速的升高而增大,最高达到1.2MPa。低、中、高转速下的高负荷扩展分别受到较高的NOx排放、MPRR及最大爆发压力的限制。针对这些限制,在900r/min下,通过提高进气压力由0.12MPa至0.18MPa,最大IMEP由0.67MPa提高至0.79MPa;在1500r/min下,通过采用L-SOI2策略,并减少第二次喷射柴油量、提高汽油比例及柴油喷射压力,最大IMEP由1.026MPa提高至1.391MPa。
     在上述研究基础上,本文最后对HPCC运行工况范围内的燃烧控制策略进行了试验研究,结果表明,在低负荷工况,采用纯柴油低温燃烧(LTC)模式更有利于提高热效率;在中等负荷工况,宜采用汽油/柴油双燃料HCCI燃烧模式;而在高负荷工况,宜采用汽油/柴油双燃料QHCCI燃烧模式。采用上述燃烧控制策略,汽油/柴油双燃料HPCC可在其运行工况范围内实现极低的NOx和碳烟排放,有满足欧Ⅵ排放法规的潜力,并可实现高热效率。HPCC是一种极有前途的高效清洁燃烧新技术,且适用于其它高十六烷值与高辛烷值双燃料。
Homogeneous charge compression ignition (HCCI), as the representative of newgeneration combustion mode with high thermal efficiency and lower NOx andparticulate matter (PM) emissions, has been widely investigated. However, HCCIcombustion is controlled by chemical kinetics, which makes it difficult to control thecombustion and expand operating range. This difficulty has not been effectivelyresolved up to now, so the wide use of HCCI is limited. Therefore, a new promisingcombustion strategy based on the cooperated control between fuel chemical reactivityand mixture stratification has been proposed, which is named gasoline/diesel dual-fuelhighly premixed charge combustion (HPCC). HPCC proposes port fuel injection ofgasoline and direct injection of diesel fuel with rapid in-cylinder fuel blending. Thehigh-efficiency clean combustion of HPCC characterized of highly premixed chargecould be realized over the whole load region by varying parameters of gasoline-to-dieselratio, EGR rate and injection strategy according to the engine operating condition.Systemic investigations were carried out in this thesis mainly focusing on HPCC relatedfoundation problems and its combustion control strategy over the whole load region.
     First, the effects of combustion control parameters on HPCC combustion,performance and emissions characteristics were experimental investigated. The resultsshow that injection timing of diesel affects heat release mode. The heat release of dieselearly-injection/late-injection represents the characteristics of dual-fuel HCCI andQuasi-HCCI (QHCCI) with premixed gasoline and air mixture triggered by diesel,respectively. These different combustion modes can be controlled by the cooperation ofmixture chemical reactivity and mixture concentration stratification, which can bechanged by varying parameters of gasoline-to-diesel ratio, EGR rate and diesel injectionstrategy. Intake boosts have effects on ignition delay, burning rate andgasoline-to-diesel ratio of mission fire and knocking limit. Increasing intake chargepressure could increase gasoline-to-diesel, so as to dramatically decrease NOx and sootemissions. Increasing injection pressure is still an important measure to decrease NOxand soot emissions for HPCC. At the point of0.9MPa indicated mean effectivepressure (IMEP), by optimizing the above parameters, HPCC achieves NOx and sootspecific emissions levels below0.4g/(kW·h) and0.003g/(kW·h) respectively, whilemaintaining high thermal efficiency, however, HC and CO emissions increase.
     Early injection strategy of diesel is the main control measure to realize HPCC at middle and low load. However, wall-impingement of diesel caused by early injectiontiming will lead to the increase of soot emissions. The peak values of soot emissionsarise at a certain injection timing regime. In response to this problem, the characteristicsof soot emissions caused by wall-impingement of diesel were especially investigated inthis thesis. The results show that the primary cause of the increased soot emissions atcertain injection timing regime is the combustion of local fuel-rich region provided bythe evaporation of wetted-wall fuel. Therefore, the characteristic of soot emissions inearly injection timing regime is different from that of conventional diesel engine. Forexample, increasing intake pressure, controlling intake temperature, coolant temperatureand increasing injection pressure could not be able to effective decrease soot emissionsin early injection timing regime, which could be decreased dramatically by means ofincreasing EGR rate, employing fuels with good evaporability or fuels delivery of portinjection combined with direct injection in-cylinder.
     Diesel injection strategy is an important way in controlling combustion mode andexpanding the operation range with high efficiency and low emissions. Single(including late injection timing of single (L-single) and early injection timing of single(E-single)) and double (including late second injection timing (L-SOI2) and earlysecond injection timing (E-SOI2)) injection strategies were investigated. Furthermore,take L-SOI2strategy for example, the control mechanism of combustion and emissionsof HPCC was simulated by using KIVA-CHEMKIN codes, viewed from the mixturereactivity and reactivity stratification point. The results show that, for single injectionstrategy, E-single strategy is more superior to L-single strategy in decreasing NOx andsoot emissions. For double injection strategy, in L-SOI2strategy, the ignition is mainlytriggered by the SOI2timing. The combustion process is characterized by two-stagehigh temperature heat release, which contributes to decreasing the maximal pressure riserate (MPRR) and cylinder pressure. While the soot emissions increase due to thediffusion combustion of the later second injected diesel. In E-SOI2strategy, the ignitiontiming was mostly dominated by joint action of the second injection timing andchemical kinetics, the combustion duration is short, and the thermal efficiency is highbut with the penalty of the MPRR.
     For the purpose of expanding operation range with high-efficiency clean combustionof HPCC to higher load, technology approaches of expanding higher load at differentspeeds (900~2500r/min) have also been investigated in this thesis. The results showthat on the basis of optimizing the operating parameters and satisfying a given criteria of MPRR and emission etc., by using E-single injection strategy, the optimal points of highload obtain the lowest indicated specific fuel consumption (ISFC) value of168.6g/(kW·h)(corresponding to50%indicated thermal efficiency) at1900r/min, and theNOx and soot emissions at different speeds are lower than0.4g/(kW·h) and0.003g/(kW·h) respectively. The IMEP of optimal points of high load increase with theincrease of speed, the maximum value can reach1.2MPa. High load expansion at low,middle and high speeds are limited by high NOx emissions, MPRR and peak cylinderpressure, respectively. Aiming at these limits, at900r/min, the maximum IMEPincreases from0.67to0.79MPa by boosting the intake pressure from0.12to0.18MPa.At1500r/min, the maximum IMEP increases from1.026to1.391MPa by employingL-SOI2strategy, minimizing the second injection mass of diesel, increasing gasolineproportion and diesel injection pressure.
     Based on the researches above, finally combustion control strategies over the HPCCload region have been experimental investigated in the thesis. The results show that, atlow load, employing low temperature combustion (LTC) mode fuelled with singlediesel fuel benefits the improvement of thermal efficiency. At middle load,gasoline/diesel dual-fuel HCCI combustion mode should be employed. And at high load,gasoline/diesel dual-fuel QHCCI combustion mode should be realized. By using abovehybrid combustion control strategies, ultra-low NOx and soot emissions meanwhile highefficiency could be achieved simultaneously with gasoline/diesel dual-fuel HPCC modeover its operating load range. HPCC engines possess the potential of meeting NOx andPM emissions standard in Euro VI heavy-duty regulations. HPCC is a new exceedinglypromising combustion technology, it fits other dual-fuel combinations of high-cetaneand high-octane fuels.
引文
[1]苏万华,赵华,王建昕等,均质压燃低温燃烧发动机理论与技术,北京:科学出版社,2010,1~2
    [2] www.bp.com/statisticalreview,BP世界能源统计年鉴2012
    [3] http://www.nea.gov.cn/,国家能源局网
    [4] Heywood J.B., Intemai combustion engine fundmentals, New York: McGraw-HillBook Company,1998,154
    [5] http://www.epa.gov/otaq/invntory/overview/pollutants/index.htm, Mobile sourceemissions-past, present, and future, environmental protection agency,2012
    [6] Ma L.w., Liu P., Fu F., et al., Integrated energy strategy for the sustainabledevelopment of China, Energy,2011,36(2):1143-1154
    [7] http://www.zhb.gov.cn/,中华人民共和国环境保护部网
    [8]王建昕,王志,高效清洁车用汽油机燃烧的研究进展,汽车安全与节能学报,2010,1(3):167-178
    [9]熊思浩,王群,朱镕基昨日宣布中国已经核准《京都议定书》,新华通讯社,1999
    [10]苏万华,中国汽车驱动技术的发展趋势,汽车安全与节能学报,2011(1):25-33
    [11] Johnson T.V., Review of diesel emissions and control, SAE Paper2010-01-0301,2010
    [12] Yao M.F., Zheng Z.L., Liu H.F., Progress and recent trends in homogeneouscharge compression ignition (HCCI) engines, Progress in Energy and CombustionScience,2009,35(5):398-437
    [13] Kamimoto T., Bae M.H., High Combustion Temperature for the Reduction ofParticulate in Diesel Engines, SAE Paper880423,1988
    [14] Akihama K., Takatori Y., Inagaki K., et al., Mechanism of the smokeless richDiesel combustion by reducing temperature, SAE Paper2001-01-0655,2001
    [15] Kitamura T., Ito T., Senda J., Mechanism of smokeless diesel combustion withoxygenated fuels based on the dependence of the equivalence ratio and temperatureon soot particle formation, International Journal of Engine Research,2002,3(4):223-247
    [16] Alriksson M., Denbratt I., Low temperature combustion in a heavy duty dieselengine using high levels of EGR, SAE Paper2006-01-0075,2006
    [17] Kokjohn S.L., Hanson R.M., Splitter D.A., et al., Experiments and modeling ofdual-fuel HCCI and PCCI combustion using in-cylinder fuel blending, SAE Paper2009-01-2647,2009
    [18] Onishi S., JO S.H., Shoda K., et al., Active Thermo-atmosphere Combustion(ATAC)—A New Combustion Process for Internal Combustion Engines, SAE Paper790501,1979
    [19] Noguchi M., Tanaka T., Takeuchi Y., A study on gasoline engine combustion byobservation of intermediate reactive products during combustion, SAE Paper790840,1979
    [20] Najt P.M., Foster D.E., Compression-ignited homogeneous charge combustion,SAE Paper830264,1983
    [21] Thring R.H., Homogeneous-charge compression ignition (HCCI) engine, SAEPaper892068,1989
    [22] Bression G., Soleri D., Savy S., et al., A study of methods to lower hc and coemissions in diesel HCCI, SAE Paper2008-01-0034,2008
    [23] Dec J.E., Advanced compression-ignition engines-understanding the in-cylinderprocesses, Progress in Energy and Combustion Science,2009,32(2):2727–2742
    [24] Christensen M., Hultqvist A., Johansson B., Demonstrating the multi fuelcapability of a homogeneous charge compression ignition engine with variablecompression ratio, SAE Paper1999-01-3679,1999
    [25] Liu H.F., Yao M.F., Zhang B., et al., Effects of inlet pressure and octane numberson combustion and emissions of a homogeneous charge compression ignition (HCCI)engine, Energy&Fuels,2008,22(4):2207-2215
    [26] Opat R., Ra Y., Gonzalez D.M.A., et al., Investigation of mixing and temperatureeffects on hc/co emissions for highly dilute low temperature combustion in a lightduty diesel engine, SAE Paper2007-01-0193,2007
    [27] Bessonette P.W., Schleyer C.H., Duffy K.P., Effects of fuel property changes onheavy-duty hcci combustion, SAE Paper2007-01-0191,2007
    [28] Inagaki K., Fuyuto T., Nishikawa K., et al., Dual-fuel pci combustion controlled byin-cylinder stratification of ignitability, SAE Paper2006-01-0028,2006
    [29] Johansson B., Path to high efficiency gasoline engine,16th Annual Diesel EngineEmissions Reduction (DEER) Conference,2010
    [30] Kalghatgi G.T., Risberg P., ngstr m H.E., Partially pre-mixed auto-ignition ofgasoline to attain low smoke and low NOx at high load in a compression ignitionengine and comparison with a diesel fuel, SAE Paper2007-01-0006,2007
    [31] Leermakers C.A.J., Experimental study on the impact of operating conditions andfuel composition on PCCI combustion, Master's thesis, Eindhoven University ofTechnology,2010
    [32] Kalghatgi G.T., Risberg P., ngstr m H.E., Advantages of fuels with highresistance to auto-ignition in late-injection, low-temperature, compression ignitioncombustion, SAE Paper2006-01-3385,2006
    [33] Leermakers C.A.J., Luijten C.C.M., Somers L.M.T., et al., Experimental study offuel composition impact on PCCI combustion in a heavy-duty diesel engine, SAEPaper2011-01-1351,2011
    [34]张波,燃料理化特性对均质压燃影响的试验研究:[博士学位论文],天津;天津大学,2007,49-50
    [35] Yao M.F., Zhang B., Zheng ZQ, et al., Effects of exhaust gas recirculation oncombustion and emissions of a homogeneous charge compression ignition enginefuelled with primary reference fuels, proceedings of the institution of mechanicalengineers, Part D: Journal of Automobile Engineering,2007,221(2):197–213
    [36] Liu H.F., Yao M.F., Zhang B., et al., Influence of fuel and operating conditions oncombustion characteristics of a homogeneous charge compression ignition engine,Energy&Fuels,2009,23(3):1422–1430
    [37] Yao M.F., Zhang B., Zheng ZQ, et al., Experimental study on homogeneous chargecompression ignition combustion with primary reference fuel, Combustion Scienceand Technology,2007,179(12):2539-2559
    [38] Ryan III T.W., Matheaus A.C., Fuel Requirements for HCCI Engine Operation,SAE Paper2003-01-1813,2003
    [39] Turner D., Tian G.H., Xu H.M., et al., An experimental study of dieselinecombustion in a direct injection engine, SAE Paper2009-01-1101,2009
    [40] Zhang F., Xu H.M., Zhang J., et al., Investigation into light duty dieseline fuelledpartially-premixed compression ignition engine, SAE Paper2011-01-1411,2011
    [41] Weall A., Collings N., Investigation into partially premixed combustion in alight-duty multi-cylinder diesel engine fuelled with a mixture of gasoline and diesel,SAE Paper2007-01-4058,2007
    [42] Han D., Ickes A.M., Bohac S.V., et al., Premixed low-temperature combustion ofblends of diesel and gasoline in a high speed compression ignition engine,Proceedings of the combustion institute,2011,33(2):3039–3046
    [43]陈征,甲醇高效清洁燃烧过程的基础理论研究:[博士学位论文],天津;天津大学,2007
    [44] Yao M.F., Zheng Z.Q., Qin J., Experimental study on HCCI combustion with fuelof dimethyl ether and natural gas, ASME: Journal of Engineering for Gas Turbinesand Power,2006,128(2):414-420
    [45] Olsson J., Tunest l P., Haraldsson G., et al., A turbo charged dual fuel HCCIengine, SAE Paper2001-01-1896,2001
    [46] Lü X.C., Hou Y.C., Zu L.L., et al., Experimental study on the auto-ignition andcombustion characteristics in the homogeneous charge compression ignition (HCCI)combustion operation with ethanol/n-heptane blend fuels by port injection, Fuel,2006,85(17-18):2622-2631
    [47] Yao M.F., Chen Z., Zheng ZQ, et al., Study on the controlling strategies ofhomogenous charge compression ignition combustion with fuel of dimethyl etherand methanol, Fuel,2006,85(14-15):2046-2056
    [48]侯玉春,黄震,俎琳琳等,实时燃料设计的均质充量压缩着火燃烧与排放的试验研究,上海交通大学学报,2007,41(10):1623-1628
    [49] Lü X.C., Zhang W.G., Qiao X.Q., et al., Fuel design concept for improving thespray characteristics and emissions of diesel engine, Journal of AutomobileEngineering,2005,219(4):547-557
    [50] Lü X.C., Han D., Huang Z., Fuel design and management for the control ofadvanced compression-ignition combustion modes, Progress in Energy andCombustion Science,2011,37(6):741-783
    [51] Inagaki K., Fuyuto T., Nishikawa K., et al., Combustion system withpremixture-controlled compression ignition, R&D Review of Toyota CRDL,2006,41(3):35-46
    [52] Dec J.E., Understanding HCCI charge stratification using optical, conventional,and computational diagnostics, SAE HCCI Symposium, Lund, Sweden, September,2005
    [53] Dec J.E., Hwang W., Sj berg M., An investigation of thermal stratification inHCCI engines using chemiluminescence imaging, SAE Paper2006-01-1518,2006
    [54] Richter M., Engstr m J., Franke A., et al., The influence of charge inhomogeneityon the HCCI combustion process, SAE Paper2000-01-2868,2000
    [55] Liu H.F., Zheng Z.L., Yao M.F., et al., Influence of temperature and mixturestratification on HCCI combustion using chemiluminescence images and CFDanalysis, Applied Thermal Engineering,2012,33-34:135–143
    [56] Sj berg M., Dec J.E., An investigation of the relationship between measured intaketemperature,BDC temperature, and combustion phasing for premixed and DI HCCIengines, SAE Paper2004-01-1900,2004
    [57] Zhao H., Peng Z.J, Williams J., et al., understanding the effects of recycled burntgases on the controlled autoignition (CAI) combustion in four-stroke gasolineengines, SAE2001-01-3607,2001
    [58] Shuai S.J., Abani N., Yoshikawa T., et al., Evaluation of the effects of injectiontiming and rate-shape on diesel low temperature combustion using advanced CFDmodeling, Fuel,2009,88(7):1235-1244
    [59] Colban W.F., Miles P.C., Oh S., Effect of intake pressure on performance andemissions in an automotive diesel engine operating in low temperature combustionregimes, SAE Paper2007-01-4063,2007
    [60] Han S., Shim E., Jang J., et al., Operating range of low temperature dieselcombustion with supercharging, SAE Paper2009-01-1440,2009
    [61] Zheng J.N., Caton J.A., Second law analysis of a low temperature combustiondiesel engine effect of injection timing and exhaust gas recirculation, Energy,2012,38(1):78-84
    [62] Hardy W.L., Reitz R.D., A study of the effects of high EGR, high equivalence ratio,and mixing time on emissions levels in a heavy-duty diesel engine for PCCIcombustion, SAE Paper2006-01-0026,2006
    [63] Hanson R.M., Kokjohn S.L., Splitter D.A., et al., An experimental investigation offuel reactivity controlled PCCI combustion in a heavy-duty engine, SAE Paper2010-01-0864,2010
    [64] Manente V., Tunestal P., Johansson B., et al., Effects of ethernol and gasoline typeof fuels on partially premixed combustion from low to high load, SAE Paper2010-01-0871,2010
    [65] Manente V., Johansson B., Tunestal P., et al., Influence of inlet pressure, EGR,combustion phasing, speed and pilot ratio on high load gasoline partially premixedcombustion, SAE Paper2009-01-2668,2009
    [66] Manente V., Johansson B., Tunestal P., et al., Partially premixed combustion athigh load using gasoline and ethanol, a comparison with diesel, SAE Paper2009-01-0944,2009
    [67] Ji L.B., Lü X.C., Ma J.J., et al., Experimental study on infuencing factors ofiso-octane thermo-atmosphere combustion in a dual-fuel stratifed chargecompression ignition (SCCI) engine, Energy&Fuels,2009,23(5):2405–2412
    [68] Ma J.J., LüX.C., Ji L.B., et al., Evaluation of SCCI Potentials in Comparison toHCCI and Conventional DICI Combustion Using n-Heptane, Energy Fuels,2008,22(2):954-960
    [69]余文斌,基于混合与化学反应协同作用的混合燃烧控制策略的研究:[博士学位论文],天津;天津大学,2012
    [70] Turns S.R., An introduction to combustion: concepts and applications,WCB/McGraw-Hill, Boston,2000
    [71] Zhang Y., Zhao H., Xie H., et al., Variable valve actuation enabled high efficiencygasoline engine. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2010,224:1081–1095
    [72] Fuerhapter A., Piock W., Fraidl G., CSI-Controlled auto ignition-the best solutionfor the fuel consumption-versus emission trade-off, SAE Paper2003-01-0754,2003
    [73] Alger T., Chauvet T., Dimitrova Z., Synergies between high EGR operation andGDI systems, SAE Paper2008-01-0134,2008
    [74] Otte R.M.E.,直喷式汽油机2次喷射的潜力,国外内燃机,2007,(3):35-40
    [75] Schwarz C., Schünemann E., Durst B., Potentials of the spray-guided BMW DIcombustion system, SAE Paper2006-01-1265,2006
    [76] Urata Y., Awasaka M., Takanashi J., et al., A study of gasoline-fuelled HCCIengine equipped with an electromagnetic valve train, SAE Paper2004-01-1898,2004
    [77] Katashiba H., Honda T., Kawamoto M., et al., Improvement of center injectionspray guided DISI performance, SAE Paper2006-01-1001,2006
    [78]王建昕,王燕军,何邦全等,基于多段喷射的汽油直喷式发动机分层混合气形成方法,中国,专利编号ZL2004100044735,2004-02-27
    [79] Wang Z., Wang J.X., Shuai S.J., et al., Study of multimode combustion systemwith gasoline direct injection, ASME Journal of Engineering for Gas Turbines andPower,2007,129(4):1079–1087
    [80] Pickett L.M., Kook S., Williams T.C., Transient liquid penetration of earlyinjection diesel sprays, SAE Paper2009-01-0839,2009
    [81] Pastor J.V., García-Oliver J.M., García A., et al., A spectroscopy study of gasolinepartially premixed compression ignition spark assisted combustion, Applied Energy,2013,104:568-575
    [82] Yao M.F., Zhang Q.C., Liu H.F., et al., Diesel engine combustion control: mediumor heavy EGR, SAE Paper2010-01-1125,2010
    [83] Dec J.E., Sj berg M., HCCI combustion inefficiency and potential solution, SAEHCCI Symposium, Berkley, CA, USA, August,2004
    [84] Zheng Z.L., Yao M.F., Numerical study on the chemical reaction kinetics ofn-heptane for hcci combustion process, Fuel,2006,85(12):2605-2615
    [85] Chen R., Milovanovic N., A computational study into the effect of exhaust gasrecycling on homogeneous charge compression ignition combustion in internalcombustion engine fuelled with methane, International Journal of Thermal Sciences,2002,41(9):805-813
    [86] Sj berg M., Dec J.E., Smoothing HCCI heat-release rates using partial fuelstratification with two-stage ignition fuels, SAE Paper2006-01-0629,2006
    [87] Kokjohn S.L., Hanson R.M., Splitter D.A., et al., Fuel reactivity controlledcompression ignition (RCCI): a pathway to controlled high-efficiency cleancombustion, International Journal of Engine Research,2011,12(3):209-226
    [88] Nieman D.E., Dempsey A.B., Reitz R.D., Heavy-duty RCCI operation usingnatural gas and diesel, SAE Paper2012-01-0379,2012
    [89] Curran S., Hanson R., Wagner R., Effect of E85on RCCI performance andemissions on a multi-cylinder light-duty diesel engine, SAE Paper2012-01-0376,2012
    [90] Musculus M., An In-cylinder imaging survey of low-temperature, high-efficiencycombustion strategies, DEER,2011
    [91] Tamagna D., Ra Y., Reitz R.D., Multidimensional simulation of PCCI combustionusing gasoline and dual-fuel direct injection with detailed chemical kinetics, SAEPaper2007-01-0190,2007
    [92] Dunbeck P.B., Reitz R.D., An experimental study of dual fueling with gasolineport injection in a single-cylinder, air cooled HSDI diesel generator, SAE Paper2010-01-0869,2010
    [93] Alger T., SWRI's HEDGETM concept: High efficiency dilute gasoline engines forautomotive, medium duty and off-road applications, Modern Engine TechnologyInternational Symposium, Beijing,2009,
    [94]于超,王建昕,王志等,均质混合气引燃动机的燃烧与排放特性,汽车安全与节能学报,2011,2(3):263-270
    [95] Wagemakers A.M.L.M., Leermakers C.A.J., Review on the effects of dual-fueloperation, using diesel and gaseous fuels, on emissions and performance, SAE Paper2012-01-0869,2012
    [96] Wu H.W., Wang R.H., Ou D., et al., Reduction of smoke and nitrogen oxides of apartial HCCI engine using premixed gasoline and ethanol with air, Applied Energy,2011,88(11):3882-3890
    [97] The specification of AVL415S filter smoke number meter, AVL List GMBH,Graz, Austria,2007
    [98]汪洋,谢辉,苏万华等,柴油/汽油双燃料准均质燃烧过程及其降低有害排放物的潜力,燃烧科学与技术,2002,8(6):538-542
    [99] Park S.H., Cha J., Kim H.J., Lee C.S., Effect of early injection strategy on sprayatomization and emission reduction characteristics in bioethanol blended dieselfueled engine, Energy,2012,39(1):375-387
    [100] Kook S., Park S., Bae C., Influence of early fuel injection timings on premixingand combustion in a diesel engine, Energy&fuels,2008,22(1):331-337
    [101] Lee S., Reitz R.D., Spray Targeting to Minimize Soot and CO Formation inPremixed Charge Compression Ignition (PCCI) Combustion with a HSDI DieselEngine, SAE Paper2006-01-0918,2006
    [102] Pang K.M., Ng H.K., Suyin G., Investigation of fuel injection pattern on sootformation and oxidation processes in a light-duty diesel engine using integratedCFD-reduced chemistry, Fuel,2012,96:404-418
    [103] Benajes J., Novella R., García A., et al., The role of in-cylinder gas density andoxygen concentration on late spray mixing and soot oxidation processes, Energy,2011,36(3):1599-1611
    [104] Peng H.Y., Cui Y., Shi L., et al., Effects of exhaust gas recirculation (EGR) oncombustion and emissions during cold start of direct injection (DI) diesel engine,Energy,2008,33(3):471-479
    [105] Noehre C., Andersson M., Johansson B.,et al., Characterization of partiallypremixed combustion, SAE Paper2006-01-3412,2006
    [106] Tree D.R., Svensson K.I., Soot processes in compression ignition engines,Progress in energy and combustion science,2007,33(3):272-309
    [107] Wang X.G., Huang Z.H., Zhang W., et al., Effects of ultra-high injection pressureand micro-hole nozzle on flame structure and soot formation of impinging dieselspray, Fuel,2011,88(5):1620-1628
    [108] Deshmukh D., Mohan A.M., Anand T.N.C., et al., Spray characterization ofstraight vegetable oils at high injection pressures, Fuel,2012,97:879-883
    [109] Gumus M., Sayin C., Canakci M., The impact of fuel injection pressure on theexhaust emissions of a direct injection diesel engine fueled with biodiesel–dieselfuel blends, Fuel,2012,95:486-494
    [110] Zhang Q.C., Yao M.F., Zheng Z.Q., et al., Experimental study of n-butanoladdition on performance and emissions with diesel low temperature combustion,Energy,2012,47(1):515-521
    [111] Fang T., Coverdill R.E., Lee C.F., et al., Effects of injection angles on combustionprocesses using multiple injection strategies in an HSDI diesel engine, Fuel,2008,87(15-16):3232-3239
    [112] Martin G.C., Mueller C.J., Milam D.M., et al., Early direct-injection,low-temperature combustion of diesel fuel in an optical engine utilizing a15-hole,dual-row, narrow-included-angle nozzle, SAE Paper2008-01-2400,2008
    [113] Iwazaki K., Amagai K., Arai M., Improvement of fuel economy of an indirectinjection (IDI) diesel engine with two-stage injection, Energy,2005,30(2-4):447-459
    [114] Fang T., Coverdill R.E., Lee C.F., et al., Smokeless combustion within asmall-bore HSDI diesel engine using a narrow angle injector, SAE Paper2007-01-0203,2007,
    [115] Kim M.Y., Lee C.S., Effect of a narrow fuel spray angle and a dual injectionconfiguration on the improvement of exhaust emissions in a HCCI diesel engine,Fuel,2007,86(17-18):2871-2880
    [116] Fang T., Lee C.F., Low sooting combustion of narrow-angle wall-guided spraysin an HSDI diesel engine with retarded injection timings, Fuel,2011,90(4):1449-1456
    [117] Ye P., Boehman A.L., An investigation of the impact of injection strategy andbiodiesel on engine NOx and particulate matter emissions with a common-railturbocharged DI diesel engine, Fuel,2012,97:476-488
    [118] Han Y.Q., Zhao J.J., Zhang L., et al., Effects of heat release on thermal efficiencyand evaluation on load limit of HCCI combustion mode, Transactions of CSICE,2008,26(2):121-127
    [119]陈慧,重型柴油机燃烧过程优化的仿真研究:[硕士学位论文],天津;天津大学,2011
    [120] Ra Y., Reitz R.D., A Reduced Chemical Kinetic Model for IC EngineCombustion Simulations with Primary Reference Fuels, Combustion and Flame,2008,155(4):713–738
    [121] Ra Y., Yun J. E., Reitz R.D., Numerical parametric study of diesel engineoperation with gasoline, Combustion Science and Technology,2009,181(2):350-378
    [122] Kong S.C., Sun Y., Reitz R.d., Modeling diesel spray flame liftoff, sootingtendency, and NOx emissions using detailed chemistry with phenomenological sootmodel, Journal of Engineering for Gas Turbines and Power Transactions of theASME,2007,129(1):245-251
    [123] Sun Y., Diesel combustion optimization and emissions reduction using adaptiveinjection strategies (AIS) with improved numerical models, PhD Thesis inMechanical Engineering, University of Wisconsin-Madison,2007,
    [124] Smith, G.P., Golden, D.M., Frenklach M., et al.,http://www.me.berkeley.edu/gri_Mech/, GRI-mech3.0,2005
    [125] Abani N., Kokjohn S., Park S.W., et al., An improved spray model for reducingnumerical parameters dependencies in diesel engine CFD simulations, SAE Paper2008-01-0970,2008
    [126] Beale J.C., Reitz R.D., Modeling spray atomization with thekelvin-helmholtz/rayleigh-taylor hybrid model, Atomization and Sprays,1999,9(6):623-650
    [127] Munnannur A., Droplet collision modeling in multi-dimensional engine spraycomputations, PhD Thesis in Mechanical Engineering, University ofWisconsin-Madison,2007
    [128] O’Rourke P.J., Amsden A.A., A spray/wall interaction submodel for the KIVA-3wall film Model, SAE Paper2000-01-0271,2000
    [129] Li T., Suzuki M., Ogawa H., Characteristics of smokeless low temperature dieselcombustion in various fuel-air mixing and expansion of operating load range, SAEPaper2009-01-1449,2009
    [130] Pierpont D.A., Reitz R.D., Effects of injection pressure and nozzle geometry onD.I. diesel emissions and performance, SAE Paper950604,1995
    [131] Tsujimura T., Goto S., Study on improvement of combustion and effect of fuelproperty in advanced diesel engine, SAE Paper2010-01-1117,2010
    [132] Vanegas A., Won H., Peters N., Influence of the nozzle spray angle on pollutantformation and combustion efficiency for a PCCI diesel engine, SAE Paper2009-01-1445,2009
    [133] Asad U., Zheng M., Efficacy of EGR and boost in single-injection enabled lowtemperature combustion, SAE Paper2009-01-1126,2009
    [134] Gharanhbaghi S, Wilson T.S., Xu H.M., et al., Modeling and experimentalinvestigation of supercharged HCCI engines, SAE Paper2006-01-0634,2006
    [135] Cairns A., Blaxill H., Irlam G., Exhaust gas recirculation for improved part andfull load fuel economy in a turbocharged gasoline engine, SAE Paper2006-01-0047,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700